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METHODOLOGY

DRAP: a toolbox for drug response analysis 
and visualization tailored for preclinical drug 
testing on patient‑derived xenograft models
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Abstract 

Background:  One of the key reasons for the high failure rate of new agents and low therapeutic benefit of approved 
treatments is the lack of preclinical models that mirror the biology of human tumors. At present, the optimal cancer 
model for drug response study to date is patient-derived xenograft (PDX) models. PDX recaptures both inter- and 
intra-tumor heterogeneity inherent in human cancer, which represent a valuable platform for preclinical drug testing 
and personalized medicine applications. Building efficient drug response analysis tools is critical but far from ade‑
quate for the PDX platform.

Results:  In this work, we first classified the emerging PDX preclinical trial designs into four patterns based on the 
number of tumors, arms, and animal repeats in every arm. Then we developed an R package, DRAP, which imple‑
ments Drug Response Analyses on PDX platform separately for the four patterns, involving data visualization, data 
analysis and conclusion presentation. The data analysis module offers statistical analysis methods to assess difference 
of tumor volume between arms, tumor growth inhibition (TGI) rate calculation to quantify drug response, and drug 
response level analysis to label the drug response at animal level. In the end, we applied DRAP in two case studies 
through which the functions and usage of DRAP were illustrated.

Conclusion:  DRAP is the first integrated toolbox for drug response analysis and visualization tailored for PDX plat‑
form. It would greatly promote the application of PDXs in drug development and personalized cancer treatments.

Keywords:  Patient-derived xenograft, Tumor model, Drug response analysis, Preclinical drug testing, Personalized 
drug selecting
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Background
It is well known that the major issues in cancer trans-
lational medicine include the low success rate of new 
agents [1, 2] and limited therapeutic benefit of approved 
drugs in clinical [3, 4]. At present, roughly 90% of pre-
clinical anticancer agents entering clinical trials fail to 
gain regulatory approval, and the average cost of bring-
ing a new drug to market is over $1 billion [1, 5]. The 
response rate (RR) is about 10% for cytotoxic agents, and 
about 30% for targeted agents guided by biomarker test 

[3, 4]. One of the most frequently cited reasons is the lack 
of preclinical models that mirror the biology of human 
tumors, although a diversity of cancer models, such as 
cell line models and cell line-derived xenograft (CDX) 
models, have been built and commonly used over late 
decades [6–8].

In recent years, patient-derived xenograft (PDX) mod-
els, which involve directly grafting fresh tumor tissues 
into immunodeficient mice, have proved to faithfully 
recapitulate the molecular, genetic, histopathological fea-
tures of their originating tumors, and particularly repre-
sent both inter- and intra-tumor heterogeneity inherent 
in human cancer [6, 8–12]. It has been widely accepted 
that PDX models are the most clinically relevant cancer 
models developed to date [6, 13–16], and the use of PDX 
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platform in drug response study is therefore expanding 
rapidly.

In spite of the increasing applications of PDX models, 
PDX drug response data are usually analyzed by tools 
designed for CDX models [17] or clinical trials [18]. Due 
to the obvious differences between PDXs and CDXs in 
both biological properties and experimental techniques, 
such as genetic heterogeneity and measuring indicators, 
drug response analysis methods designed for CDXs are 
essentially not appropriate for PDXs [6]. Similarly, there 
are noticeable discrepancies between PDX trials and clin-
ical trials, for example, the different criteria for evaluating 
drug efficacy, the different trial designs regarding sample 
size, intra-tumor heterogeneity considered or not, which 
block the application of clinical drug response analysis 
methods to PDX platform [7, 19]. It is noteworthy that 
PDX models mimic both inter- and intra-tumor hetero-
geneity, and thus the PDX drug response experiments 
could be designed in a more complicated way by which 
the effects of tumor heterogeneity on drug response can 
be checked more thoroughly. Hence, it is critical and 
urgent to select appropriate data analysis methods for 
preclinical drug testing on PDX platform and develop an 
integrated toolbox for drug response analysis tailored for 
PDX platform.

To address this problem, we developed an R pack-
age, DRAP, to implement Drug Response Analyses on 
PDX platform for four typical PDX trial designs. The 
tools in DRAP involve data visualization, data analysis 
and conclusion presentation (see Fig.  1 for DRAP over-
view). Specifically, the data analysis module enables a 
user to statistically assess the difference of tumor vol-
ume between arms, calculate tumor growth inhibition 
(TGI) rate, and label the drug response at animal level. By 
applying DRAP to two datasets, an unpublished dataset, 
and a published one derived from Novartis Institutes for 
BioMedical Research PDX encyclopedia (NIBR PDXE) 
[14], the functions of DRAP were demonstrated. We 
propose that DRAP, the first integrated toolbox for drug 
response analysis and visualization tailored for preclini-
cal drug testing on PDX platform, would greatly promote 
the application of PDXs in drug development and per-
sonalized cancer treatments.

Results
Design of DRAP
After summarizing a series of literatures carrying out 
drug response studies on PDXs, we classified the emerg-
ing PDX preclinical settings into four patterns: 1*A*N, 
T*1*N, T*A*1 and T*A*N, with the first letter represent-
ing the number of tumors, the second representing the 

Fig. 1  The overview of DRAP. The emerging PDX trial settings could be classified into four patterns: 1*A*N, T*1*N, T*A*1 and T*A*N. Each pattern 
has its own specific study purpose, and type of input data. DRAP offers three ways to analyze drug response: statistical analysis methods that assess 
difference of tumor volume between arms are suitable to 1*A*N and T*A*N; tumor growth inhibition (TGI) rate calculation is useful for 1*A*N, T*1*N, 
and T*A*N; drug response level analysis is suitable to all four patterns. DRAP provides multiple types of tools to present results, including line chart, 
waterfall plot, and bar diagram
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number of arms for each tumor, the third represent-
ing the number of animals corresponding to one tumor 
line in each arm. Note that one means single and T/A/N 
means multiple. The functions of drug response analysis 
for each pattern are described as follows (see Fig.  1 for 
DRAP overview).

1*A*N: This pattern is designed to prioritize candidate 
treatments for a particular tumor [20]. When PDX avatar 
models are successfully established and propagated, the 
animal cohorts are randomized into several arms, with 
one arm enrolling multiple animals and subjected to a 
certain treatment or vehicle. Then the volumes of tumor 
tissues and body weights of animals are measured at a 
series of time points. DRAP first visualizes the tumor vol-
ume data and body weight data for all time points at both 
the level of individual tumor-bearing mice and the level 
of single arm. Secondly, DRAP assesses potential differ-
ences in tumor volume between arms by using one-way 
ANOVA, Kruskal–Wallis test, mixed-design ANOVA, 
linear mixed model (LMM), or permutation strategy, as 
explained in methods. Then DRAP ranks the arms by 
calculating tumor growth inhibition (TGI) rate and pre-
sents the results of TGI for both end time point and all 
time points. It is noteworthy that the inter-individual 
heterogeneity of the animal repeats in a treatment arm 
at least partly reflects the intra-tumor heterogeneity of 
the original tumor, which makes it feasible to consider 
intra-tumor heterogeneity when assessing therapeutic 
treatments for a tumor. That is, the treatment which leads 
to significant response in more animals may target more 
tumor subclones and would show better efficacy when 
administered to the original tumor. We therefore could 
prioritize candidate treatments by labeling the drug 
response level of each animal with complete response 
(CR), partial response (PR), stable disease (SD) and pro-
gressive disease (PD), which are defined based on tumor 
volume as explained in the section of methods.

T*1*N: This pattern aims to evaluate the anti-tumor 
efficacy of a particular treatment by using a PDX col-
lection [18, 21, 22]. Since a collection of xenografts are 
included, the effect of inter-tumor heterogeneity on drug 
response is sufficiently taken into account. Following the 
common protocol in preclinical data analysis, the drug 
response of each tumor line is calculated based on the 
mean or median of tumor volume values. The setting 
of multiple animals enrolled in one experimental group 
helps to increase the accuracy of response level of the 
tumor, and therefore acquire more precise evaluation of 
drug efficacy [23]. Still due to the enrollment of multiple 
animals in each tumor group, intra-tumor heterogene-
ity could also be considered if needed, similar to 1*A*N 
pattern.

T*A*1: This pattern is designed for the high-through-
put evaluation of a panel of treatment arms [14, 24]. 
Similar to the above T*1*N pattern, a collection of xeno-
grafts are included, therefore inter-tumor heterogeneity 
is taken into account. As T*A*1 pattern involves a col-
lection of tumors and a panel of treatment arms in one 
trial, this setting enrolls only one animal in each arm of 
every tumor line in order to balance costs with outcomes. 
The performance of this setting has been approved by an 
independent report [25]. It is noted that since there is 
only one animal in each arm, intra-tumor heterogeneous 
response to the same treatment could not be investigated 
in this setting.

T*A*N: This pattern could be regarded as extended ver-
sions of the above three patterns, and could be applied in 
various situations. While applied for evaluating drug effi-
cacies of multiple treatment arms based on a PDX collec-
tion, the analysis is consistent with that of T*1*N pattern 
[26]. While applied for testing drug responses of multiple 
tumors to a series of treatments, the analysis is similar to 
1*A*N pattern [17]. Of note, since this pattern includes 
multiple tumors in one trial and multiple animals in each 
arm, it allows for the investigation of both inter-tumor 
heterogeneity and intra-tumor heterogeneity.

For the experimental patterns mentioned above, 1*A*N, 
T*1*N, T*A*1 and T*A*N, DRAP offers functions to 
assess difference of tumor volume across arms, calculate 
TGI for each arm, label drug response level of animals, 
calculate response evaluation index of treatment arms, 
and visualize the analysis results.

Case study 1: 1*A*N pattern
One of our unpublished datasets, generated from preclin-
ical drug response study on PDX platform, were adopted 
to demonstrate the functions of DRAP for 1*A*N pattern. 
The dataset involves five treatment arms and one vehicle, 
with each arm enrolling eight animals. Tumor volumes 
and body weights of every animal were measured every 
3  days. The drug administration lasted for 3  weeks. By 
using DRAP, the tumor volume data and animal body 
weight data were visualized at both the level of individ-
ual tumor-bearing mice and the level of single arm for all 
time points, which eases the interpretation of the data 
and allows judgement of kinetics [27] (Fig.  2a, b). Body 
weight data was also presented in the same way (Addi-
tional file  1: Figs S4 and S5). Besides, DRAP also offers 
functions to calculate and present the relative change 
of tumor volume and animal body weight based on the 
initial baseline for each animal (Additional file 1: Figs S6 
and S7).

To assess potential differences in tumor volume 
between arms, one-way ANOVA, Kruskal–Wallis test, 
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mixed-design ANOVA, linear mixed model (LMM) 
and permutation test were used independently. The 
results  shown that there was significant difference 
between arms given all methods (see results in supple-
ment). Furthermore, LMM and permutation test indi-
cated that all treatment arms were significantly different 
from vehicle.

TGI of every arm was calculated for each time point 
and presented in Fig.  2c, which showed the extent of 
tumor inhibition during treatment. It was indicated 
that treatment_5 has the best efficacy among the five 
candidates.

The response levels for each animal were defined by 
the method NPDXE.Response [14], as illustrated in sup-
plement. There are three animals with level stable disease 
(SD) in treatment_5 arm and two animals with level SD 
in treatment_3 arm (Fig.  2d). The response evaluation 
index of every arm were calculated based on the response 
level of each animal. In summary of these analysis results, 
treatment_5 has the best efficacy among the five can-
didates (see details in Additional file  1). Through the 

PDX trial study, the optimal treatment for the patient is 
treatment_5.

Case study 2: T*A*1 pattern
We use the dataset derived from Novartis Institutes for 
BioMedical Research PDX encyclopedia (NIBR PDXE) 
as example to introduce the function of DRAP for T*A*1 
pattern [14]. The dataset includes both tumor volume 
and body weight data for 6 tumor types, 277 tumors, 
and total 4771 animals responded to 61 treatments. The 
dataset used here includes information “Model”, “Tumor 
Type”, “Treatment”, “Days Post T0”, and “Volume”.

The response level of every animal is labeled by using 
the method NPDXE.Response [14]. Based on the response 
level of each animal, multiple purposes can be realized, 
including ranking drug efficacy of all arms in a special 
type of tumor, evaluating drug efficacy of a special treat-
ment in different types of tumors or in a special type of 
tumor. DRAP offers analysis and visualization tools for 
these purposes.

Fig. 2  The analysis and visualization of 1*A*N pattern. a Tumor volume data at the level of arm (mean ± SEM). b Tumor volume data at the level of 
animal. c TGI value at all timepoints. d Drug response level of each arm
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The data of colorectal cancer (CRC) in NIBR PDXE 
was used to illustrates the functions of DRAP of rank-
ing drug efficacy of all arms in a special type of tumor. 
DRAP ranks and presents the drug efficacy of all arms 
for CRC as in Fig. 3a. The results showed that the com-
bination of BYL719 and Binimetinib has the best effi-
cacy, with RR being 28.57% and DCR being 85.71%. 
BYL719 is a selective inhibitor of PI3Kalpha [28]. 
LJM716 is an antibody drug targeted HER3 [29]. The 
information could help to determine the best candidate 
drugs or drug combinations for CRC in clinical trial.

For a new treatment, the question most frequently 
encountered is how to choose the preferred indica-
tion for clinical trial. To solve this question with PDXs, 
drug efficacy of the new treatment in different types of 
tumors should be evaluated and ranked. This part illus-
trates this function of DRAP with the data of different 
types of tumors respond to the combination of BYL719 
and LJM716 in NIBR PDXE. Among the six tested 
tumor types, this treatment shown highest efficacy in 
gastric cancer (GC) (Additional file  1: Fig S12). Based 
on this information, the developers could choose GC as 
the preferred indication for this new treatment in clini-
cal trial.

While evaluating drug efficacy of a special treatment 
in a particular type of tumor, waterfall plots is efficient 
way to represent the response level of individual ani-
mal, which provide an ease of visualization and inter-
pretation [27]. This part illustrates this function of 
DRAP with the data of GC respond to the combination 
of BYL719 and LJM716 in NIBR PDXE. As in Fig.  3b, 
we could easily get the information of drug efficacy for 
each animal, how many animals in each response level, 
and the total drug efficacy in all samples.

Discussion
Along the development of preclinical models in the last 
four decades, the use of preclinical models has become 
more and more routine in almost every aspect of cancer 
research [6], among which PDX models so far are the 
most clinically relevant cancer models [13–16]. Several 
big PDX repositories have been built both in academic 
and industrial communities, such as EuroPDX (https​://
www.europ​dx.eu/), CrowBio (https​://www.crown​bio.
com/), Patient-Derived Models Repository (PDMR) 
(https​://pdmr.cance​r.gov/) and NIBR PDXE [14]. Simul-
taneously, the number of articles related to “patient-
derived xenograft” has greatly exploded in PubMed in 
recent years. That is, the use of PDX platform in drug 
response study is increasing rapidly.

In the area of drug response study, there have been 
quite a few data analysis tools developed for specific plat-
forms. For cancer cell line models, drc [30], GRcalculator 
[31, 32], GraphPad (http://www.graph​pad.com), and so 
on, calculate effective dose of drug based on cell growth 
inhibition. For clinical trials, Response Evaluation Cri-
teria in Solid Tumors (RECIST) [33, 34] labels response 
level for each patient based on tumor volume change 
during certain time period. It is noted that response sur-
face models could be applied to seek the best dose for 
drug combination in both cancer cell models and clinical 
trials [35]. Besides, methods for predicting drug response 
based on omics data have rose in recent years [36–38]. In 
this sense, it is critical and urgent to build efficient data 
analysis toolbox specific for preclinical drug testing on 
PDX platform.

PDX models have been applied in multiple trial set-
tings, including drug selecting for a particular patient, 
preclinical drug efficacy evaluation for a new treatment 

Fig. 3  The analysis and visualization of T*A*1 pattern. a The drug efficacy of all arms in CRC. b The waterfall plot of each animal response to the 
combination of BYL719 and LJM716 in GC

https://www.europdx.eu/
https://www.europdx.eu/
https://www.crownbio.com/
https://www.crownbio.com/
https://pdmr.cancer.gov/
http://www.graphpad.com
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or a panel of treatments. Each setting need specific data 
analysis strategy and result presentation. It is noticea-
ble that PDX models mimic both inter- and intra-tumor 
heterogeneity, and thus the effects of tumor hetero-
geneity on drug response can be checked in  greater 
detail on PDX platform. Taken together, these make 
drug response analysis of PDX experiments much more 
complex than that of cell line based experiments.

In the current work, we developed an integrated tool-
box, DRAP, to carry out drug response analysis and 
visualization tailored for preclinical drug testing on 
PDX models. DRAP accommodates four typical PDX 
preclinical trial settings, with each setting correspond-
ing to a specific context of application. Compared with 
cancer cell lines, PDX models recapitulate tumor het-
erogeneity of both inter- and intra-tumor. Compared 
with clinical trials, PDX models could be used to test 
multiple drugs for one tumor simultaneously; moreo-
ver, the diverse responses in one arm represent intra-
tumor heterogeneity to a certain extent. In order to 
serve various study purposes, different analysis strate-
gies and methods are required. Our R package enables 
users to implement data visualization, drug response 
analysis and conclusion presentation smoothly for four 
commonly used PDX trial settings.

Compared with the existing drug response analysis 
methods for PDX models, DRAP integrated three ways 
to study drug response: statistical analysis methods to 
assess difference of tumor volume between arms, tumor 
growth inhibition (TGI) rate calculation to quantify 
drug response, and drug response level analysis to label 
drug response at animal level. These methods could 
be used separately or jointly. Besides, DRAP provides 
tools to visualize data and present conclusion in flexible 
ways, such as line chart for presenting TGI of different 
arms, bar diagram for presenting drug response level 
among different arms, and waterfall plot for presenting 
the response level of every tumor.

DRAP has the space to be improved. For example, 
drug response analysis of the current version is based 
on tumor volume data, so drug response data for hema-
tologic tumors could not be adopted by DRAP although 
PDX models for hematologic tumors have been suc-
cessfully established and been used for preclinical study 
[39, 40]; similarly, drug response data generated by 
bioluminescence could not be handled by DRAP [17]. 
Additionally, DRAP adopted three existing methods to 
label drug response level [14, 18, 25], all of which differ 
in the criteria for initial tumor volume, tumor volume 
changes during drug administration, and the time of 
duration. When the standard for labeling response level 
on PDX platform is set up, it should be integrated into 
our toolbox.

Conclusion
DRAP is the first integrated toolbox for drug response 
analysis and visualization tailored for preclinical drug 
testing on PDX models. It offers practical tools to visu-
alize data, analyze data, and present conclusion. Particu-
larly, the effects of inter- and intra-tumor heterogeneity 
on drug response can be estimated via DRAP. It would 
greatly promote the application of PDXs in drug devel-
opment and personalized cancer treatments. It is flexible 
and extendable to perform advanced data analysis in the 
field of precision medicine.

Methods
Statistical analysis of tumor volume
Several statistical methods were adopted to assess poten-
tial differences of tumor volumes across arms, including 
conventional ANOVA [41, 42], Kruskal–Wallis test [43], 
Scheirer–Ray–Hare test [44], mixed-design ANOVA 
[18], linear mixed model (LMM) [45], and permutation 
test [46, 47].

In general, conventional ANOVA is used to analyze 
tumor volume data measured at the end of experiment, 
which is borrowed from drug response data analysis for 
CDX models where the tumor volumes at the starting 
time point tend to be consistent across animals due to 
the homogeneity of cell lines. Therefore, this method by 
analogy applies to PDX based experiments only when the 
tumor volumes at the starting point do not significantly 
differ among animals. However, for the sake of the dra-
matic heterogeneity of tumor tissue, the growth rate of 
tumor in PDX model could be greatly different among 
the animal cohort after tumor tissue implanting [48]. This 
would lead to significant difference in tumor volumes of 
different animals at starting point of drug treatment. To 
address this problem, we integrated the data of tumor 
growth rate during treatment into ANOVA method, and 
in this way the tumor volumes could be rectified.

Because the tumor volume of each animal is repeatedly 
measured at several timepoints, repeated analysis meth-
ods including mixed-design ANOVA and linear mixed 
model (LMM) are also offered, both of which have been 
applied to analyze drug response data generated from 
PDX experiments [18, 45].

Besides the above parametric statistical analysis, the 
corresponding nonparametric statistical analysis meth-
ods of one-way ANOVA and two-way ANOVA, Kruskal–
Wallis test [43] and Scheirer–Ray–Hare test [44], are 
provided to analyze the tumor volume of end point and 
the tumor growth rate.

The permutation strategy is adopted to test whether 
significant difference in the tumor volume growth curves 
exists between different arms. This method is similar to 
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the function of compareGrowthCurves in statmod pack-
age [46, 47]. For each pair of arms, DRAP first calcu-
lates t-statistics or Wilcox-statistics for each time point, 
and then calculates the mean of statistics among all time 
points. Subsequently, the animals in the arm pair are ran-
domly allocated to two arms and the mean statistics was 
recalculated for 1000 times. The P value is the propor-
tion of permutations where the mean statistics is greater 
in absolute value than the mean statistics for the origi-
nal data set. Each pair of arms generates a P value. At 
last, the P-values are adjusted based on multiple testing 
among all possible arm pairs.

Calculation of tumor growth inhibition rate
Tumor growth inhibition (TGI) rate is one of the most 
commonly used metrics to quantify the drug response of 
treatment arms compared to the control arm. The basic 
way to calculate TGI is following:

F(VT) and F(VC) denote the calculating ways for the 
treatment arm and control arm respectively. We provides 
three types of F function to calculate TGI: (1) F = Vt − V0 
[49]; (2) F = Vt/V0 [50]; (3) F = area under the curve of 
tumor volume (AUC) [51]. Vt and V0 represent the mean 
tumor volume at the time t and time 0 respectively. For 
example, if F = Vt − V0, the TGI is expression as:

where VT,t and VT,0 represent the mean tumor volume of 
treatment arm at the time t and time 0 respectively, VC,t 
and VC,0 represent the mean tumor volume of control 
arm at the time t and time 0 respectively.

Labeling of drug response level
Drug response level is calculated to label the drug 
response of each animal, such as complete response 
(CR), partial response (PR), stable disease (SD) and pro-
gressive disease (PD) [14, 17, 18, 52]. The level is defined 
according to the tumor volume change after treatment. 
We implemented three standards to label drug response 
level: the one built in Novartis Institutes for BioMedi-
cal Research PDX encyclopedia (NPDXE.Response) [14], 
the one in Pediatric Preclinical Testing Program (PPTP.
Response) [25, 50], and the one based on the relative 
change of tumor volumes (RC.Response) [18]. The details 
of the three methods could be found in supplement. Con-
sidering that tumor growth is influenced by the strains 
of mice, DRAP enables users to adjust the standards for 

(1)TGI = 1−
F(VT)

F(VC)
∗ 100%

(2)TGI = 1−
VT,t − VT,0

VC,t − VC,0

∗ 100%

defining response levels according to the experimental 
data and practical needs.

After labeling response level for each animal, the 
response evaluation indexes for each arm is calculated, 
including response rate (RR) and disease control rate 
(DCR). RR is the proportion of CR and PR among all test-
ing objects in one arm, and DCR is the proportion of CR, 
PR and SD.

Additional file

Additional file 1. User’s guide for DRAP.
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