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Abstract 

Background:  Predicting the clinical course of prostate cancer is challenging due to the wide biological spectrum 
of the disease. The objective of our study was to identify prostate cancer prognostic markers in patients ‘sera using a 
multi-omics discovery platform.

Methods:  Pre-surgical serum samples collected from a longitudinal, racially diverse, prostate cancer patient cohort 
(N = 382) were examined. Linear Regression and Bayesian computational approaches integrated with multi-omics, 
were used to select markers to predict biochemical recurrence (BCR). BCR-free survival was modeled using unad-
justed Kaplan–Meier estimation curves and multivariable Cox proportional hazards analysis, adjusted for key patho-
logic variables. Receiver operating characteristic (ROC) curve statistics were used to examine the predictive value of 
markers in discriminating BCR events from non-events. The findings were further validated by creating a training set 
(N = 267) and testing set (N = 115) from the cohort.

Results:  Among 382 patients, 72 (19%) experienced a BCR event in a median follow-up time of 6.9 years. Two pro-
teins—Tenascin C (TNC) and Apolipoprotein A1V (Apo-AIV), one metabolite—1-Methyladenosine (1-MA) and one 
phospholipid molecular species phosphatidic acid (PA) 18:0-22:0 showed a cumulative predictive performance of 
AUC = 0.78 [OR (95% CI) = 6.56 (2.98–14.40), P < 0.05], in differentiating patients with and without BCR event. In the 
validation set all four metabolites consistently reproduced an equivalent performance with high negative predictive 
value (NPV; > 80%) for BCR. The combination of pTstage and Gleason score with the analytes, further increased the 
sensitivity [AUC = 0.89, 95% (CI) = 4.45–32.05, P < 0.05], with an increased NPV (0.96) and OR (12.4) for BCR. The panel 
of markers combined with the pathological parameters demonstrated a more accurate prediction of BCR than the 
pathological parameters alone in prostate cancer.

Conclusions:  In this study, a panel of serum analytes were identified that complemented pathologic patient features 
in predicting prostate cancer progression. This panel offers a new opportunity to complement current prognos-
tic markers and to monitor the potential impact of primary treatment versus surveillance on patient oncological 
outcome.
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Background
Prostate cancer is the second leading cause of death 
in men with cancer in the United States [1]. Approxi-
mately 30–40% of patients treated with radical pros-
tatectomy (RP) for clinically localized prostate cancer 
will experience disease progression indicated by rising 
post-surgery serum prostate specific antigen (PSA) lev-
els. Therefore, discovery of early biomarkers for pros-
tate cancer progression are crucial to predict the risk 
of relapse and to temper active monitoring using PSA.

The use of early prognostic markers of the disease 
remains a challenge. Commonly used prognostic mark-
ers such as diagnostic PSA, biopsy grade and clinical 
stage have limited value in predicting which patients 
will develop metastatic prostate cancer. Intensive 
efforts have led to the development of new biomark-
ers for early detection and prognosis of prostate cancer. 
These biomarkers include pre-diagnostic urine-based 
assays (PCA3, T2-ERG, Exosome DX, Select MDx and 
Prostarix), serum-based assays for PSA derivatives, and 
diagnostic biopsy tissue-based assays (Oncotype DX, 
Prolaris, Decipher and ProMark assays) [2–10]. While 
most of the pre-treatment assays rely on biopsy tissue, 
the rise in post-treatment serum PSA and detection of 
metastasis using imaging modalities remains the “gold 
standard” for monitoring disease progression.

Liquid biopsies are among the most preferred tests as 
they are non-invasive and rapidly performed, in com-
parison to tissue biopsies. However, there are limita-
tions in the diagnostic and prognostic performance of 
blood-based biomarkers of prostate cancer. Current 
methods include PSA in combination with digital rec-
tal exam (DRE) [11], the Prostate Health Index (PHI) 
which analyzes a combination of free-PSA (fPSA), total 
PSA (tPSA), and [-2]proPSA to predict risk of Glea-
son ≥ 7 disease on biopsy [12]. The 4  K score (a com-
bination of four kallikrein proteins, tPSA, fPSA, intact 
PSA and hK2) [13], and CellSearch™ CTC was designed 
to measure circulating tumor cells (CTCs) for monitor-
ing treatment response in advanced disease [14]. Of 
interest, recent studies conducted on surgically resecta-
ble cancers (ovary, liver, stomach, pancreas, esophagus, 
colorectum, lung and breast) established a multi-ana-
lyte blood test (CancerSEEK) for assessment of the lev-
els of circulating proteins and mutated cell-free DNAs, 
to detect the type of cancer and their metastatic locali-
zation [15, 16]. While most of the liquid biopsy prog-
nostic panels developed to date are using one type of 

analyte, there are very few which are based on multiple 
analytes [15, 16], especially for prostate cancer.

In the current study, we sought to identify serum bio-
markers to complement pathological parameters in pre-
dicting disease progression. This was addressed by using 
sera donated by a racially diverse cohort of military 
health care beneficiaries in an equal access health care 
system, followed over 20 years.

Methods
Study design and participants
In this retrospective cohort study, patients enrolled in 
both the Center for Prostate Disease Research (CPDR) 
biospecimen databank and the multi-center national 
clinical database, were eligible. Both databases have 
been approved by the institutional review boards (IRB) 
at the Walter Reed National Military Medical Center 
(WRNMMC) and the Uniformed Services University of 
the Health Sciences (USUHS) in Bethesda, Maryland, 
respectively. Eligibility was further restricted to subjects 
who underwent RP without neoadjuvant therapy for 
treatment of biopsy-confirmed prostate cancer between 
1997 through 2014 and donated a serum sample at time 
of RP. Detailed information on patient demographic, 
clinical, pathologic, treatment, and cancer outcomes 
was obtained as part of routine data abstraction activi-
ties for the CPDR multi-center national database (Addi-
tional file 1: Table S1). Patient’s characteristics of interest 
included: age at RP (years), self-reported race (African 
American, AA; Caucasian American, CA), PSA level (ng/
mL) at time of prostate cancer diagnosis, pathologic T 
stage (pT2, pT3–4), pathologic Gleason sum (≤ 6; 3 + 4; 
4 + 3 and 8 − 10), NCCN Risk stratum and surgical mar-
gin status (positive, negative). Patient follow up time was 
calculated as days elapsed between RP date and the last 
known medical visit. The concept used for the serum bio-
marker discovery, using the OMICS platform for progno-
sis of prostate cancer progression was as shown in Fig. 1.

Primary study outcome
The primary study endpoint was biochemical recurrence 
(BCR). A BCR event was defined in the following man-
ner: a post-operative PSA level ≥ 0.2 ng/mL followed by 
a successive, confirmatory PSA level ≥ 0.2 or the initia-
tion of salvage radiation or hormonal therapy after a ris-
ing PSA level ≥ 0.1. Any PSA value taken within 8 weeks 
after RP were not considered due to known PSA fluc-
tuations proximate to the RP date. Patients who had sal-
vage therapy without a rising PSA ≥ 0.1 were classified 
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as a non-BCR event and censored at the date of the ini-
tiation of salvage therapy. Patients who had an initial 
PSA ≥ 0.2 ng/mL but no confirmatory PSA ≥ 0.2 and no 
initiation of salvage therapy, were classified as a non-
BCR event and censored at the last known date of PSA 
of < 0.2  ng/ml. Distant metastasis (DM) was assessed 
by a systematic review of the electronic medical record 
and physician-ordered scans appropriate for confirming 
metastasis. Patients who are lost to follow up or who died 
without any evidence of distant metastasis are censored 
as non-events on the date of last known medical visit or 
date of death, respectively. The quality of serum samples 
was examined before their analysis in multi-omics plat-
forms. No hemolysis or lipemia was observed in any of 
the analyzed samples.

Metabolomics, proteomics and lipidomics analysis
Blood (12  ml) was drawn into two serum separation 
tiger-topped tubes (2 × 6  ml) and allowed to clot for 
30 min at room temperature and centrifuged for 20 min 
at 1617g. Serum were aliquoted and stored at − 80  °C 
for Omics analysis. A one ml aliquot was thawed and 
was simultaneously analyzed for proteins, structural 
and signaling lipids, and metabolites, on their respec-
tive analysis platforms using global proteomics, MS/

MSALL shotgun lipidomic, high resolution targeted MS/
MS signaling lipidomics, targeted hydrophilic interactive 
liquid chromatography mass spectrometry (HIILC–MS/
MS), reverse phase high resolution liquid chromatogra-
phy mass spectrometry (LC-MS), and volatile metabolite 
analysis using gas chromatography- time of flight- mass 
spectrometry (GC-TOF–MS) platforms. Detailed analy-
sis is provided in Additional file 1: Materials and Meth-
ods. Data from individual platforms were streamed into 
Interrogative Biology platform, Bayesian Network Infer-
ence (BNI) modules and statistical/regression models to 
derive the prognostic risk of BCR or DM.

Feature selection
Raw data from 2205 analytes (lipids, metabolites and pro-
teins) were pre-processed before analysis. Briefly, each 
analyte was standardized and 261 analytes (11.8%) were 
removed for containing more than 50% of missing data. 
When applicable, the missing data was imputed by ran-
dom values around the lowest detection range within 
each Omic technology. Univariable screening of the ana-
lytes’ BCR/non-BCR fold change was conducted on the 
non-imputed data using non-parametric permutation 
testing [17]. False discovery rate (FDR) [18] was applied 
to adjust the analytes’ P-values with a cutoff at 0.05. The 
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search space was further expanded by a multivariable 
analysis of the top 55 ranked analytes using elastic-net 
coupled with bootstrapping [19, 20]. Given the solution 
paths from bootstrapping 200 times, the analytes were 
ranked by the averaged selection rate at each given size of 
selected variables, where a single selection rate was cal-
culated as the percentage of selection among the number 
of bootstrapped sampling. Therefore, the best analyte had 
the highest selection rate when one analyte was selected 
as a biomarker, and the second analyte had the highest 
averaged selection rate among the remaining analytes 
given a size of two, and so forth, to all the analytes pro-
cessed in the multivariable analysis. The selection of 
clinical variables was based on causal graphs (networks) 
generated by BERG’s AI platform bAIcis® which relies 
on Bayesian network methods to learn which directed 
acyclic graph is most likely given the provided data [21]. 
In order to identify potential causal drivers of the BCR 
status, an ensemble model from all variables was gener-
ated using bAIcis®, and the clinical variables directly 
connected to the outcome of interest were selected 
for further exploration. Based on the analytes rank and 
the selection rate at each size, hierarchical clustering 
grouped analytes with similar selection performance, and 
top-ranked clusters were considered for further analysis.

Receiver operating characteristic (ROC) curve analy-
sis was performed to access the performance of each 
biomarker based on the logistic regression models (BCR 
versus non-BCR). Area under the curve (AUC) statistics 
were used to assess the predictive value of the selected 
analytes. Further details provided in Additional file  1: 
Materials and Methods.

Development of a biomarker classifier and optimal 
cutoff of each marker in predicting disease progression 
in training and testing sets
This 382 patient cohort was randomly split into train-
ing and testing cohorts (i.e., 70% vs. 30% of study sam-
ple) following the methods as described in Gholami 
et al. [22]. The training cohort consisted of 267 patients 
(50 BCR, 217 non-BCR events), while the testing cohort 
consisted of 115 patients (22 BCR, 93 non-BCR). Multi-
variable logistic regression model was used to determine 
the parameter estimate of each marker in the training 
cohort; those estimates were then applied to construct a 
4-marker panel classifier in the testing cohort. The pre-
diction accuracy of the 4-marker classifier in predicting 
disease progression (combined with pathological vari-
ables) was examined using ROC analysis. Bootstrapped, 
univariable logistic regression model (with 1000 repli-
cates) was used to search for the optimal cutoff of each 
marker in predicting BCR first using the training cohort, 
then in the testing cohort. The optimal threshold was 

defined as a cut point which maximized sensitivity, 
achieving an NPV > 80% and a specificity (SPC) > 35%.

Survival analysis
Kaplan–Meier (KM) analysis and log-rank test were used 
to identify the 4 markers in predicting BCR-free or DM-
free survival. The markers were also evaluated by adding 
to standard of care (SOC) variables (pathological T stage, 
Gleason sum and surgical margin). Multivariable-Cox 
proportional hazard analysis was then used to examine 
these markers in combination of SOC (BCR-free and 
DM-free). The proportional hazard assumption of each 
covariate was checked and met.

Results
Study design
The study cohort included a total of 382 patients. Clinico-
pathological parameters were stratified across the event 
status: BCR (N = 72) and non-BCR (N = 310) patients. 
Among the BCR patients, 11 developed distant metas-
tases. The patients included 314 self-reported CA (BCR 
17.8%, Non BCR 82.2%) and 68 self-reported AA (BCR 
13.5%, Non BCR 76.5%). The median age of the overall 
cohort at RP was 58.2  years and the median follow-up 
time was 6.9 years. Other variables were Biopsy Gleason 
Sum and Pathologic Stage (pT2 and pT3–4), as described 
in Table 1.

Table 1  Descriptive characteristics of  the  study cohort 
stratified by event status (N = 382)

a  Among 72 patients with BCR, 11 developed distant metastasis after BCR

Variable Overall Non-BCR BCRa

N (%) 382 310 (81.2) 72 (18.8)

Age at RP (years)

 Mean (SD) 58.2 (8.3) 57.9 (8.3) 59.4 (8.3)

Race—N (%)

 CA & Other 314 (82.2) 258 (82.2) 56 (17.8)

 AA 68 (17.8) 52 (76.5) 16 (13.5)

Pathological T stage—N (%)

 pT2 259 (72.8) 232 (89.6) 27 (10.4)

 pT3–4 97 (27.2) 62 (63.9) 35 (36.1)

Gleason sum—N (%)

 3 + 3 196 (54.3) 178 (90.8) 18 (9.2)

 3 + 4 105 (29.1) 91 (86.7) 14 (13.3)

 4 + 3/8 − 10 60 (16.6) 31 (51.7) 29 (48.3)

Surgical margin—N (%)

 Negative 311 (81.8) 263 (84.5) 48 (15.4)

 Positive 69 (18.2) 46 (66.7) 23 (33.3)

Follow up time (years)

 Median (range) 6.9 (0.2–18.6) 6.6 (0.2–18.6) 8.2 (1.5–17.8)
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Identification of BCR‑status predictors
Global analyses of the serum proteome, structural lipi-
dome, signal lipidome and metabolome, identified 2205 
analytes with differential abundance in BCR vs non-BCR 
events, as represented through volcano plots (Fig. 2a–d), 
and were assessed for predictive utility by evaluating 
a combination of those analytes which complemented 
each other for prediction of disease progression. Elastic 
net analysis identified four analytes based on their ability 
to discriminate between patients with BCR versus non-
BCR, two proteins Tenascin C (TNC) and Apolipopro-
tein A-IV (ApoA-IV), one metabolite, 1-methyladenosine 
(1-MA), and one lipid molecular species, Phosphatidic 
Acid (PA) 18:0-22:0, as the best performing analytes 
that step-wise disqualified analytes which do not pro-
vide any additional discriminatory power for prediction 
of event status (Fig. 3a–d). Data for each of the analytes 
was recorded as log transformed measurements across 
OMIC datasets for comparison. The selection of clinical 

features that could potentially differentiate BCR vs non-
BCR status was performed through bAIcis®. Based on 
the topological analysis of the causal network generated 
by bAIcis®, Gleason score and T-stage were inferred as 
features which drive the BCR status and, hence, were 
selected for further analysis..

Performance of the analytes with and without clinical 
parameters
Analysis of the four-analytes panel yielded an AUC of 
0.78 and an OR of 6.56 (P ≤ 0.001) in differentiating 
patients with BCR event from non-events (Fig. 4a). Path-
ological T stage alone provided an AUC of 0.67 and an 
OR of 0.21 (P = 0.43) and Gleason score yielded an AUC 
of 0.69 and OR of 2.68 (P = 0.27), neither were statisti-
cally significant (data not shown). However, combining 
these two pathological variables with the analyte panel 
resulted in a AUC of 0.89, PPV of 0.3, NPV of 0.96, and 
an OR of 12.47 (P ≤ 0.001), thus demonstrating a robust 
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Fig. 2  Volcano plots depict the top analytes from serum samples of prostate cancer patients with BCR, run through different mass spectrometry 
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performance of the panel in combination with clinical 
pathological features (Fig. 4b).

Validating the performance of the analytes in the training 
and test cohort
The findings were validated by creating a training set 
with BCR (N = 50) vs Non-BCR (N = 217) and test-
ing set BCR (N = 22) vs Non-BCR (N = 93) within the 
cohort to maintain proportional distribution in the 
event status (Additional file  1: Table  S1) taking into 
account similar variables (Age at RP, Race). In both the 
training and testing set cohort, the Pathological T stage 
and Gleason score were consistent and significantly 
different across event status (Table  2). We further 
validated the performance for each of the individual 
markers TNC, Apo A-IV, 1-MA and PA18:0-22:0, with 
cut-points optimized for a highest NPV, with speci-
ficity > 30% (Table  3), in both the training and testing 
sets for prediction of disease progression. The AUC 

values demonstrated moderate sensitivity with high 
NPVs, having a similar trend in both the sets. A series 
of multivariable Cox proportional hazards model were 
examined to consider varying restriction or the mini-
mum follow-up time for non-events. Models for 1-year, 
3-year and 5-year follow-up were compared to the 
overall model and findings were consistent, therefore, 
the overall model was presented. The multivariable 
Cox proportional hazards analysis (proportional haz-
ards assumption, tested and met) for the overall model 
revealed a significant association between Pathological 
T stage (HR = 2.81, P = 0.001), Pathological Gleason 
sum (HR = 5.57, P = 0.001), Apo A-IV (High vs low) 
(HR = 2.21, P 0.017), 1-MA (high vs low) (HR = 2.11, 
P = 0.017), PA-18:0-22:0 (Low vs high) (HR = 2.49, 
P = 0.006) in predicting the BCR free survival (Table 4). 
While TNC (HR = 0.99, P = 0.966) was not predictive 
of BCR, it was a robust predictor for the unadjusted 
metastasis-free survival. Adjusted analysis was not 
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performed for distant metastasis- free survival due to a 
small number of metastatic events.

KM survival curve analysis for the dichotomized 
marker groups for BCR-free survival demonstrated 
association between each marker independently, and 
poor survival in patients with low serum PA-18:0-22:0 

(P = 0.0005) (Additional file  1: Fig. S1). In KM analysis 
for metastasis-free survival both TNC (P = 0.0227) and 
PA-18:0-22:0 (P = 0.0450) were significant predictors for 
poor outcome (Additional file  1: Fig. S2). Interestingly, 
while higher levels of serum TNC, 1-MA and APO-AIV 
signified the directionality for increased probability of 
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Table 2  Distributions of  clinico-pathological variables between  non-progression and  progression groups 
among training and testing cohorts

The statistically significant P values (P < 0.05) are given in italics

RP radical prostatectomy

Variable Training (N = 267) Testing (N = 115)

Non-BCR BCR P value Non-BCR BCR P value

N 217 50 93 22

Age at RP (years) 58.1 (8.3) 59.2 (8.3) 57.3 (8.4) 59.9 (8.6)

 Mean (SD) 58.8 (40.7–76.1) 61.2 (42.6–70.6) 0.271 57.5 (40.6–76.9) 62.1 (41.4–70.7) 0.081

Race—N (%)

 CA & Other 179 (82.5) 38 (17.5) 79 (81.4) 18 (18.6)

 AA 38 (76.0) 12 (24.0) 14 (77.8) 4 (22.2)

Pathological T stage—N (%)

 pT2 164 (89.6) 19 (10.4) 68 (89.5) 8 (10.5)

 pT3–4 43 (62.3) 26 (37.7) < 0.001 19 (67.9) 9 (32.1) 0.008

Gleason sum—N (%)

 3 + 3 24 (90.8) 12 (9.2) 60 (90.9) 6 (9.1)

 3 + 4 65 (89.0) 8 (11.0) 26 (81.2) 6 (18.8)

 4 + 3/8 − 10 24 (53.3) 21 (46.7) < 0.001 7 (46.7) 8 (53.3) < 0.001

Surgical margin—N (%)

 Negative 189 (84.8) 34 (15.2) 74 (84.1) 14 (15.9)

 Positive 27 (64.3) 15 (35.7) 0.001 19 (70.4) 8 (29.6) 0.114
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the disease progression, lower levels of PA-18:0-22:0 
complemented for an increased probability of the disease 
progression. Taken together, the 4 analytes in combina-
tion with the two pathological parameters (Pathological 
T stage and Gleason score), robustly enhanced the sensi-
tivity of the panel to detect the BCR in our prostate can-
cer cohort.

Discussion
To date, there have been numerous biomarker panels 
identified for early prognosis of prostate cancer. How-
ever, all had some limitations to reach extensive use in 
clinical practices. The serum PSA test remains as the gold 
standard for monitoring BCR in patients with primary 
treatment, suggesting a critical unmet need of biomark-
ers for early risk stratification in patients with RP. In this 
regard, a blood-based assay that is more accurate, eco-
nomical, and can be performed through standard clini-
cal procedures and could be a major advantage in clinical 
management.

The primary aim of this study was to identify analytes 
in pre-surgical sera which can serve as predictors of dis-
ease progression in patients with prostate cancer, with 
adjustment for known pathological factors. Towards 
this goal, a panel of four serum analytes was identified, 
which in combination with clinical features could serve 
as early indicators, thus differentiating patients with high 

risk of BCR from those without risk. We highlight here a 
combination of four analytes (TNC, ApoA-IV, 1-MA or 
PA18:0-22:0) with pathologic Gleason score and tumor 
stage, for prostate cancer prognosis. The strength of our 
serum multi-analyte panel is the robust performance in 
predicting BCR-free survival (Negative Predictive Value). 
A possible reason of the complementary nature of ana-
lytes in this panel is the involvement of these analytes in 
distinct cancer associated pathways. TNC, Apo A-IV and 
1-MA have been implicated in aggressive forms of can-
cers [23–28].

Tenascin C is an extracellular matrix protein with 
major function in metastasis, initiation [29, 30] and pro-
gression [31]. The prognostic value of TNC has been 
reported for non-small cell lung carcinoma [24], esopha-
geal squamous cell carcinoma [28] and colon cancer [32, 
33]. Few studies linked TNC to poor prognosis of pros-
tate cancer [34, 35] which supported the appreciable 
sensitivity of serum TNC for metastasis, in the present 
study. Association of apolipoproteins with disease pro-
gression was less understood, though few studies dem-
onstrate their association with tumorigenesis and poor 
prognosis [23, 36, 37]. Apolipoprotein A-IV, was sug-
gested as a marker for ovarian cancer [25, 38] and was 
highlighted in context of detecting cancer in prostate, 
lung, pancreatic, uterus and bladder, but had not been 
assessed for use as a prognostic biomarker [39]. Simi-
larly, 1-methyladenosine is among one of the nucleoside 
metabolites that was linked to prognosis of breast cancer 
[40], leukemia and lymphoma [41], genito-urinary can-
cer, colon, lung and gastric cancers [42] and also an indi-
cator of increased systemic RNA turnover [26]. Thus, the 
unbiased selection of these analytes in our panel indeed 
reflects the cancer progression-associated biology in the 
patient serum. PA18:0–22:0 was found to be an analyte 
of unknown characteristics, though it complemented the 
biomarker panel significantly.

The major limitation of this prognostic serum bio-
marker discovery study is the small number of prostate 
cancer metastatic events in the cohort. Although BCR 
may prompt therapeutic intervention, metastasis is a 
more precisely defined endpoint for prognostication. 

Table 3  Performance of each marker in predicting disease progression among training and testing cohorts

AUC​ area under curve, NPV negative predictive value, PPV positive predictive value, SPC specificity

Marker Training Testing

AUC​ Cut point NPV Sens SPC PPV NPV Sens SPC PPV

PA-18:0–22:0 0.64 0.11 0.89 0.80 0.39 0.23 0.91 0.77 0.54 0.28

Apolipoprotein A-IV 0.49 − 0.21 0.85 0.72 0.35 0.20 0.85 0.77 0.30 0.21

Tenascin C 0.51 − 0.17 0.82 0.30 0.41 0.19 0.81 0.50 0.49 0.19

1-Methyladenosine 0.59 3.98 0.87 0.76 0.37 0.22 0.80 0.59 0.38 0.18

Table 4  Multivariable Cox proportional hazard model 
predicting BCR by adding 4 markers to SOC

The statistically significant P values (P < 0.05) are given in italics

SOC standard of care, HR hazards ratio, CI confidence interval

Variable HR 95% CI P value

Pathological T stage (T3 vs T2) 2.81 1.49–5.30 0.001

Gleason sum (4 + 3/8 − 10 vs 3 + 3/3 + 4) 5.57 3.25–9.56 < 0.001

Surgical margin (Pos vs neg) 1.27 0.62–2.57 0.511

PA-18:0–22:0 (Low vs high) 2.49 1.30–4.79 0.006

Apolipoprotein A-IV (High vs low) 2.21 1.15–4.24 0.017

Tenascin C (High vs low) 0.99 0.56–1.73 0.966

1-Methyladenosine (high vs low) 2.11 1.14–3.92 0.017
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Another limitation is that serum samples in this study 
were collected right before radical-prostatectomy. We 
employed this strategy to increase the odds of prog-
nostic marker discovery. However, assessment of the 
marker panel in pre- and post-diagnostic settings is 
warranted. Our findings highlighted multi-analyte dis-
covery in racially diverse populations of AA and CA 
patients with a healthcare system of equal access. This 
is the first study from a cohort that had been longitu-
dinally followed up for approximately two decades, and 
that report a multianalyte biomarkers for prognosis of 
prostate cancer using multi-OMICS and Bayesian net-
works. The serum-based four analyte marker and two 
clinical feature panel defined in this study has promis-
ing potential in prognosing progression-free survival 
and provides new strategy to complement early stages 
of prostate cancer disease management.

Conclusion
A serum-based four analyte markers panel (TNC, 1-MA, 
APOA-IV and PA18:0-22:0) complemented with Gleason 
score and tumor stage, can be used to predict the recur-
rence of disease post-surgery and modify treatment strat-
egies to improve the survival of prostate cancer patients.
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