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Abstract 

Background:  Immunology research, particularly next generation sequencing (NGS) of the immune T-cell receptor β 
(TCRβ) repertoire, has advanced progression in several fields, including treatment of various cancers and autoimmune 
diseases. This study aimed to identify the TCR repertoires from dry blood spots (DBS), a method that will help collect‑
ing real-world data for biomarker applications.

Methods:  Finger-prick blood was collected onto a Whatman filter card. RNA was extracted from DBS of the filter card, 
and fully automated multiplex PCR was performed to generate a TCRβ chain library for next generation sequencing 
(NGS) analysis of unique CDR3s (uCDR3).

Results:  We demonstrated that the dominant clonotypes from the DBS results recapitulated those found in whole 
blood. According to the statistical analysis and laboratory confirmation, 40 of 2-mm punch disks from the filter cards 
were enough to detect the shared top clones and have strong correlation in the uCDR3 discovery with whole blood. 
uCDR3 discovery was neither affected by storage temperatures (room temperature versus − 20 °C) nor storage dura‑
tions (1, 14, and 28 days) when compared to whole blood. About 74–90% of top 50 uCDR3 clones of whole blood 
could also be detected from DBS. A low rate of clonotype sharing, 0.03–1.5%, was found among different individuals.

Conclusions:  The DBS-based TCR repertoire profiling method is minimally invasive, provides convenient sampling, 
and incorporates fully automated library preparation. The system is sensitive to low RNA input, and the results are 
highly correlated with whole blood uCDR3 discovery allowing study scale-up to better understand the relationship 
and mutual influences between the immune and diseases.
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Background
Immunology research, particularly next generation 
sequencing (NGS) of the immune T-cell receptor β 
(TCRβ) repertoire, has advanced progression in several 
fields including treatment of various cancers and autoim-
mune diseases [1]. The advantage of immunotherapy in 
cancers has led to increasing numbers of studies dedi-
cated to exploring the impact and interaction between 

immunity and cancer cells. However, the complexity 
of the immune system in combination with the limita-
tion of detection methods makes this subject difficult to 
research.

Currently, TCR repertoire sequencing is widely used 
to evaluate the immune system [2]. TCR repertoires of 
patients were explored in a variety of disorders—patients 
under cancer immunotherapy, autoimmune disease 
[rheumatoid arthritis (RA), ankylosing spondylitis], or 
subject to virus infection (hepatitis, human immunodefi-
ciency virus (HIV)) [3–7]. Analyzing the TCR repertoire 
may help to gain a better understanding of the immune 
system features and of the etiology and progression of 
diseases, in particular those with unknown antigenic trig-
gers. Rapid progress has been made in the deep profiling 
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of TCR repertoires by using NGS to discover millions 
of sequences from the TCR repertoires [8]. There are 
different TCR library preparation for NGS, including: 
multiplex PCR, targeted enrichment methods, 5′Rapid 
amplification of cDNA ends (5′RACE) cDNA synthe-
sis, template-switch, and nested PCR [9]. For TCR rep-
ertoire assessment, the current standard sample type is 
total RNA extracted from whole blood by venipuncture. 
However, the costs, participant burden, regulatory con-
straints, and logistics associated with venipuncture and 
RNA handling are major barriers to clinical application 
or community-based research on various diseases.

Dry blood spots (DBS) have been used broadly in 
disease screening, drug level monitoring, and infec-
tious microorganism detection, such as the detection 
of HIV and plasmodium [10, 11]. There are two major 
advantages of this method. First, it is minimally inva-
sive (requiring only 0.3  mL of capillary blood obtained 
by finger- or ear-prick) and a field-friendly alternative to 
venipuncture by professional medical staff. Second, it is 
low cost and convenient to handle in that the filter cards 
can be stored and shipped at room temperature without 
refrigeration for at least 1 month [12, 13].

The desire for TCR repertoire profiling in a variety 
of diseases and the advantages of a DBS-based method 
prompted us to establish a DBS-based TCR repertoire 
profiling method. Here, we report for the first time the 
use of a DBS sample in combination with a fully auto-
mated and closed system for TCRβ chain NGS library 
preparation. We have demonstrated that storage of DBS 
in filter cards up to 28 days at either room temperature 
or − 20 °C has no effect on unique CDR3 (uCDR3) dis-
covery. Compared with whole blood, the DBS-based 
TCR repertoire profiling method is minimally invasive, 
provides convenience when sampling, is sensitive, and is 
highly correlated with whole blood in terms uCDR3 dis-
covery, facilitating ease of incorporation and scale-up to 
studies which seek to explore the relationship between 
immunity in variety diseases.

Materials and methods
Subjects and sample collection
All enrolled subjects had written informed consent 
prior to the collection of whole blood or DBS via finger-
prick. The study design and recruiting of patients were 
approved by the New England Independent Review 
Board® (NEIRB) (IRB Number: 14-378). All experiments 
were performed according to the relevant guidelines and 
regulations.

Whatman FTA 903 cards (Sigma-Aldrich Corp. MO, 
USA) were used for collection of capillary blood obtained 
by finger-prick. In addition, peripheral blood was col-
lected via venipuncture for comparison. The Whatman 

cards were stored in zip-lock plastic bags with a desiccant 
(ULINE. Atlanta, USA), at room temperature or − 20 °C 
(for longer storage) for future studies.

RNA extraction from DBS and whole blood
RNA extraction from DBS was performed following 
the methods proposed by Karlsson et  al. [14]. 2-mm 
disks were punched out from a DBS with a sterile Rob-
bins true-cut disposable 2-mm biopsy punch (Robbins 
Instruments, Inc., NY, USA). The punch disks were then 
incubated in 700 μL RLT buffer plus β-mercaptoethanol 
(β-ME). The tubes were then incubated at 37  °C for 
60 min in a thermomixer rotating at 1000  rpm. Follow-
ing incubation, RNA was extracted with a RNeasy Micro 
Kit (Qiagen, Valencia, CA, USA) according to the manu-
facturer’s instruction. For whole blood, a RNeasy Mini 
Kit (Qiagen, Valencia, CA, USA) was used according to 
the manufacturer’s protocol. RNA concentrations were 
measured by spectrophotometry.

RT‑PCR and sequencing of T‑cell receptor β‑chain CDR3 
region
iRepertoire multiplex primer sets (iRepertoire, Inc. 
Huntsville, AL, USA) were used to amplify the CDR3 
region of TCRβ chain by using RNA as template as 
described by Wang et  al. [15]. The whole amplification 
process and library preparation process for NGS were 
fully automated in the iR-Procecessor and iR-Cassette 
(iRepertoire, Inc. Huntsville, AL, USA). Then, paired-end 
sequencing was performed on purified PCR products 
using an Illumina MiSeq v2 300-cycle Reagent Kit (Illu-
mina Inc.), for an average read depth of 30,000 reads per 
sample.

Sequence data analysis
Raw cDNA sequences were first analyzed to identify 
V and J genes by using iR-map and visualized in iRweb 
(iRepertoire, Inc. AL, USA). Analyzed data from iRweb 
include peptide sequences, alignments to the interna-
tional ImMunoGeneTics (IMGT) database, uCDR3, 
shared CDR3s, and V- and J-gene usage. Multiple align-
ments and hierarchical clustering of conserved amino 
acid sequences were analyzed as described by Wang et al. 
[15].

Computational error correction of bulk TCR sequences 
by replicates
Errors in sequencing resulting from PCR errors, PCR 
contamination and read error were mitigated according 
to the modified method of Glanville et  al.’s study [16]. 
RNA samples were split into two reactions and pro-
cessed as technical replicates. The coefficient of determi-
nation (R2) was calculated by linear regression to show 
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the correlation between the replicates of TCRβ CDR3 
frequencies prior to data analysis to exclude PCR and 
sequence errors.

TCR repertoire diversity analysis
The diversity of the TCR repertoire was calculated based 
on the diversity 50 (D50) value and the Diversity Index 
(DI) [17]. Briefly, D50 is the percent of dominant T cell 
clones that account for the cumulative 50% of the total 
CDR3s counted in the sample. The mathematical formu-
lation of D50 is defined as follows:

The more diverse a library, the closer the value will be 
to 50.

The DI is defined mathematically as follows: 

where ri is the frequency of the i-th CDR3 and n is the 
total number of unique CDR3s.

In addition, tree maps and two-dimensional (2D) heat 
maps were used to reveal the diversity and characteristics 
of TCR repertoire. In a tree map, each rounded rectangle 
represents a unique entry: V–J combination of uCDR3, 
where the size of a spot denotes the relative frequency. 
2D heat maps showed that the relative frequency of a 
consensus germline V-gene allele (as per alignment with 
the IMGT database) is plotted relative to the consensus 
germline J-gene allele. Therefore, it is immediately evi-
dent which V–J combination is used either frequently or 
infrequently by the color of the map.

Statistical analysis
Analysis was performed using the Statistical Package for 
the Social Sciences (SPSS) 17.0 software. Chi-squared 
test was performed on all categorical variables, with the 
exception of those with an expected frequency of < 5, 
which were analyzed by Fisher’s exact test. Two-sided 
Student’s t-tests was used for comparing the means of 
two independent variables. One-way analysis of variance 
(ANOVA) was used to analyze differences in the number 
of uCDR3s among the different storage durations.

D50 = (No. of uCDR3 that make up 50% of the

total reads× 100)/No. of uCDR3s

Assume that the numbers (n) of uCDR3:

r1 ≥ r2 ≥ r3 ≥ · · · ri ≥ ri+1 ≥ · · · ≥ rn

xk =
k

n
, yk =

∑k
i=1 ri∑n
i=1 ri

Results
T‑cell repertoire can be detected from the extracted RNA 
from DBS
The work flow of the DBS-based TCR repertoire dis-
covery is shown in Fig. 1. RNA was extracted from DBS, 
followed by RT-PCR in a fully automated closed system 
to amplify the TCRβ library. After cDNA pooling of 
the TCRβ library and quantification, NGS sequencing 
was performed, and the data was analyzed as described 
previously.

Since the percentage of dominant clones detected 
from DBS is highly dependent on TCR diversity of 
samples, we first calculated the number of punch disks 
required for dominant clone detection from whole 
TCR repertoire. Both confidence levels and intervals 
were calculated to compare TCR repertoire discovery 
between methods utilizing DBS versus 10 mL of whole 
blood. According to the normal range of differential 
count of complete blood cells, 20–35% of white blood 
cells are lymphocytes. T cells account for 70–85% of 
lymphocytes [18]. Therefore, there were about 700–
2675 T cells per μL of whole blood for one man with 
65  kg of body weight with normal white blood count 
range from 5000–9000 WBC/μL. According to the 
Whatman card specifications, one circle with a diam-
eter of 0.5 in. can absorb 75–80 μL of blood; therefore, 
one 2-mm punch disk contains approximately 2  μL of 
blood. For individuals whose dominant clones comprise 
60% of their total TCR repertoire, 80  μL of blood col-
lected on 40 2-mm punch disks could provide 90% con-
fidence level and 9% confidence interval. The volume of 
blood required for a given confidence level and interval 
is presented in Additional file 1: Table S1.

Having calculated the punch disk numbers required 
for TCR repertoire discovery, we compared between 
3, 10, 40 and 80 punch disks. The average uCDR3 dis-
covery for 3, 10, 40, and 80 disks were 169, 246, 1726, 
and 1581, respectively, with an average read depth of 
30,000 reads per sample. The uCDR3 discovery from 
40 disks was higher than those from 3 (p < 0.0001) 
or 10 punch disks (p < 0.0001). There was no signifi-
cant statistical difference in average uCDR3 numbers 
between 40 and 80 punch disks (p = 0.520) (Fig.  2a). 
The tree maps and heat maps also revealed that the 
diversity and the identified combination of V- and 
J- gene segments were obviously higher in 40 or 80 
punch disks than those in 3 or 10 punch disks (Fig. 2b, 
c). As a result, 40 disks were established as the opti-
mum punch number for future studies.
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CDR3 frequency correlation between DBS and whole blood
The R2 of uCDR3 frequencies were calculated by lin-
ear regression between technical replicates to exclude 
PCR or sequencing error. The R2 of the regression for 
CDR3 discovery between technical replicates for DBS 
and whole blood samples were 0.990 and 0.995, respec-
tively (Fig. 3a–d). uCDR3 frequency correlations were 
then determined to compare discovery between DBS 
and whole blood samples. uCDR3 discovery between 
DBS and whole blood revealed high regression correla-
tion (R2 = 0.986 and R2 = 0.987, respectively) (Fig. 3e), 
with 94% and 92% of the top 50 and top 100 dominant 
clones from whole blood being detected from DBS, 
respectively (data not shown).

Effect of storage temperature and duration on uCDR3 
discovery
Despite the manufacturer’s suggested storage tempera-
ture of − 20 °C, prior studies show conflicting results for 

the effect of DBS storage temperature and duration on 
RNA preservation [19–22]. In this study, we compared 
the uCDR3 discovery between two storage temperatures 
(room temperature and −  20  °C). No significant differ-
ence was demonstrated in uCDR3 discovery between 
DBS samples stored at room temperature and − 20 °C for 
14 days (p = 0.922) or 28 days (p = 0.700) (Fig. 4).

uCDR3 discovery from storage duration tests (1  day, 
14 days and 28 days) was also compared in DBS samples 
with low, moderate, and high CDR3 diversities. Among 
different storage durations, no significant differences 
were found in uCDR3 discovery in DBS samples with low 
(p = 0.190), moderate (p = 0.077), and high (p = 0.857) 
uCDR3 diversities (Fig. 5), and this is true even under the 
two different storage temperatures tested, room tempera-
ture, and − 20 °C (Fig. 4). The uCDR3 frequency did not 
decrease over time. These results indicate that storage 
duration of 1, 14 and 28 days had no impact on uCDR3 
discovery.

Fig. 1  The work flow of DBS based TCR repertoire discovery. Finger-prick blood is collected onto the filter card and extracted RNA from DBS is used 
as a template for amplification. The entire PCR amplification and library preparation are automated in a closed cassette. Post amplification, libraries 
are pooled and quantified then sequenced by NGS. Sequencing data is analyzed by iRweb’s bioinformatics platform
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We also demonstrated the relationship of TCRβ clo-
notype discovery between DBS and whole blood (Fig. 6). 
The  R2  of the regression  for CDR3 discovery between 
technical replicates for whole blood samples and DBS in 
different storage duration tests were 0.990 and 0.86–0.95, 

respectively. Long storage duration up to 28 days not only 
showed no impact on uCDR3 discovery, but also showed 
no impact on the correlation uCDR3 discovery between 
DBS and whole blood. In addition, the top 50 and 100 
dominant CDR3 clones of whole blood could be detected 

Fig. 2  T-cell repertoire is detected from the extracted DBS RNA. a uCDR3 discovery from different amounts of punch disks (**p < 0.01, by Student’s 
t-test). b TCR repertoire diversity is illustrated in tree maps where each rounded rectangle represents a unique entry: V–J–uCDR3 and the size of the 
spot denotes the relative frequency. c The relative frequency from low (black) to high (red) of V–J gene combinations, is illustrated in the 2D heat 
maps from varying amounts of punch disks (left to right: 3, 10, 40 and 80 disks). ns indicates no significant statistical difference
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by DBS for 62–88% and 45–69% of the dominant unique 
CDR3s at 28-day storage, respectively (Fig. 6).

Relationship between TCR repertoire diversity and uCDR3 
discovery
The diversity of each sample’s TCR repertoire can impact 
the correlation of uCDR3 discovery between DBS and 
whole blood samples. To explore this relationship, 
uCDR3 discovery was compared between DBS and whole 
blood samples known to have low, moderate, and high 
diversities of TCR repertoire. Table 1 shows the charac-
teristics of TCRβ CDR3 between DBS and whole blood. 
The samples with low and moderate TCR diversity have 

a higher regression correlation between DBS and whole 
blood samples than those with higher TCR diversity 
(R2 = 0.989 for low diversity, 0.865 for moderate diversity 
and 0.806 for high diversify). 92% and 87% of the top 100 
uCDR3 clones from whole blood could be detected in a 
DBS sample of low and moderate diversity, respectively, 
but only 74% of those in high diversity samples. For sam-
ples with high TCR diversity, the top 50 uCDR3 clones 
from whole blood could still be detected for 82% in a DBS 
sample. Although the diversity of samples had impact on 
the correlation of uCDR3 discovery, there was still a rela-
tively high amount of shared uCDR3s between DBS sam-
ple and whole blood sample.

Fig. 3  The comparison of TCRβ CDR3 between DBS and whole blood. a Tree maps of TCRβ CDR3 from duplicate DBS samples. b The coefficient of 
determination (R2) of linear regression in TCRβ CDR3 sequences from duplicate DBS samples. c Tree maps of TCRβ CDR3 from duplicate peripheral 
blood samples. d The R2 of linear regression in TCRβ CDR3 sequences from duplicate peripheral blood samples. e The R2 of linear regression in TCRβ 
CDR3 sequences between peripheral blood and DBS
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uCDR3 sharing between samples
In order to determine whether the TCRβ CDR3s detected 
by this method are unique across individuals, the TCRβ 
CDR3 sharing was compared among different individu-
als. The sharing rate of uCDR3 between two individuals 
was low, ranging from 0.03% to 1.55% (Table 2 and Addi-
tional file 1: Table S2). The uCDR3 sharing rate between 

P5 and P6 is the highest; however, this is a parent–child 
relationship.

Discussion
In this study, we reported for the first time the estab-
lishment of a DBS-based method as a minimally inva-
sive alternative to venipuncture blood sampling for TCR 
repertoire studies. In addition to its cost effectiveness, 
we have demonstrated that the storage temperature and 
storage duration had no effect on uCDR3 discovery. The 
ease of sample collection and the convenience of storage 
for transportation purposes makes it a viable option for 
scale-up studies related to TCR repertoires.

The FTA cards entrap nucleic acids and are stabilized 
at room temperature, which allows long-term storage 
[20, 23, 24]. DNA extracted from the stored card yields 
adequate quality and amount for PCR amplification com-
pared with that extracted from the fresh samples [25, 26]. 
The extracted DNA from the card can also be used for 
high-throughput molecular analysis [13, 27]. In addition, 
DBS also provides an alternative tool to formalin-fixed 
paraffin-embedded cell blocks for biobanking to detect 
epidermal growth factor receptor (EGFR) or Kirsten rat 
sarcoma 2 viral oncogene homolog (KRAS) mutation for 
personalized target therapy in lung cancer patients [28]. 
Therefore, this method can be utilized in multiple fields, 
not only cancer diagnosis but various disease etiologies. 
In addition to the stability of high-quality nucleic acids, 
the low cost of storage, and ease in transportation, FTA 
cards serve as an alternative to various traditional storage 
methods [20].

We established a method that uses RNA extracted from 
DBS for high-throughput sequencing. The entire process 
of RT-PCR amplification and library preparation of the 
immune repertoire was conducted automatically in cas-
settes. Automated amplification in a closed, contained 
environment throughout the entire process prevents con-
tamination and improves the consistency of the results 
by avoiding error or variation, which may be introduced 
during manual processing. TCR repertoires derived from 
DBS are directly comparable with the dominant clones of 
TCR repertoire discovery from whole blood. As a result, 
DBS may be used as a screening tool for certain diseases 
or for genetic screening instead of whole blood.

Peluso et al. used FTA cards to store fine needle aspi-
ration cytology samples of lymph node, and they ampli-
fied immunoglobulin heavy and light chains, TCR-β and 
γ chains by PCR from DNA [29]. The results showed 
that the amplified DNA from FTA cards is comparable 
to those of cryopreserved samples. However, a tremen-
dous diversity of TCR repertoires results from exten-
sive recombination, splicing and post-transcriptional 
processing to yield functional proteins. TCR repertoire 

Fig. 4  The comparison of uCDR3 discovery between different 
storage temperatures (room temperature versus − 20 °C). Student’s 
t test was used to determine that there was no significant difference 
in uCDR3 discovery between the two storage temperatures at both 
14 days (p = 0.922) and 28 days (p = 0.700) storage duration. ns 
indicates no significant statistic difference

Fig. 5  Comparison of uCDR3 discovery with storage durations of 1, 
14 and 28 days from DBS samples with varying TCR diversities. There 
was no significant difference in TCRβ uCDR3 discovery between 
storage durations for samples with varying TCR diversities by one-way 
ANOVA analysis. ns indicates no significant statistic difference
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Fig. 6  Comparing uCDR3 discovery between different storage durations (1, 7, 14 and 28 days). The R2 of TCRβ CDR3 sequences was calculated by 
linear regression between the whole blood and DBS in different storage durations. The R2 of duplicate sequences showed high correlation in whole 
blood and DBS within different storage durations. The TCR diversities were shown by D50s, Diversity Indexes and tree maps. There was no significant 
difference in TCR diversity between storage durations. In addition, more than 74% of the top 50 dominant CDR3 clones of whole blood was 
detected by DBS. These results indicated that TCR uCDR3s of DBS had high correlation with those of whole blood. (R2: coefficient of determination 
calculated by linear regression; *The percentage of TCR dominant clones from whole blood could be detected from the DBS sample)

Table 1  The clinical characteristics of samples with low, moderate and high TCR repertoire diversities

WB whole blood, DBS dry blood spot, R2 coefficient of determination calculated by linear regression
a  The percentage of TCR dominant clones from whole blood could be found from DSB examination

Diversity Low Moderate High

Sample WB DBS WB DBS WB DBS

Duplicate sequence repeatability (R2) 0.994 0.991 0.993 0.956 0.930 0.699

Unique CDR3 43,653 5327 38,431 3820 25,118 3208

D50 0.3 1.1 2.7 7.6 14.5 6.8

Diversity Index 15.8 13.2 20.6 16.8 27.1 11.1

R2 of regression between DBS and WB 0.989 0.865 0.806

Top 50 dominant clones (%)a 94% 98% 82%

Top 100 dominant clones (%)a 92% 87% 74%
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discovery from RNA rather than genomic DNA prevents 
the inclusion of nonproductive or functionally irrelevant 
sequences [30]. There is currently no study report on 
the direct detection of the TCRβ repertoire from finger-
pricked blood stored on FTA cards.

Although it is known that high-quality DNA can be 
extracted from the FTA cards [25, 31], there are few stud-
ies about RNA extracted from FTA cards compared with 
other preservation methods. Instability of RNA is a major 
concern with storage, temperature, and extraction meth-
ods. The  World Health Organization  (WHO) suggests 
that for HIV drug resistance, dried blood spot specimens 
should be transferred to − 20 °C or lower as soon as pos-
sible although they can be kept and/or transported at 
ambient temperature up to 14 days after collection [10]. 
However, Bertagolio et al. demonstrated that a 90% posi-
tive amplification rate was noted under the ambient stor-
age temperature of DBS [19]. This is compatible with the 
current DBS study which shows comparable numbers of 
uCDR3s between disparate storage temperatures of room 
temperature and −  20  °C, even after 28  days of storage 
duration. Therefore, DBS can be stored and transported 
at room temperature without impacting TCRβ clonotype 
discovery.

Approximately 74–98% of the top 50 dominant clones 
from the whole blood are found in the DBS sample. This 
result indicates that the DBS-based immune repertoire 

profiling is very sensitive. According to the statistical 
analysis of sample sizes and the results of the current 
study, we are now confident that our DBS-based method 
can reflect whole blood TCRβ repertoire sampling with 
very good coverage and high sensitivity, i.e., enough 
shared top clonotypes and strong correlation in uCDR3 
discovery.

The recent technological advances in the fields of 
immunology and immunotherapy hold promise for 
patients with cancers [32–34]. The TCR repertoire plays 
a pivotal factor in immunity [35]. For instance, TCR rep-
ertoire profiling has the potential to serve as a biomarker 
of treatment response in pancreatic ductal carcinoma 
patients who received immunotherapy [7]. Through rec-
ognition of major histocompatibility complex (MHC)-
peptide complex of TCRs, T cells can be activated and 
specific T cell clones expanded to give a response to for-
eign pathogens or cancer cells [36].

Accumulating evidence suggests that immune cells play 
pivotal roles in a variety diseases and their overlapping 
regulatory mechanisms in addition to cancers, and TCR 
repertoire were also explored in different area. For exam-
ple: Muraro et al. used TCR repertoire to follow the effect 
of autologous stem cell transplantation in multiple scle-
rosis patients [37]. For autoimmune diseases, the median 
TCR β-chain frequency in RA patients was increased ten-
fold, indicating marked contraction of the repertoire, and 

Table 2  The ratio of the shared uCDR3 reads divided by the total reads of the individual

P1 P2 P3 P4 P5 P6 P7

P1 0.03% 0.35% 0.08% 0.00% 0.05% 0.03%

P2 0.07% 0.24% 0.05% 0.06% 0.14% 0.00%

P3 0.30% 0.09% 0.15% 0.41% 0.08% 0.88%

P4 0.27% 0.10% 0.68% 0.13% 0.10% 0.31%

P5 0.01% 0.12% 0.30% 0.00% 0.32% 0.68%

P6 0.03% 0.22% 0.34% 0.62% 1.55% 1.10%

P7 0.09% 0.00% 0.83% 0.10% 0.08% 0.20%
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disease activity of RA was negatively correlated with the 
TCR repertoire diversity of CD4+ T cells [4, 38]. Even for 
infection disease, TCR repertoire was explored the func-
tion profile of T cells in HIV patients and the character-
istics of immune landscape after injection of HIV vaccine 
[6, 39]. TCRβ-CDR3 were correlated with disease prog-
nosis of hepatitis B and C [5, 40, 41]. DBS-based meth-
odology provides a simple and quick approach to access 
changes of immunity and treatment effect in different 
disease areas.

Each individual has more than 109 T cells which express 
unique heterodimeric T-cell receptors as identified by the 
CDR3 peptide sequence of the TCRβ chain. This high 
diversity provides defense against foreign pathogens. Hou 
et al. reported that on average two individuals can share 
4.85 ± 2.5% of their DNA sequences and 12.17 ± 0.81% 
of their CDR3 amino acid sequences [42]. According 
to the current study, less than 1% of uCDR3 clones are 
shared between two different people except when a par-
ent–child relationship exists (Table  2). Putintseva et  al. 
reported that the degree of overlap was always slightly 
higher for related individuals for all CDR3s, but this dif-
ference never approached a significant level compared 
to unrelated individuals [43]. In a parent–child relation-
ship, 50% of their HLA alleles are shared. Exposure to the 
same pathogens may result in specific T cell expansion. 
Because V-gene usage is highly influenced by human 
leukocyte antigen (HLA)-type, certain V-genes may be 

preferentially selected by the immune system, ultimately 
allowing more shared CDR3s among closely related indi-
viduals. The high individual specificity detected by this 
method allows researchers to look for public CDR3s in a 
homogenous group or identify disease signatures, based 
on shared unique CDR3 peptides.

Figure  7 demonstrates the advantages of the DBS-
based method for TCR repertoire analysis. DBS provides 
a minimally invasive sample collection alternative to ven-
ipuncture. It is convenient for storage and transportation, 
in contrast to the necessary of refrigeration of − 20 °C for 
some RNA-compatible vacutainer tubes, and cold chain 
shipping for whole blood. Then, high quality RNA can be 
extracted from DBS-based samples for future molecu-
lar amplification and analysis. The entire process of RT-
PCR amplification and library preparation of the immune 
repertoire was conducted automatically in a fully closed 
cassette, which is easier than the labor-intensive manual 
process. It also helps improve result consistency and to 
prevent contamination of the laboratory environment 
with amplicon. Although other products (PAXgene 
Blood RNA Tube (IVD) (Qiagen), Tempus™ Blood RNA 
Tube, etc.) can be used for storage and transportation of 
RNA at room temperature, refrigeration is still necessary 
for long-term storage. In addition, they are more expen-
sive and laborious than DBS-based processing due to the 
requirement for a phlebotomist and specialized extrac-
tion RNA kits.

Fig. 7  Schematics for the comparison of the methods for TCR repertoire discovery by using a DBS sample and peripheral blood sample. DBS 
provides a minimally invasive sample collection and convenient alternative to venipuncture. High quality RNA is extracted from DBS-based 
samples for future molecular amplification and analysis. The entire process of multiplex PCR amplification and library preparation of the immune 
repertoire is automated in a fully closed cassette, which allows for a less labor-intensive manual process, improves result consistency and prevents 
contamination amplicon within the laboratory environment
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Conclusions
The current DBS-based method shows high correla-
tion to dominant TCRβ CDR3 clones detected from 
whole blood. The minimally invasive, cost effective, 
and convenient storage conditions will allow for the 
scale-up of surveillance studies or treatment response. 
More importantly, the development of such a tool 
allowed collecting of real-world data, i.e., when symp-
toms showed up, rather than doctors available for an 
appointment.
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