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Abstract 

Background:  Currently, pathological examination of gastroscopy biopsy specimens is the gold standard for gastric 
cancer (GC) diagnosis. However, it has a false-negative rate of 10–20% due to inaccurate sampling locations and/or 
insufficient sampling amount. A signature should be developed to aid the early diagnosis of GC using biopsy speci-
mens even when they are sampled from inaccurate locations.

Methods:  We extracted a robust qualitative transcriptional signature, based on the within-sample relative expression 
orderings (REOs) of gene pairs, to discriminate both GC tissues and adjacent-normal tissues from non-GC gastritis, 
intestinal metaplasia and normal gastric tissues.

Results:  A signature consisting of two gene pairs for GC diagnosis was identified and validated in data of both biopsy 
specimens and surgical resection specimens pooled from publicly available datasets measured by different laborato-
ries with different platforms. For gastroscopy biopsy specimens, 96.20% of 79 non-GC tissues were correctly identified 
as non-GC, and 96.84% of 158 GC tissues and six of seven adjacent-normal tissues were correctly identified as GC. For 
surgical resection specimens, 98.37% of 2560 GC tissues and 97.28% of 221 adjacent-normal tissues were correctly 
identified as GC. Especially, 97.67% of the 257 GC patients at stage I were exactly diagnosed as GC. We additionally 
measured 21 GC tissues from seven different GC patients, each with three specimens sampled from three tumor loca-
tions with different proportions of the tumor epithelial cell. All these GC tissues were correctly identified as GC, even 
when the proportion of the tumor epithelial cell was as low as 14%.

Conclusions:  The qualitative transcriptional signature can distinguish both GC and adjacent-normal tissues from nor-
mal, gastritis and intestinal metaplasia tissues of non-GC patients even using inaccurately sampled biopsy specimens, 
which can be applied robustly at the individual level to aid the early GC diagnosis.

Keywords:  Gastric cancer, Gastritis, Gastroscopy biopsy, Diagnosis, Signature

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  guoz@ems.hrbmu.edu.cn; wwkzch@163.com 
†Haidan Yan and Meifeng Li have contributed equally to this work
2 Department of Gastric Surgery, Fujian Medical University Union Hospital, 
No. 29 Xinquan Road, Fuzhou 350001, China 
4 Department of Systems Biology, College of Bioinformatics Science 
and Technology, Harbin Medical University, Harbin 150086, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4466-6026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-019-1816-4&domain=pdf


Page 2 of 9Yan et al. J Transl Med           (2019) 17:63 

Background
Gastric cancer (GC) is one of the most frequent malig-
nant tumors with a high mortality rate [1–3]. GC 
patients at early stage could benefit from surgical resec-
tion [4, 5]. However, only about 10–20% of GC patients 
are diagnosed at early stage [6, 7]. Currently, patho-
logical examination based on gastroscopic biopsy tis-
sue is still the most effective approach for confirming 
GC [8, 9]. However, the result of pathological examina-
tion for gastroscopic biopsy tissue depends on the skills 
and experiences of the endoscopists and pathologists 
[10–12]. The false-negative rate of GC diagnosis has 
been reported to be 10–20% [13–18]. Among the false-
negative samples, 85.2% are at the early stage [19], and 
71.4% are wrongly diagnosed as gastritis, ulcer or “sus-
picious lesion” [16]. Most of the false-negative samples 
(73%) are caused by inaccurate sampling locations and 
the remainder (27%) could be attributed to pathologist 
errors [16].

Therefore, it is vitally important to develop an objec-
tive molecular signature to complement the existing sub-
jective diagnostic technique of histology, which could 
aid the pathologists to identify early GC even when the 
sampling location of gastroscopic biopsy tissue is inac-
curate. It’s possible because the GC adjacent-normal 
tissues might also gain some similar molecular charac-
teristics of GC [20, 21]. However, most of the reported 
diagnostic signatures are identified using GC adjacent-
normal tissues as the normal samples [22–24], which 
will make false-negative diagnosis when the location of 
gastroscopic biopsy tissue is inaccurate [13]. Another 
critical limitation of previously reported diagnostic sig-
natures is that they are based on risk scores summarized 
from quantitative gene expression measurements of the 
signature genes [22, 23, 25], which are highly sensitive to 
measurement batch effects and lab differences and thus 
cannot be robustly applied to independent samples [26–
28] even with data normalization [29]. Fortunately, it has 
been reported that the within-sample relative expression 
orderings (REOs) of genes are robust against experimen-
tal batch effects [30, 31]. Besides, we have shown that the 
within-sample REOs are robust even when the tumor tis-
sues sampled from different tumor locations contain dif-
ferent proportions of the tumor epithelial cell [32] and 
partial RNA degradation during specimen preparation 
and storage [33], and the RNA amplification bias exists 
for minimum specimens. Notably, Zheng et al. have iden-
tified the within-sample REO of one pair of microRNA 
(hsa-miR-196a and hsa-miR-148a) as a qualitative GC 
diagnosis signature using GC and normal gastric mucosa 
samples [34]. However, the performance of this signa-
ture to identify gastritis, intestinal metaplasia and cancer 
adjacent-normal samples was not evaluated [34].

In this study, we aim at identifying a signature that can 
discriminate GC tissues, including the inaccurately sam-
pled GC adjacent-normal tissues, from non-GC tissues 
including gastritis, intestinal metaplasia and normal gas-
tric tissues. A signature consisting of two gene pairs was 
identified in the training data and validated in multiple 
datasets measured by different laboratories with different 
platforms, even when the proportion of the tumor epi-
thelial cell was as low as 14%.

Materials and methods
Samples and data measurement
We measured 21 GC specimens from seven GC patients. 
For each patient, three specimens were sampled from 
three different tumor locations. The proportion (about 
14%–93%) of the tumor epithelial cell was measured by 
pathological section analysis (see Table  1). The baseline 
characteristics of the seven GC patients were shown in 
Additional file  1: Table  S1. All cancer specimens were 
collected from the operating room immediately after sur-
gical resection and were fresh frozen for subsequent RNA 
extraction. This study was approved by the institutional 
review boards of all participating institutions, and writ-
ten consent forms were obtained from all participants.

Total RNA was isolated from fresh frozen GC tissues 
using Trizol reagent (Invitrogen) according to the man-
ufacture’s protocol. The quality of RNA was assessed 
using Agilent 2200 TapeStation (Agilent technologies, 
US) to ensure high quality (RNA integrity number > 6). 
Then, 1–2 μg of total RNA was used for mRNA capture 
using NEBNextPolyA mRNA Magnetic Isolation Mod-
ule and stranded RNA-seq libraries were constructed 
using a NEBNext Ultra Directional RNA Library Prep 
Kit. The 2 × 150 paired-end sequencing was performed 
on an Illumina HiSeqXten (Illumina, US). The resulting 
raw RNA-seq files (.fastq) were preprocessed using Trim-
momatic [35], and reads were aligned to the reference 
genome (GRCh37) using hisat2 [36]. Finally, the reads 

Table 1  The proportions of the tumor epithelial cell for GC 
tissues of  each patient sampled from  three different 
locations

Patient Proportion 1 (%) Proportion 2 (%) Proportion 
3 (%)

GC 1 23 79 53

GC 2 53 28 89

GC 3 27 73 93

GC 4 35 67 89

GC 5 88 37 14

GC 6 88 33 57

GC 7 15 74 47
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per kilobase per million mapped reads (RPKM) values of 
genes were computed to represent the expression levels 
of genes using StringTie [37]. The data has been submit-
ted to Gene Expression Omnibus (GEO, GSE116782).

Public data and preprocessing
Gene expression profiles of gastric tissues measured 
by the Affymetrix, Illumina or RNA-seq platform were 
collected from the GEO and The Cancer Genome Atlas 
(TCGA) data portal (http://tcga-data.nci.nih.gov/tcga/), 
as described in Table 2.

For the gene expression profiles measured by the Affy-
metrix platform, the raw data (.CEL files) was down-
loaded and preprocessed using the Robust Multi-array 
Average algorithm for background adjustment without 
quantile normalization [38]. For the gene expression pro-
files measured by the Illumina platform, the processed 
data was directly downloaded and used for the follow-
ing analysis. For the gene expression profiles from TCGA 
detected by RNA-seq, the level 3 data was directly down-
loaded for our analysis.

For the array-based data, every probe ID was mapped 
to Entrez gene ID using the corresponding platform file. 
If multiple probes were mapped to a gene, the expression 
level of this gene was summarized as the arithmetic mean 
of the values of these probes.

Developing the diagnostic signature
The gene expression profiles of GC, normal and gastritis 
tissues in the training data were used to identify REO-
based diagnostic signature (Table 2). First, we defined the 
stable REOs of gene pairs in a type of gastric tissues. The 
REO of a gene pair (i, j) is denoted as Gi > Gj or Gi < Gj if 
the gene i has a higher or lower expression level than the 
gene j within a sample. The REO of a gene pair is defined 
as stable if the same REO kept in at least 99% of the sam-
ples. Furthermore, a gene pair (i, j) is defined as reversal if 
the REO of the gene pair is stable in both of two types of 
gastric tissues, but with different REO patterns (Gi < Gj or 
Gi > Gj in one type of tissues but Gi > Gj or Gi < Gj in the 
other type of tissues). Here, the stable gene pairs with the 
same REO pattern between normal samples and gastri-
tis samples were defined as stable gene pairs of non-GC 
tissues. We then selected the reversal gene pairs between 
GC and non-GC tissue samples. These reversal gene pairs 
were the candidate qualitative REO-based diagnostic sig-
natures. The absolute rank difference for every reversal 
gene pair in each of the GC or non-GC samples is calcu-
lated as follow:

where Ri and Rj represent the ranks of gene i and j in a 
sample, respectively.

Rij = |Ri − Rj|

For a reversal gene pair (i, j), let mean [Rij(non)] and 
mean [Rij(gc)] denote the means of the absolute rank differ-
ences between gene i and gene j in non-GC tissue samples 
and GC tissue samples, respectively. Then, their geometric 
mean (avgRij) is calculated to evaluate the reversal degree 
of the gene pair between GC and non-GC tissue samples.

The larger the geometric mean for a reversal gene pair, 
the larger the reversal degree of the REO of the gene pair 

avgRij =

√

mean[Rij(non)] ×mean[Rij(gc)]

Table 2  The publicly available datasets used in the study

GI represent gastritis, gastritis adjacent-normal or intestinal metaplasia tissues. 
GC_adjacent represent the GC adjacent-normal tissues
a  Denotes the samples were collected by gastroscopic biopsy

Dataset Platform Normal GI GC GC_adjacent

Training

 GSE54129 Afftmetrix GPL570 21a – 111 –

 GSE54043 Afftmetrix GPL570 5a 5a – –

 GSE42252 Afftmetrix GPL570 – – 5 –

 GSE38749 Afftmetrix GPL570 – – 15 –

 GSE51725 Afftmetrix GPL570 – – 8 –

 GSE79973 Afftmetrix GPL570 – – 10 –

 GSE57303 Afftmetrix GPL570 – – 70 –

 GSE13911 Afftmetrix GPL570 – – 38 –

 GSE27411 Illumina GPL6255 – 18a – –

 GSE28541 Illumina GPL13376 – – 40 –

 GSE29998 Illumina GPL6947 – – 50 –

Total 26 23 347 –

Validation

 GSE5081 Afftmetrix GPL570 – 32a – –

 GSE52138 Afftmetrix GPL96 – – 13a 7a

 GSE14210 Afftmetrix GPL571 – – 145a –

 GSE106656 Afftmetrix GPL6244 – 21a – –

 GSE34619 Afftmetrix GPL6244 10a – – –

 GSE29272 Afftmetrix GPL96 – – 134 134

 GSE34942 Afftmetrix GPL570 – – 56 –

 GSE22377 Afftmetrix GPL570 – – 43 –

 GSE19826 Afftmetrix GPL570 – – 12 12

 GSE35809 Afftmetrix GPL570 – – 70 –

 GSE51105 Afftmetrix GPL570 – – 94 –

 GSE15459 Afftmetrix GPL570 – – 200 –

 GSE62254 Afftmetrix GPL570 – – 300 –

 GSE13861 Illumina GPL6884 – – 65 19

 GSE38024 Illumina GPL10558 – – 48 –

 GSE26899 Illumina GPL6947 – – 96 12

 GSE26253 Illumina GPL8432 – – 432 –

 GSE84437 Illumina GPL6947 – – 433 –

 GSE26942 Illumina GPL6947 – – 202 12

 GSE60662 Agilent GPL13497 4a 12a – –

 TCGA​ RNA-seq – – 375 32

Total 14 65 2718 228

http://tcga-data.nci.nih.gov/tcga/
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between GC and non-GC tissue samples. All reversal 
gene pairs were sorted in a descending order according to 
the geometric means.

Finally, we took the top k reversal gene pairs as a sig-
nature according to the reversal degrees of the identified 
reversal gene pairs, and a given sample was identified as 
GC tissue when at least a half of gene pairs in the sig-
nature exhibit the same REOs for GC; otherwise, it was 
identified as non-GC tissue. The signature achieved the 
highest classification accuracy in the training data was 
defined as GC diagnosis signature. All the analysis pro-
grams to develop the diagnostic signature were written 
using the R language (R 3.1.3). The program codes were 
shown in Additional file 2.

Performance evaluation
The sensitivity, specificity, accuracy and the area under 
curve (AUC) of the receiver operating characteristic 
(ROC) curves were used to evaluate the performance of 
the signature. The sensitivity was defined as the propor-
tion of correctly identified GC samples in all GC samples. 
The specificity was defined as the proportion of correctly 
identified non-GC samples in all non-GC samples includ-
ing normal tissues, gastritis adjacent-normal tissues and 

gastritis tissues. The accuracy was defined as the propor-
tion of correctly identified samples of all GC and non-GC 
samples. Here, the nonparametric Hanley-McNeil algo-
rithm was used to calculate the AUC value [39, 40] and 
95% confidence intervals (CI) for AUC was computed 
using an approximate normal distribution.

Results
Identifying the diagnostic gene pair signature
The flowchart for the identification and validation of the 
qualitative diagnostic signature is described in Fig. 1.

Firstly, we identified gene pairs with an identical REO 
in at least 99% of 26 gastric normal samples, 23 gastri-
tis samples and 347 GC samples, respectively, using the 
training data integrated from 11 datasets measured by 
the Affymetrix or Illumina platform (see Table  1). We 
found 32,483,417 overlapped gene pairs with the same 
stable REOs between the gastric normal and gastri-
tis samples, among which six gene pairs had stable but 
reversal REOs in the GC tissues (Additional files 3 and 4), 
which were potential GC diagnostic signatures.

We then evaluated the reversal degrees of the six gene 
pairs with reversal REOs between the GC and non-GC 
samples including normal and gastritis samples in the 

Fig. 1  Outline of the processes for developing and validating the GC diagnosis signature
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training data (see Methods). According to the reversal 
degrees of the six gene pairs, we took the top k (1, 2,…, 
6) gene pairs as a signature and calculated its classifica-
tion accuracy (Fig.  2). Finally, the top two gene pairs 
consisting of three genes, were defined as the diagnosis 
signature (Table  3). In the training data, all the 26 gas-
tric normal and 23 gastritis tissues were correctly classi-
fied as non-GC samples, and all the 347 GC tissues were 
correctly classified as cancer samples. The AUC and the 
accuracy were 0.99 and 100%, respectively. The detailed 
classification accuracy of the signature in each of the 
training datasets was shown in Additional file 5: Table S3.

Validating the signature
The gene expression profiles of gastric tissues sampled 
by gastroscopic biopsy or surgical resection were used to 
validate the performance of the qualitative signature.

Non-GC tissues, including normal, gastritis adja-
cent-normal, gastritis and intestinal metaplasia tissues, 
from non-GC patients were all sampled by gastroscopic 
biopsy. The result showed that 96.20% of the 79 non-
GC tissues from GSE5081, GSE60662, GSE106656 and 
GSE34619 were correctly identified as non-GC (Table 4 
and Additional file 6). For gastroscopic biopsy specimens, 
96.84% of the 158 GC tissues from the GSE14210 and 
GSE52138 datasets and six of seven GC adjacent-normal 
tissues from the GSE52138 dataset were correctly iden-
tified as GC (Table 4 and Additional file 6). For surgical 
resection specimens, as described in Table  2, 98.37% of 
2560 GC tissues and 97.28% of 221 samples were cor-
rectly identified as GC (Table  4). The surgical resection 
specimens were measured by multiple platforms includ-
ing the Affymetrix, Illumina and RNA-seq platforms. 
For the Affymetrix and Illumina platforms used in train-
ing data, 99.77% of the 2185 GC tissues and all the 189 
GC adjacent-normal tissues were correctly classified to 

GC tissues. Moreover, 95.73% of the 375 GC tissues and 
81.25% of the 32 GC adjacent-normal tissues measured 
by RNA-seq were correctly classified to GC given that 
no RNA-seq data participated in training the signature. 
Especially, 97.67% of the 257 GC patients at stage I were 
correctly identified as GC. The accuracy and AUC of the 
validation data were 98.55% and 0.99 (95% CI = 0.95–1, 
Fig. 3).

To further validate the signature, using RNA-seq plat-
form, we additionally measured gene expression profiles 
of 21 GC tissues from seven different GC patients, each 
with three specimens sampled from three tumor loca-
tions with different proportions of the tumor epithelial 
cell (see Table  1). All the 21 GC tissues were correctly 

Fig. 2  The classification accuracy of the top k gene pairs in the 
training data

Table 3  The signature of gene pairs for GC diagnosis

The expression level of Gene A is higher than that of Gene B in GC patients

Gene pairs Gene A Gene B

Pair 1 CYR61 MMP28

Pair 2 CYR61 ACOX1

Table 4  The performance of  the  signature in  each 
of the validation datasets

a  Denotes the samples collected by gastroscopic biopsy

Platforms Dataset Number 
(sensitivity) of GC 
tissues

Number 
(specificity) 
of non-GC tissues

Affymetrix GSE5081a – 32 (100.00%)

GSE52138a 13 (92.31%) –

GSE14210a 145 (97.24%) –

GSE106656a – 21 (90.48%)

GSE34619a – 10 (100.00%)

GSE34942 56 (100.00%) –

GSE22377 43 (100.00%) –

GSE29272 134 (100.00%) –

GSE19826 12 (100.00%) –

GSE35809 70 (100.00%) –

GSE51105 94 (100.00%) –

GSE15459 200 (100.00%) –

GSE62254 300 (99.00%) –

Illumina GSE13861 65 (100.00%) –

GSE38024 48 (97.92%) –

GSE26899 96 (100.00%) –

GSE26253 432 (98.84%) –

GSE84437 433 (98.15%) –

GSE26942 202 (100.00%) –

Agilent GSE60662a – 16 (93.75%)

RNA-seq TCGA​ 375 (95.73%) –

Our-data 21 (100.00%) –
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classified to GC by our signature, even when the pro-
portion of the tumor epithelial cell was as low as 14% 
(Table 4).

Together, the above results validated that the signature 
can accurately discriminate GC, including GC adjacent-
normal tissues, from non-GC patients, even when the 
sampling location is inaccurate.

Discussion
At present, the histological analysis of the gastroscopic 
biopsy specimen is affected by the sampling location and 
tissue amount [8]. In this study, a robust qualitative tran-
scriptional signature, including two gene pairs consisting 
of three genes, was developed to aid the early diagnosis 
of GC using either gastroscopic biopsy or surgical resec-
tion specimens. The signature can accurately distinguish 
GC tissues from non-GC tissues including normal, gas-
tritis and intestinal metaplasia tissues. As shown in this 
study, the signature can accurately classify GC tissues 
to GC when the proportion of the tumor epithelial cell 
was as low as 14%. Especially, it can identify most of GC 
adjacent-normal tissues as cancer, suggesting that the sig-
nature can identify GC even when the sampling location 
is inaccurate. Notably, all the non-GC tissues sampled by 
gastroscopic biopsy can be correctly identified as non-
GC. However, the specimens sampled by gastroscopic 
biopsy for gastritis and intestinal metaplasia are limited, 
and it deserves further studies using large collections of 
non-GC specimens.

The amount of the gastroscopic biopsy specimens used 
in the study was about 1–8 µg total RNA [41–43] which 
was relatively large. In clinical practice, it is often difficult 
to obtain sufficient amount of biopsy specimens for gene 
expression profiling or other molecular measurements 
[11, 44]. Fortunately, we have shown that the REO-based 
signatures can be robustly applied to specimens with 
RNA amplification from as low as 150–250 pg total RNA 

of cancer cells [31]. Therefore, it is highly possible that 
the two gene pairs could be used to gastroscopic biopsy 
specimens with minimum sampling amounts. We com-
pared the expression levels of the two genes in each of 
the signature gene pairs. The fold changes (FC) of the two 
genes in each of the signature gene pairs across different 
datasets for the GC, GC adjacent-normal and non-GC 
groups were quite different (Additional files 7 and 8). For 
the gene pair of CYR61 and MMP28, the median values 
of FC between CYR61 and MMP28 ranged from 1.17 to 
30.56 in the GC group across different datasets, while 
in the non-GC group the median values of FC ranged 
from 0.76 to 0.89 (Additional file  7: Table  S4). Similar 
results for the gene pair of CYR61 and ACOX1 were also 
observed (Additional files 7 and 8). Notably, two genes 
with high expression levels in a sample can hardly reach 
large FC even if the absolute expression level difference 
between the two genes is rather large. Besides, two genes 
with low expression levels in a sample may reach large 
FC simply due to large measurement variations [45]. To 
more clearly show the quantitative expression level dif-
ference of two genes in each of the signature gene pairs, 
we also calculated the value of the expression level of 
CYR61 minus the expression level of MMP28 (ACOX1) 
in a sample as a measure to show the difference of the 
two genes consisting of the signature gene pairs (Addi-
tional files 9 and 10). The median values of the subtrac-
tion of MMP28 from CYR61 ranged from 1.30 to 1868.50 
in the GC group across different datasets, while in the 
non-GC group the median values ranged from − 2.29 to 
− 0.73 (Additional file 9: Table S5). The results were simi-
lar for the gene pair of CYR61 and ACOX1 (Additional 
files 9 and 10). The subtraction values were quite differ-
ent for different platforms. However, they varied even in 
the same platform. For example, the median values of the 
subtraction of MMP28 from CYR61 in GC group ranged 
from 2.84 to 1868.5 for GPL6947 (Additional files 9 and 
10). The above results showed that the subtle quantita-
tive difference (such as FC and subtraction) of each of 
the signature gene pairs is quite different across different 
samples for both the GC and non-GC groups because the 
quantitative gene expression measurements are affected 
by the measurement batch effects and many other factors 
such like the sample quality [29, 31, 46]. However, the 
REOs of the gene pairs in each group are very stable.

We additionally evaluated the performance of the 
signature on other types of cancers including liver, 
colorectal and pancreatic cancers (Additional file  11: 
Table  S6). As shown in Additional file  12: Table  S7, 
the results showed that the signature was unsuitable 
for these types of cancers. Notably, the signature can 
classify cancer tissues of liver, colorectum and pan-
creas as cancer although it cannot correctly classify 

Fig. 3  The receiver characteristic operating curves
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most non-cancer tissues as non-cancer. The signature 
genes, including CYR61, MMP28 and ACOX1, may 
play important roles in the initiation and progression of 
cancer. As shown in Additional file 13: Table S8, CYR61 
and MMP28 are involved in functions such as cell pro-
liferation, differentiation or metastasis related to the 
initiation and progression of cancer. ACOX1 has been 
reported to regulate cancer development [47] and its 
dysfunction is linked to hepatocarcinogenesis [48] and 
migration and invasion of colorectal cancer cells [49]. 
Therefore, the stable REOs of genes in the signature 
may be an inherent feature of cancer which deserves 
our future study.

Conclusions
In summary, we have developed a transcriptional quali-
tative signature for GC diagnosis, which exhibits robust 
and excellent performance in data measured by differ-
ent laboratories with different platforms.

Additional files

Additional file 1: Table S1. The baseline characteristics of seven GC 
patients.

Additional file 2. The code to identify the signature for GC diagnosis. All 
of the analysis programs to develop the diagnostic signature were written 
using the R language (R 3.1.3).

Additional file 3: Table S2. The number of stable and reversal gene pairs 
identified in the training data.

Additional file 4. The REOs of the top gene pairs. The distributions of 
REOs of the top six gene pairs in each of the training datasets.

Additional file 5: Table S3. The classification accuracy of the signature in 
each of the training datasets.

Additional file 6. The REOs of the signature gene pairs. The distributions 
of REOs of the signature gene pairs in each of the validation datasets.

Additional file 7: Table S4. The median values of FC of each signature 
gene pair across different datasets for the GC, non-GC and GC adjacent-
normal groups.

Additional file 8: Fig. S1. The distributions of FCs of each signature gene 
pairs across different datasets for the GC, non-GC and GC adjacent-normal 
groups. Gene pair1 and gene pair2 represent gene pairs of CYR61-MMP28 
and CYR61-ACOX1, respectively.

Additional file 9: Table S5. The median values of the subtraction of two 
gene expression levels across different datasets for the GC, non-GC and 
GC adjacent-normal groups.

Additional file 10: Fig. S2. The distributions of the subtraction of two 
gene expression levels across different datasets for the GC, non-GC, and 
GC adjacent-normal groups.

Additional file 11: Table S6. The datasets of cancer and non-cancer tis-
sues for liver, colorectum and pancreas.

Additional file 12: Table S7. The performance of the signature in classify-
ing cancer and non-cancer tissues of liver, colorectum and pancreas.

Additional file 13: Table S8. The summary of genes in the signature.
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