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Nuclear shape, architecture and orientation 
features from H&E images are able to predict 
recurrence in node‑negative gastric 
adenocarcinoma
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Abstract 

Background:  Identifying intestinal node-negative gastric adenocarcinoma (INGA) patients with high risk of recur‑
rence could help perceive benefit of adjuvant therapy for INGA patients following surgical resection. This study evalu‑
ated whether the computer-extracted image features of nuclear shapes, texture, orientation, and tumor architecture 
on digital images of hematoxylin and eosin stained tissue, could help to predict recurrence in INGA patients.

Methods:  A tissue microarrays cohort of 160 retrospectively INGA cases were digitally scanned, and randomly 
selected as training cohort (D1 = 60), validation cohort (D2 = 100 and D3 = 100, D2 and D3 are different tumor TMA 
spots from the same patient), accompanied with immunohistochemistry data cohort (D3′ = 100, a duplicate cohort of 
D3) and negative controls data cohort (D5 = 100, normal adjacent tissues). After nuclear segmentation by watershed-
based method, 189 local nuclear features were captured on each TMA core and the top 5 features were selected 
by Wilcoxon rank sum test within D1. A morphometric-based image classifier (NGAHIC) was composed across the 
discriminative features and predicted the recurrence in INGA on D2. The intra-tumor heterogeneity was assessed on 
D3. Manual nuclear atypia grading was conducted on D1 and D2 by two pathologists. The expression of HER2 and 
Ki67 were detected by immunohistochemistry on D3 and D3′, respectively. The association between manual grading 
and INGA outcome was analysis.

Results:  Independent validation results showed the NGAHIC achieved an AUC of 0.76 for recurrence prediction. 
NGAHIC-positive patients had poorer overall survival (P = 0.017) by univariate survival analysis. Multivariate survival 
analysis, controlling for T-stage, histology stage, invasion depth, demonstrated NGAHIC-positive was a reproducible 
prognostic factor for poorer disease-specific survival (HR = 17.24, 95% CI 3.93–75.60, P < 0.001). In contrast, human 
grading was only prognostic for one reader on D2. Moreover, significant correlations were observed between 
NGAHIC-positive patients and positivity of HER2 and Ki67 labeling index.

Conclusions:  The NGAHIC could provide precision oncology, personalized cancer management.
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Background
The gastric cancer (GC) is a common gastrointestinal 
tumor with high mortality and the second leading cause 
of death in China [1]. For these cases, 80% are gastric 
adenocarcinoma (GA). Nodal metastases are a well-
known prognostic factor after radical treatment of gastric 
cancer. Because intestinal node-negative gastric adeno-
carcinoma (INGA) patients have a good prognosis, it 
remains controversial whether adjuvant chemotherapy 
is needed for INGA patients after surgery. There is con-
troversy surrounding the benefit of adjuvant therapy 
for patients with resected stage IB, especially pT2N0. 
The National Comprehensive Cancer Network (NCCN) 
guidelines suggest for some high-risk cases (pT2N0 with 
a high histologic grade or the presence of lymph vascular 
or perineural invasion), the decision to pursue adjuvant 
therapy should be personalized. Observation is appropri-
ate for patients with resected T2N0 stage IB GC as long 
as they have undergone adequate lymph node dissec-
tion. But guidelines from the European Society for Medi-
cal oncology (ESMO) suggest adjuvant therapy for all 
patients with resected stage IB disease, including those 
with pT2N0 tumors. NCCN and ESMO recommended 
adjuvant therapy for all patients with pT3-4N0. Obser-
vation without adjuvant therapy for patients with T1N0 
who have uninvolved section margins. For patients with 
early-stage gastric cancer, the risk of lymph node metas-
tasis is low (2–28 percent for T1, 20 percent for T2). 
While chemotherapy has many side effects, such as loss 
of hair, myelosuppression, damage to liver and kidney, 
and additional extensive medical burden, it is critical to 
distinguish recurrence in INGA patients perceived ben-
efit of adjuvant chemoradiation after an R0 resection.

Although there were many predicative factors for 
recurrence and could be useful to stratify node-negative 
gastric cancer patients for adjuvant treatment and tai-
lored follow-up, including lymphatic embolization and 
perineural infiltration, p53 and Ki67 and greater lymph 
node retrieval. But these assays are tissue destructive and 
expensive. Pathologic staging (e.g. nuclear atypia grade) is 
critical in directing optimal treatment for INGA patients. 
Unfortunately, pathological analysis is a tedious process 
and suffered from intra/inter-reader variability.

Computer-aided image analysis has great potential 
to conquer inconsistencies in virtue of subjective inter-
pretation [2–5]. Quantitative histomorphometry (QH) 
used computer-aided image analysis to decrypt sub-vis-
ual differences of tumor morphology in digital pathol-
ogy images. With the advancement of computer-aided 

image technologies, a number of quantitative morphol-
ogy information was extracted and has been approved to 
be prognostic, such as tumor nests fractal dimension and 
stromal morphologic features [6, 7].

Recent reports have shown that nuclear architecture 
was useful in cancer grading and predicting patient out-
comes [2, 5, 6, 8–13]. Genetic instability could be dis-
played by diversify of nuclear shape and texture, playing 
important role in metastasis and proliferation that result 
in cancer recurrence potentially [11, 12]. Quantitative 
histomorphometry of nucleus architecture was utilized 
to predict disease recurrence in early-stage non-small 
cell lung cancer [14], biochemical recurrence [11] for 
prostate cancers [11, 15] and so on [6, 10, 12].

In this study, we constructed a quantitative histomor-
phometry based model to distinguish INGA patients who 
suffered from recurrence versus those did not using a 
cohort of 60 TMA images. We then validate the model 
in another validation cohort of 100 TMA images. The 
work flow of this study was illustrated in Fig. 1. With the 
help of image classifier, we are looking forward to identify 
patients who have high risk of recurrence and who might 
thus receive measurable benefit adjuvant chemotherapy 
after curative resection.

Materials and methods
Study population
With the approval of the ethical board of Renmin Hos-
pital of Wuhan University (Wuhan, Hubei, China) and 
abided with the Declaration of Helsinki, 1782 candi-
date patients with GA were collected from Department 
of Pathology, Renmin Hospital of Wuhan University 
archives from 2000 to 2012 retrospectively and consecu-
tively. Two pathologists (Z.Z and N.Z) were then assigned 
to identify the patients with node-negative gastric ade-
nocarcinoma. Subsequently, the corresponding donor 
blocks and their H&E stained slides were obtained fol-
lowed by selecting preferred blocks and marking areas of 
interest for core punching. Three to six cores of 2 mm in 
diameter was punched from central tumor/leading edge 
of the donor block ROI using a thin-wall stainless steel 
tube and transferred onto the recipient blocks to con-
struct the arrays. The digital H&E images were captured 
under the Aperio Scan Scope XT Slide Scanner at 40× 
magnification with a resolution of 0.25 μm per pixel. One 
of the most representative tumor cores were selected by 
Z.Z and Z.N for use. The enrolled spots were randomly 
divided into training cohort (D1 = 60 [37.5%]) and test 
cohort (D2 = 100 [62.5%]), respectively.

Keywords:  Digital H&E images, Predication, Negative-node gastric adenocarcinoma, Quantitative histomorphometric
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Additionally, three 2 mm punches were removed from 
different tumor region of D2 and assessed by pathologists 
for prefer spots after digitally scanning under slide scan-
ner, as well as two 2 mm punches from normal adjunct 
tissue as negative control. Finally, a third dataset, named 
D3 (n = 100), was also recruited in this study, containing 
tissue cores corresponding to the same patients in D2 but 
extracted from different regions of the tumor. D3 was 
employed to validate the image classifier to cope with 
tumor heterogeneity and immunohistochemical staining 
for HER2. A fourth dataset, named D3′, was duplicate 
cohort of D3, using for immunohistochemical assess-
ment of Ki67. A fifth dataset, named D5 (n = 100), was 
obtained from the adjacent normal tissues of D2 as nega-
tive controls. D1 contains D+ (recurrence) patients and 
D− (non-recurrence) patients. In contrast, for D2, D3 
and D4, only the digital H&E images were used to predict 
the recurrence status without any pre-knowledge of the 
patients.

In this paper, the INGA samples dataset was selected 
based off the after mentioned inclusion/exclusion cri-
teria. Inclusion criteria comprised of: (1) pathological 
diagnosis of gastric adenocarcinoma; (2) according to 

the standard of gastric cancer TNM staging by Union for 
International Cancer Control: gastric adenocarcinoma 
TMN stage was limited to pT1–T4N0M0 before postop-
erative pathology; (3) After radical surgery, more than 16 
lymph nodes were selected for biopsy; (4) recurrence or 
metastasis was confirmed by CT or MRI images, endos-
copy, and pathology; (5) complete clinic pathological data 
(through telephone, data collected by clinicians or data-
base of electronic medical records and all patients were 
followed up for 5 years). Accompanying exclusion crite-
ria contained: (1) patients with other primary malignant 
tumors; (2) patients who underwent chemotherapy or 
immunotherapy before surgery; (3) palliative surgery; (4) 
other diseases or accidental deaths; (5) residual gastric 
cancer; (6) lost visits or incomplete data; (7) death within 
1 month after operation. The period of no recurrence and 
metastasis was limited from the time after the surgery to 
the diagnosis of recurrence or the time of final follow-up. 
The period of recurrence or metastasis was limited from 
the time of diagnosis, recurrence or metastasis to death 
or final follow-up time; the overall survival time was from 
surgery to death or the last follow-up time. The deadline 
for follow-up was on December 31st, 2017.

Fig. 1  Illustrations of work flow for this study
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Image analysis
Nuclear segmentation
Each individual nucleus, including cancer tissue and 
tumor stroma, was detected and segmented by Water-
shed-based nuclear segmentation method [16] at 40× 
magnification (0.25  μm/pixel resolution) automatically 
after color deconvolution for isolating the stain. This 
resulted in a RGB color digital image for each TMA spot, 
the similar one was shown in Fig. 2.

Feature extraction
Three different types of quantitative histomorphometric 
cellular features, covering local architectural features, 
shape/texture features, local Cell Orientation Graphs 
features, were extracted from local cluster regions [6, 8] 
in this study. Of these features, 20 nuclear architectural 
features, with 12 features from Voronoi Diagram and 8 
features from Delaunay Graph, were extracted aimed to 
capture the nuclear architectural disorder in local regions 
indicating more aggressive tumor behaviors. 39 nuclear 
orientation disorder features related to nuclear orienta-
tion disorder were derived from Cell Orientation Graphs 
[10]. 100 shape features and 30 nuclear texture features, 

comprised of invariant moment, Fourier descriptors of 
boundary, area, length/width ratios, smoothness, perim-
eter ration, and area ration and so on, were extracted 
as described in ref. [17] aiming to capture the disorder 
linked to shape/texture disorder in local cluster regions. 
Finally, a total of 189 features were yielded for each 
TMA core (Table  1) in our study. A comprehensive list 
of all quantitative features was shown in Additional file 1: 
Table S1.

Feature selection
Three different feature selection schemes, including the 
minimum redundancy maximum relevance (MRMR), 
Wilcoxon rank sum test (WRST), and random for-
est (RF), were employed to identify the most outstand-
ing pathological morphometric features in the training 
groups. A randomized threefold cross-validation scheme 
along with 100 iterations, combing with each feature 
selection method, was used to guarantee the robustness 
of the preferred the features. These approaches resulted 
in a total of three accompanying feature bins for disguis-
ing the recurrences and non-recurrence cases within the 
training group, respectively. In this paper we limited the 
number of candidate features to 5 aimed to avoid curse 
of dimensionality or over fitting challenges using box and 
whisker plots. Each feature bin consisted of 5 most dis-
tinguished features accordingly, and these features were 
considered as a prerequisite for inclusion in subsequent 
classifier construction procedure.

Classifier construction
Four different machine learning schemes, comprising of 
analysis of linear discriminant (ALD), analysis of quad-
ratic discriminant (AQD), machine of support vector 
(MSV), and random forest (RF), in conjunction with the 
3 feature bins, resulting in 12 different machine learn-
ing combination modes, were applied to construct the 
candidate histopathological image classifiers for INGA 

Fig. 2  It was shown digital pathological H&E image of INGA tissue. 
a Digital pathological H&E image of INGA tissue microarray. b Digital 
pathological H&E image of one INGA tissue microarray spot

Table 1  Summary of histomorphometric features extracted from TMA

SD standard deviation, VD Voronoi diagram, DT Delaunay triangulation

Feature type No. Description

Nuclear shape 100 Area ratio, distance ratio, SD of distance, distance ratio, perimeter ratio, variance of distance, 
fractal dimension, smoothness, invariant moment 1–7, Fourier descriptor 1–10: min/max, 
mean, SD, median

Nuclear texture 30 Contrast, energy, entropy, inverse variance, invariant moment: mean, SD from each channel

Nuclear orientation map 39 Contrast energy, contrast inverse moment, contrast average, contrast variance, contrast 
entropy, intensity average, intensity variance, intensity entropy, entropy, energy, correla‑
tion, information measure 1, information measure 2: mean, SD, range

VD 12 Perimeter, chord, area: SD, min/max, disorder, average

DT 8 Side length, triangle area: min/max, mean, standard deviation, median, disorder

In total 189
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patients (denoted as NGAHICs) within training group. 
This full join between machine learning scheme and fea-
ture bin gave rise to 12 different optional NGAHICs suc-
cessfully. Subsequently, the optimal histological image 
classifier (NGAHIC) was settled down across each candi-
date classifier productivity (AUC, area under the receiver 
operating characteristic curve) within the training group. 
Of note, each binary histological image classifier yield a 
predictive probability value for distinguishing recurrence 
or non-recurrence case. In this study, the recurrence level 
was set at 0.5 empirically, namely the NGAHIC predic-
tive probability value (> 0.5) on each core was considered 
to be recurrence case. All the binary classifiers predictive 
outcomes were compared with the ground truth label for 
classifier performance evaluation.

Nuclear atypia grade by human readers
Since the histomorphometric features we investigate 
related to nuclear atypia, key predictors of prognosis in 
various cancers [2, 5, 6, 8–15, 18–20]. However, only the 
modest agreements were achieved among experienced 
readers [13]. We designed the comparative strategies, 
aiming to illustrate the pathologist’s inter-reader variabil-
ity in INGA recurrence prediction and compare the prog-
nostic performance of image classifier against subjective 
manual nuclear atypia grading. The nuclear atypia grade 
estimation was conducted by two expert pathologists 
(Z.Z and N.Z) via visual evaluation of the H&E images 
on training set and test set. Both human readers were 
blinded to the ground truth information of the 160 cases. 
Each pathologist was asked to assign a score between 0 
and 2 for each digital image in-house. The nuclear atypia 
grade was defined as 0, 1 referring to low nuclear atypia 
grade and 2 referring to high nuclear atypia grade, based 
off the previous work by Nakashima [13].

Immunohistochemistry
All immunohistochemical stains were performed 
by the following order: deparaffinizing → antigen 
retrieval → blocking → primary antibody → wash-
ing → blocking → biotinylated secondary anti-
body → washing → blocking → washing → mounting and 
observation as our previous work [21]. Each core in D3′ 
and D3 was immunostained using monoclonal antibody 
against Ki67 (clone MIB-1; 1:200; Dako, Glostrup, Den-
mark); polyclonal antibody against HER2/neu (1:200; 
Dako, Glostrup, Denmark), respectively. The HER2 stain-
ing results were assigned a score as IHC 0, IHC 1+, IHC 
2+ with FISH (fluorescence in  situ hybridization) nega-
tive referring negative, IHC 2+ with FISH positive and 
IHC 3+ indicating positive according to the criteria rec-
ommended by Min [22]. Ki67 labeling index was scored 
by the percentage of nuclei-stained cells observing in 5 

randomly selected areas of the section with 400× high-
power fields; 200 tumor cells were counted in each area. 
The Ki67 labeling index was determined as positive 
(≥ 14% reactive tumor cells) and negative (< 14% reactive 
tumor cells) as described by Goldhirsch [23].

Survival analysis
Two-sided Fisher’s test was used to analyze the cor-
relations among the data of machine classifier, clini-
cal documents, and pathologic features. Five years 
survival probabilities were evaluated by the Kaplan–
Meier method and log-rank tests were performed to 
detect recurrent differences. Cox regression model was 
employed to detect the independently predicted survival 
of probabilities of variable factors after checking clini-
cal data and pathologic features. The average expression 
rates of HER2 and Ki67 between NGAHIC-positive and 
NGAHIC-negative were evaluated using Chi square test. 
All tests were repeated for three times, hazard ratios, 
associated 95% confidence intervals, and P values were 
reported, with the significance level set at 0.05.

Results
Baseline characteristics of the study population
One hundred and sixty patients were finally enrolled in 
the principal cohort. The clinical and pathological fea-
tures were shown in Table 2. Of the 160 cases of INGA, 
most of the patients (122/160 [76.3%]) were married and 
the media age was 62  years. About 60% (95/160) were 
men, with 41.7% (n = 25) vs. 60% (n = 60) in D1 and D2, 
respectively. 89 patients (43.3%) were in T1/T2, whereas 
71 (44.4%) had advanced disease (T3/T4). 99 of the 160 
patients differentiated well vs. 61 cases differentiated 
poorly. Of those well-differentiated category, 38 (38/60 
[63.3%]) were in D1 and 61 (61/100 [61%]) in D2, sepa-
rately. Approximate 28% (n = 45) NGA patients were 
treated with postoperative chemotherapy and more than 
65% (n = 103) patients’ tumor size < 5  cm. At the end-
point of the follow-up, 36 patients (36/160 [22.5%]) suf-
fered disease recurrence and 40 patients (40/160 [25%]) 
dead from related cause.

Discriminative features
The top 5 discriminative morphologic features identi-
fied within the training cohort were range of intensity 
entropy, range of intensity energy, standard deviation 
(SD) of perimeter ration, SD of intensify average, and 
disorder of perimeter, respectively. Notable, the nuclear 
orientation related morphometric features, (range of 
intensity entropy, range of intensity energy and SD of 
intensify average), predominated the discriminated fea-
tures (3 out of 5). Additional file  2: Table  S2 referred a 
more comprehensive discriminated feature list.
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Intuitively, the higher value of the feature was observed, 
indicating the more distorted of nuclear in local cluster 
region (Fig. 3). The original H&E digital images (Fig. 3a, 
e), with accompanying nuclear segmentation contour, 
nuclear architecture feature map and nuclear orientation 
feature maps in zoomed region, were shown in Fig. 3, rep-
resenting recurrence and non-recurrence NGA groups 
from the first column to the fourth column. For recur-
rence cases, the nuclear appearance (Fig.  3b, f ) showed 
a bigger variation comparing with the non-recurrences 
ones. In contrast, the checkerboard architecture feature 
map appeared to sparser (Fig. 3g) and the nuclear orien-
tation tended to more uniform (Fig.  3h) in local cluster 
regions in TMA. Comparatively, the nuclear appearance, 
architecture and nuclear orientation seem to more regu-
lar and uniform for the negative controls (Fig. 3j–l).

Classifier performance
Twelve different machine learning combination modes, 
resulted from full join between 4 machine learning algo-
rithms and 3 feature selection methods, were conduct on 
the training group and the corresponding performance 
results were summarized in Table 3. It is notable that the 
combination of SVM and WRST yielded the best AUC as 
well as accuracy, specificity and sensitivity (AUC = 0.87, 
accuracy = 0.89, specificity = 0.88 and sensitivity = 0.78) 
in distinguishing D+ and D− within training group. 

Therefore, this combination scheme (SVM combined 
with WRST) was settled down as the optimal histo-
logical image classifier for predicting NGA recurrence 
(NGAHIC). In the validation set, the NGAHIC (SVM 
combined with WRST) yielded an AUC = 0.76, accu-
racy = 0.72, with corresponding specificity = 0.74 and 
sensitivity = 0.68 (Table 3).

Comparison of human‑based nuclear atypia grade 
and image classifier for predicting recurrence in NGA
The Kaplan–Meier curves represented the survival 
results for both human readers (Z.Z and N.Z) on D1 and 
D2, respectively (Fig.  4a–d). For reader 1, the estima-
tion of nuclear atypia grade was not significantly cor-
related with survival outcome for D1 (P = 0.31) nor D2 
(P = 0.16). Whereas, for reader 2, there was a statistical 
significant negative correlation with human-based esti-
mation of nuclear atypia grade and disease outcome for 
D2 (P = 0.004), but not for D1 (P = 0.24), conversely.

Correlation of immunohistochemical data and image 
classifier
HER2 staining was observed in the cytoplasmic mem-
brane of the cancer cells in 16 cases (IHC 0: 36 cases, 
IHC 1+: 43 cases, IHC 2+ with FISH negative: 5 
cases, IHC 2+ with FISH positive: 3 cases and IHC 
3+: 13 cases), with the positive rate 81.3% vs. 3.6% in 

Table 2  Clinical pathological feature of the selected patients

Out out of serosa, in invasion of serosa, W/M well and moderate-differentiated, poorly poorly-differentiated

Variable Sub variables Total (%) D1 (%) D2/D3 (%)

Number of patients 160 60 100

Age 62.1 ± 9.0 63.9 ± 5.7 59.1 ± 10.1

Sex Male 95 (59.4) 25 (41.7) 60 (60.0)

Female 65 (40.6) 35 (58.3) 40 (40.0)

Patient status Alive 120 (75.0) 43 (71.7) 77 (77.0)

Dead 40 (25.0) 17 (28.3) 23 (23.0)

Recurrence Yes 36 (22.5) 15 (25.0) 21 (21.0)

No 124 (77.5) 45 (75.0) 79 (79.0)

Tumor diameter (cm) < 5 103 (65.6) 40 (66.7) 63 (63.0)

≥ 5 57 (35.6) 20 (33.3) 37 (37.0)

Invasion depth Out 92 (57.5) 35 (58.3) 57 (57.0)

In 68 (42.5) 25 (41.7) 43 (43.0)

T stage T1/T2 89 (55.6) 32 (53.3) 57 (57.0)

T3/T4 71 (44.4) 28 (46.7) 43 (43.0)

Histology grade W/M 99 (61.9) 38 (63.3) 61 (61.0)

Poorly 61 (38.1) 22 (36.7) 39 (39.0)

Postoperative-chemotherapy Yes 45 (28.1) 17 (8.3) 28 (28.0)

No 115 (71.9) 43 (71.7) 72 (72.0)

Manual nuclear atypia grading Low 102 (75.0) 37 (61.7) 65 (65.0)

High 58 (25.0) 23 (38.3) 35 (35.0)
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Fig. 3  Analysis of digital pathological H&E image of NGA. H&E image from a patient with recurrence (a), without recurrence (e) and negative 
controls (i). The zoomed region with nuclear counters (b, f, j), nuclear shape, local nuclear architecture maps (c, g, k) and corresponding nuclear 
orientation maps (d, h, l) were extracted from b, f and j. In d, h and l, the arrows and different colors nuclear contours represent different nuclear 
orientations. The nuclear architecture feature map appeared to sparser and the nuclear shape and orientation tended to more uniform in local 
cluster regions (shown in f–h) for non-recurrence patient, compared with that of recurrence patient (shown in b–d)

Table 3  Evaluation of different combinations for feature selection and classifier validation on training set and test set

Evaluation values in italic indicate the best machine learning combination

MRMR minimum redundancy maximum relevance, RF random forest, WRST Wilcoxon rank sum test, LDA analysis of linear discriminant, AQD analysis of quadratic 
discriminant, SVM machine of support vector, AUC​ area under receiver operating curve

Dataset Classifier Feature selection AUC​ Accuracy Specificity Sensitivity

D1 ALD WRST 0.77 ± 0.08 0.81 ± 0.08 0.82 ± 0.05 0.67 ± 0.03

MRMR 0.67 ± 0.05 0.80 ± 0.04 0.84 ± 0.02 0.69 ± 0.09

RF 0.76 ± 0.03 0.79 ± 0.06 0.85 ± 0.02 0.62 ± 0.05

AQD WRST 0.81 ± 0.02 0.74 ± 0.09 0.80 ± 0.03 0.71 ± 0.08

MRMR 0.79 ± 0.06 0.77 ± 0.01 0.82 ± 0.01 0.73 ± 0.01

RF 0.72 ± 0.06 0.87 ± 0.02 0.86 ± 0.03 0.75 ± 0.03

RF WRST 0.83 ± 0.03 0.79 ± 0.06 0.82 ± 0.06 0.72 ± 0.04

MRMR 0.81 ± 0.06 0.76 ± 0.04 0.80 ± 0.08 0.70 ± 0.06

RF 0.80 ± 0.05 0.73 ± 0.08 0.79 ± 0.06 0.69 ± 0.08

SVM WRST 0.87 ± 0.03 0.89 ± 0.02 0.88 ± 0.01 0.78 ± 0.08

MRMR 0.84 ± 0.02 0.88 ± 0.01 0.84 ± 0.02 0.72 ± 0.04

RF 0.81 ± 0.05 0.84 ± 0.04 0.82 ± 0.02 0.73 ± 0.07

D2 SVM WRST 0.76 0.72 0.74 0.68
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NGAHIC-positive and NGAHIC-negative, respectively. 
The Ki67 labeling index positive rate was much higher 
(75.0%) in NGAHIC-positive patients, whereas the 
Ki67 positive rate was relatively lower (2.4%) in NGA-
HIC-negative cases. There was statistically significant 
difference between NGAHIC-positive vs. NGAHIC-
negative with positive expression of HER2 (P < 0.001) 
and Ki67 labeling index (P < 0.001), respectively. More 
details could be found in Additional file 3: Table S3.

Survival analysis
All the patients were followed up for 5 years (median sur-
vival time was about 38 months). Table 4 showed that the 
result calculated by univariate log-rank survival analy-
sis for the clinical-pathologic features of the test group. 
It clearly depicted that the classifier negative patients, 
got better prognosis compared with classifier positive 
patients (P = 0.017). Figure 4 showed that prognostic pre-
diction results for human readers, NGAHIC, T stage and 
histology grade by Kaplan–Meier survival curves. Table 5 

Fig. 4  Prognostic prediction results for human readers, NGAHIC, T stage and histology grade. a, b Kaplan–Meier survival curves for reader 1 on D1 
and D2. c, d Kaplan–Meier survival curves for reader 2 on D1 and D2. e–h Kaplan–Meier survival curves for T stage, histology stage, NGAHIC and 
invasion depth on D1, respectively. i Kaplan–Meier survival curves for NGAHIC on D3
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demonstrated the results calculated by multivariate sur-
vival analysis for the major clinical pathologic features 
and image classifier. The data showed that there was a 
strong correlation between the result of NGAHIC and 
prognosis (HR = 17.24, 95% confidence interval = 3.93–
75.60, P < 0.001), indicating NGAHIC was a negative pre-
dictive factor for INGA patients independently. 

Discussion
Although INGA patients have a better prognosis than 
those with lymph node involved, INGA patients still suf-
fered from disease recurrence, mostly seeding through 
peritoneal or hematogenous spread [24]. Once INGA 
patients experience recurrence, their lifespan is signifi-
cantly decreased. The recurrent patients need more close 
attention, such as more aggressive treatment and advance 
care planning. Hence there is a need to identify patients 
with high-risk recurrence following surgery. Nuclear 
atypia refers to changes in nuclear morphological pro-
files, including nuclear appearance, size, or arrangement, 
and has proved to be useful hallmark of cancer prognosis 
and choice of adjuvant therapies determination, in differ-
ent types of cancers clinicopathologically [6, 11–14, 19, 

25]. However, human-based observations often suffered 
from inter- and intra-reader variation.

Computer-aid for automatic estimation by image anal-
ysis technology has been proved to mitigate the subjec-
tivity by pathologists [6, 11, 12, 14, 25]. In this work, we 
exploited a computer-aid histomorphometric classifier 
for accurate prediction of recurrence of INGA patients. 
An image based models was constructed to extract fea-
tures of nuclear shape, texture and orientation features 
from H&E stained TMA images. This designation could 
capture nuclear morphology features quantitatively and 
precisely in local tumor region. The data revealed that the 
more the heterogeneous nuclear features were related to 
the high risk for disease recurrence and worse progno-
sis of INGA patients. The Kaplan–Meier analysis along 
utilizing the log-rank test showed a strong association 
between the predictions of the image classifier and recur-
rence for D2. In addition, the tumor heterogeneity was 
also investigated across comparing the image classifier 
prediction ability on D2 and D3 (tumor punches from 
different parts of the same tumor). The image classifier 
was tent to be prognostic in both D2 (P = 1.6 × 10−4) and 
D3 (P = 0.02), respectively (Fig. 4h, i).

We also inspected the prognostic performance differ-
ence between the image classifier and the human-based 
nuclear atypia grade for INGA. However, the Kaplan–
Meier analysis results with log-rank test showed no 
significant statistical association between the reader 
1 human-based nuclear atypia grade estimation and 
survival outcome for D1 or D2 (P > 0.05), meanwhile 
a strong negative statistical relationship was observed 
with reader 2 and patient outcome for D2 (P = 0.004). In 
converse, A Kaplan–Meier analysis along utilizing the 
log-rank test showed a strong association between the 
predictions of the image classifier and recurrence for D2 
(P < 0.05). Likewise, a multivariate Cox proportional sur-
vival analysis reported a HR of 17.24 (95% confidence 
interval: 3.93–75.60, P = 1.6 × 10−4). This could be illus-
trated by human estimation variability. Indeed, patients 
with early stage gastric adenocarcinoma exhibit a broad 
survival range, and the nuclear atypia stage only limited 
the survival outcome prediction, resulting in discordance 
diagnosis. Additionally, the morphological features for 
evaluating nuclear atypia grade are generally difficult to 
spot by human inspection, but can be identified by com-
puter easily and effectively, such as shape/texture, nuclear 
arrangement et al. Furthermore, the nuclear atypia grad-
ing criteria and the prognostic values of nuclear atypia 
grade in INGA have not been defined clearly. Hence, each 
pathologist might be focus on different nuclear mor-
phological profiles, such as nuclear shape (enlarged or 
hyperchromatic nuclei), nuclear area, disordered nuclear 
polarity, cytoplasmic mucin reduction or other features 

Table 4  Univariate log-rank analysis conducted on D2

CI confidence interval, HR hazard ratio; W/M: well and moderate-differentiated, 
poorly: poorly differentiated, out: out of serosa, in: invasion of serosa

P value in italic is statistically significant, P < 0.05

Variable HR (95% CI) P value

Age (< 60 vs. ≥ 60) 0.66 (0.13–3.35) 0.621

T-stage (T1/T2 vs. T3/T4) 2.18 (1.10–4.31) 0.024

Histology (W/M vs. poorly) 3.66 (1.12–11.98) 0.032

Chemotherapy (yes vs. no) 3.89 (0.92–16.47) 0.065

Invasion depth (out vs. in) 1.87 (1.03–3.39) 0.039

Tumor diameter (< 5 cm vs. ≥ 5 cm) 2.15 (0.88–5.22) 0.091

Manual nuclear atypia grading (low vs. high) 3.08 (0.90–10.49) 0.072

NGAHIC (positive vs. negative) 4.14 (1.28–13.29) 0.017

Table 5  Multivariate survival analysis conducted on D2

CI confidence interval, HR hazard ratio, NGAHIC image classifier, out out of serosa, 
in invasion of serosa, W/M well and moderate-differentiate

P value in italic is statistically significant, P < 0.05

Variable P value HR (95% CI)

T-stage (T1/T2 vs. T3/T4) 0.34 1.42 (0.69–2.42)

Histology stage (W/M vs. poorly) 0.16 3.61 (0.60–21.64)

Manual nuclear atypia grading (low vs. 
high)

0.23 2.55 (0.55–11.75)

Invasion depth (out vs. in) 0.51 0.56 (0.09–3.14)

Tumor diameter (< 5 cm vs. ≥ 5 cm) 0.62 0.37 (0.09–18.83)

NGAHIC (positive vs. negative) 1.6 × 10−4 17.24 (3.93–75.60)
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subjectively. Finally, different pathologists may have vari-
able expertise evaluating or natural individual variation 
in their perception of colors, shapes, and relative nuclear 
pleomorphism/polarity proportions. Comparatively, the 
local nuclear features, encompassing local nuclear ori-
entation, nuclear shape, and nuclear arrangement, were 
measured and extracted objectively and thereby the 
image classifier revealed a strong association with tumor 
outcomes in early gastric adenocarcinoma. Moreover, a 
significant correlation between HER2 overexpression and 
NGAHIC-positive has been observed in INGA. 81.3% of 
NGAHIC-positive carcinomas were positive for HER2 
staining vs. that of 3.6% NGAHIC-negative cancers 
(P < 0.001). Meanwhile, the IHC staining revealed that 
the NGAHIC-positive patients have higher positive rate 
(75.7%) vs. that of in NGAHIC-negative patients (2.4%) 
for Ki67, with P < 0.001.

In this study, the local nuclear orientation features, indi-
cating the heterogeneity of nuclear polarity, were found 
to be persistently activated and overexpressed with poor 
tumor outcomes for distinguishing high-risk recurrence 
patients and low-risk recurrences patients. Namely, the 
higher expression of nuclear polarity in the cell cultures, 
the poorer disease outcomes. Intuitively, aggressive tumors 
tent to exhibit relatively lower degree of structure and 
organization as rapid disorganized cell regeneration, com-
pared with less aggressive cancer. These findings present 
a similar pattern of results as previous works [13, 14, 25]. 
Additionally, we also inspected the relationship between 
nuclear shape/texture features, nuclear architecture fea-
tures and disease prognosis. In the INGA group, the most 
discriminative features also covered the nuclear shape 
feature (SD of perimeter ration) and the nuclear architec-
ture feature (disorder of perimeter). This showed that both 
local anatomical structures (shape and cell nuclei) and 
local architecture of the tumor cell nucleus (Delaunay tri-
angulation of the nuclear, e.t.) are associated with survival 
outcomes. Nuclear atypia, referring to the alternations in 
nuclear structure, such as shape, architecture, orientation, 
tend to be captured by the computer-extracted features 
quantitatively and used for cancer grading. These find-
ings consistent with the previous researches stance that 
the nuclear shape and architecture appears to predictive of 
patient survival [2, 5, 6, 8–11, 14, 18].

The main contributions of this paper were summarized 
as follow. (1) In this study, it was a preliminary finding 
that the relationship between more aggressive clustered 
tumor computer-extracted H&E image features of 
nuclear cluster graph and recurrence were strong closed 
in INGA patients. To our best known, it has never been 
reported in the literature. (2) The simple binary histo-
morphometric image classifier could stratify the patient 
into different prognosis groups. Especially, the NGAHIC 

positive patients, identify high risk of recurrence patients 
by the image classifier, has worse disease outcome. This 
preliminary finding resulted in possibility for image clas-
sifier as prognosis marker to be used in potential clinic 
routine. We imagine with the help of NGAHIC, patholo-
gist could identify high recurrent risk patients through 
H&E stained digital images, including biopsy or surgi-
cal specimen. Providing the accurate pathologic diagno-
sis, clinicians could make an individualized treatment, 
such as postoperative close chemotherapy and radiation 
therapy and follow-up. Certainly, NGAHIC needs to be 
tested in multicenter study of large samples.

We acknowledge the limitations of this work. We only 
utilized the 2 mm tissue microarrays, containing a rela-
tive small portion of tumor characteristics as composed 
to whole tumors, for digital assessment. However, recent 
scholars proposed that the important cell morphological 
diversity present in one tumor tissue could be obtained 
in tissue microarrays [26–28]. Furthermore, we will 
expand our study to whole-slide histopathology images 
as they contain large amount information and multi-view 
of tumor. Additionally, the entire cohort in our study is 
relative small and some of clinical parameters, such as 
nodal extracapsular extension, margin, were not included 
in for multivariate analysis. Future efforts will be made to 
investigate our model on multi-institutional study with 
considerable samples of INGA.

Conclusion
In summary, we demonstrated that the histopathology 
image classifier based off local nuclear features, related to 
disorder of nuclear shape, arrangement, and orientation 
within the tumor cluster area, can predict recurrence and 
survival outcomes of INGA patients successfully. This 
capability is superior to the current practice utilization 
by nuclear atypia grade assessment by pathologists sub-
jectively. Furthermore, our model could facilitate prog-
nostic prediction based off the collected H&E stained 
slides routinely, and thereby contributing to the precision 
oncology, personalized cancer management and advance 
care planning. Future works will involve research on 
the response to treatment by analyzing the pathological 
images digitally.
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