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The pathogenesis of renal injury 
and treatment in light chain deposition disease
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Abstract 

Light chain deposition disease (LCDD) is a rare clinical disorder. The deposition of light chain immunoglobulins mainly 
affects the kidneys, which have different characteristics than other tissues. To date, the therapeutic approach for the 
treatment of LCDD has no evidence-based consensus, and clinical experience of reported cases guides current dis-
ease management strategies. The present systematic review investigates and summarizes the pathological mecha-
nisms of renal injury and the subsequent treatments for LCDD.
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Background
Monoclonal immunoglobulin deposition disease (MIDD) 
is a multi-system disease characterized by the deposition 
of monoclonal Ig molecules in various organs [1, 2]. Light 
chain deposition disease (LCDD) is the most common 
form of MIDD diagnosed, and it is a systemic disease. 
Many organs are affected by the deposition of monotype 
immunoglobulin light chain (LCs), but the kidneys are 
always affected [3]. Primary plasma cell abnormalities or 
other lymphoproliferative diseases are usually associated 
with the pathology of LCDD. However, morphological 
renal lesions (i.e., the presence of nodular sclerosis and 
the distribution of deposits) do not seem to correlate 
with patient survival in LCDD [4]. Because free light 
chains (FLCs) are rapidly cleared from the serum and are 
largely filtered by the kidneys, this organ is a prominent 
target for LC deposition and is often damaged. Clinically, 
LCDD is characterized by prominent mesangial nod-
ules, a thickening of the peripheral basement membrane, 
and the extensive deposition of monoclonal LCs. Renal 
involvement in LCDD presents as renal lesions, hyper-
tension, microhematuria, proteinuria and, more rarely, 
renal tubular acidosis. Extrarenal lesions are present in 

35% of patients and can cause clinical symptoms, and 
extrarenal LC deposition has a clear, independent effect 
on patient survival [4].

LCDD is relatively rare and it is frequently misdi-
agnosed as a protein disease. Up to 50% of patients are 
diagnosed with LCDD secondary to multiple myeloma 
or other lymphoproliferative diseases. The diagnosis of 
LCDD can be made with a kidney biopsy. The character-
istic morphological findings in LCDD are nodular glo-
merulosclerosis and nonfibrillar electron-dense deposits 
on the glomerular or tubular basement membrane, as 
seen with electron microscopy (EM). To date, there is no 
unified standard for the treatment of primary LCDD.

The pathological manifestations of LCDD
Light microscopy (LM)
In total, 30–100% of LCDD patients in the United States 
and France are characterized by nodular glomeruloscle-
rosis [5, 6]. Under LM, LCDD shows the glomeruli with 
nodular mesangial expansion, a thickening and wrinkling 
of the glomerular basement membrane (GBM), and glo-
merular peripheral capillary walls with focal irregular 
thickening. Periodic acid–Schiff (PAS) staining is positive 
in LCs. The deposits in LCDD are neither fibrillar nor 
stained by Congo red. Milder forms of LCDD are char-
acterized by moderately thickened basement membrane 
and an increased mesangial matrix and cells. Glomeru-
lar lesions require ultrastructural examination when not 
detected by LM.
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Immunofluorescence (IF)
IF examination of the kidney has been a key step in the 
diagnosis of LCDD. Along tubular basement mem-
branes, monotypic LCs (mostly κ) are found in kidney 
biopsy specimens. The diagnosis of LCDD requires this 
evaluation. IF can reveal staining of LCs, either kappa 
or lambda, along the mesangial nodules, peritubular 
regions, vessels, interstitium, and GBM. However, the 
staining of IgG, IgA, IgM, and C3 is negative.

Electron microscopy (EM)
Electron-dense, nonfibrillar, amorphous deposits in 
the GBM and tubular basement membranes are seen 
under EM [6]. Subendothelial linear punctate to pow-
dery deposits are distributed in the capillary walls, 
while podocyte foot processes are largely preserved. EM 
depicts these deposits as dark granular electron densities. 
Under EM, dense granular deposits should be present 
in the mesangial area and subendothelial space without 
fibrillar structures. However, 8% of patients with LCDD 
have 8–20 nm fibrillar structures [7]. The fibrillar struc-
ture gradually replaces the normal matrix, leading to the 
destruction of the glomerular architecture [8–10]. The 
morphological, immunofluorescence staining and ultras-
tructural characteristics are summarized in Table 1.

The pathogenesis of renal injury in LCDD
Glomerular-filtered FLCs are reabsorbed in the mesan-
gium or proximal tubules. Mesangial cells (MCs) secrete 
extracellular matrix (ECM), mediators and enzymes 
such as matrix metalloproteinases (MMPs) to support 
and maintain the glomerulus [11–18]. The increasing 
deposition of ECM proteins and monotypic LCs results 
in mesangial nodularity within the glomerulus. MCs 
are critical in the pathogenesis of glomerulosclerosis. 

Figure  1 summarizes the interactions of MCs with glo-
merulopathic FLCs.

FLCs bind to putative receptors residing in cave-
olae present on the plasma membrane of MCs to initi-
ate intracellular signalling [19, 20]. This signalling leads 
to the overexpression of the receptor [20]. The majority 
of monoclonal LCs in LCDD are κ, specifically the VκIV 
subgroup [2, 21–23]. The complementarity-determining 
region (CDR) of LCDD-associated FLCs has unusual 
hydrophobic amino acids (AA) substitutions [24], and 
κ-LCs in LCDD have an exposed b-edge that is part of the 
antigen binding site in the CDR2 loop, whereas λ-LCs do 
not [25]. This exposed edge leads to spontaneous aggre-
gation of the k-LCs into oligomers, which may eventually 
form granular deposits [25]. The VκIV subgroup, which 
is frequently overrepresented in LCDD, has a particu-
larly long CDR1 loop [26]. The CDR1 loop may promote 
conformational changes or the aggregation of the FLCs 
through its multiple hydrophobic residues. LCDD FLCs 
inhibit the release of MMP-7 from MCs [27]. MCs in 
LCDD show a significant decrease in the expression of 
MMP-7, which degrades tenascin-C [28], resulting in 
increased ECM.

Ribosomal S6 kinase (RSK) can phosphorylate a vari-
ety of transcription factors, including c-fos, promoting 
nuclear signal transduction [29]. C-fos acts via platelet-
derived growth factor (PDGF)-β to further increase 
interactions with FLCs [19]. Nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and c-fos are 
induced to migrate to the nucleus by LCDD-associated 
FLCs [19]. The activation of c-fos results in the transcrip-
tion of PDGF-β. PDGF-β mediates effects on MCs when 
exposed to glomerular LCs [30]. PDGF induces human 
fibroblast cell membrane wrinkling [31]. Previous stud-
ies have shown that the activation of the transcription 
factor NF-κB plays an important role in interleukin-1 

Table 1  Results of renal histopathological examination in patients with LCDD

LC light chain

Light microscopy (LM) Immuno-fluorescence (IF) Electron microscopy (EM)

Glomerular Mild to moderate nodular mesangial 
expansion

Linear, either kappa or lambda, LC 
restricted staining of glomerular, nega-
tive for IgG, IgA, IgM, and C3

Dark powdery electron dense deposits 
along the inner aspects of glomerular 
basement membranes, or nodular 
glomerulosclerosis with abundant 
powdery to vaguely organized electron 
dense deposits in the expanded and 
condensed mesangium

Tubular Thickening and wrinkling of the tubular 
basement membranes

Monotypic LC (mostly κ) fixation along 
tubular basement membranes, negative 
for IgG, IgA, IgM, and C3

Linear punctate to powdery deposits 
along tubular basement membranes

The small arterioles Focal irregular thickening of the capillary 
walls

Strong LC staining along the peritubular 
capillary, negative for IgG, IgA, IgM, 
and C3

Diffuse subendothelial linear punctate 
to powdery deposits with mostly 
preserved the capillary walls
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(IL-1)-induced monocyte chemoattractant protein-1 
(MCP-1) expression [29, 32]. Rovin et  al. [33] proposed 
that phosphotyrosine kinase signalling mechanism could 
stimulate NF-κB, but this is not generally accepted [34]. 
NF-κB translocates into the nucleus and binds to specific 
DNA sequences on NF-κB response genes, such as MCP-
1, regulated upon activation normal T-expressed and 
secreted (RANTES), and ICAM-1, resulting in enhanced 
transcription and generation [19]. Kon and colleagues 
have shown a functional interaction between NF-κb and 
SMAD, two early-intermediate transcription factors, to 
activate COL7A1 expression, an ECM-related gene [35].

When MCs are exposed to FLCs in LCDD, transform-
ing growth factor (TGF)-β production is increased. Then, 
TGF-β inhibits mesangial proliferation and increases 
ECM secretion, including tenascin [36].

Cast formation can be seen in as many as one-third 
of LCDD cases [4]. Tubulointerstitial inflammation and 
fibrosis are the main features of cast formation, with 
hard and often fractured protein deposits in distal renal 
tubules (casts), composed of uromodulin and FLCs [37, 
38]. Moreover, glomerular capillary walls have deposits 
of FLCs.

Current treatments and outlook for novel therapies
The natural course of LCDD is associated with a very 
poor prognosis, and serum creatinine levels are higher 
than 1.2  mg/dL (average 3.9  mg/dL) at the diagno-
sis of LCDD in 97% of patients at the Mayo Clinic; 
39% of patients developed end-stage renal failure over 
34  months of observation, and 32% of patients died at 
a mean observation duration of 18  months [21]. The 

TGFB
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{
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Fig. 1  The interaction between light chain deposition disease (LCDD) free light chain (FLCs) and mesangial cells (MCs): FLCs enter MCs through 
a putative receptor. LCDD FLCs are processed in endosomes. The processed FLCs are deposited on the membrane of mesangial cells as granular 
deposits. Meanwhile, transforming growth factor (TGF)-β production is increased and matrix metalloproteinase (MMP)-7 is decreased, resulting in 
an increase in ECM and tenascin. Furthermore, TGF-β leads to apoptosis and the late deletion of cells. Nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB), as a dimer of P50 and p65 subunits, usually exists in the cytoplasm of MCs, binding to its inhibitor protein, IκB. When LCs 
stimulate MCs, IκB is released from the dimer, resulting in NF-κB migration to the nucleus. NF-κB binds to specific DNA (MCP-1, RANTES, ICAM-1), 
leading to inflammatory cell infiltration and an increase MCP-1. The functional interaction between NF-κB and SMAD leads to the activation 
of COL7A1 expression, resulting in an increase in ECM. Ribosomal S6 kinase (RSK) phosphorylates c-fos. Then the activation of c-fos results in 
the transcription of PDGF-β. PDGF induces MCs to be exposed to monoclonal LC, and cell surface wrinkling increases the cell surface area and 
promotes MC early proliferation. LCDD Light chain deposition disease, FLC Free light chain, ECM Extracellular matrix, TGF-β Transforming growth 
factor-β, MMP-7 Matrix metalloproteinases-7, RSK Ribosomal S6 kinase, NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells, PDGF 
Platelet-derived growth factor, MCP Monocyte chemoattractant protein, RANTES Regulated upon activation normal T-expressed and secreted, 
ICAM-1 Intercellular adhesion molecule-1
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combination of multiple myeloma (RR = 2.75) and extra-
renal deposition (RR = 2.24) are prognostic risk factors 
[39].

Currently, first-line combination chemotherapy and/
or autologous stem cell transplantation (ASCT) are 
commonly used treatments [40–42]. However, thalido-
mide, dexamethasone, bortezomib, lenalidomide and 
other immunomodulators have not been widely recog-
nized in LCDD, and further studies, especially prospec-
tive studies, are needed [2]. Drugs used to treat multiple 
myeloma are recommended when LCDD patients also 
have multiple myeloma. In patients with LCDD that is 
not accompanied by multiple myeloma, haematopoietic 
stem cell transplantation (HSCT) and chemotherapy 
with thalidomide, dexamethasone, bortezomib, lena-
lidomide, and alkylating drugs are recommended [2]. 
The proteasome inhibitor bortezomib, which directly 
interferes with and inhibits NF-κB, is a promising drug 
for reducing the formation of glomerular nodular lesions 
[43]. Peripheral neuropathy may be induced by both tha-
lidomide and bortezomib because peripheral neuropathy 
symptoms improved after the end of treatment. It is very 
important to use adequate drugs to reduce the levels 
of free light chain. Apart from age, the degree of renal 
insufficiency at presentation, extrarenal LC deposition 
and underlying haematopoietic disorders affect patient 
outcomes [4].

Characteristics and responses to therapy in the 
included studies are shown in Table  2. A case report 
was published of a patient with LCDD who responded 
to MEVP (melphalan + cyclophosphamide + vincris-
tine + prednisolone) chemotherapy, with no nodular 
glomerular lesions 7 years after MEVP treatment [44]. A 
complete haematological response, marked with a reduc-
tion in proteinuria, and improved renal function were 
observed in another patient with idiopathic LCDD that 
was treated with vincristine + dexamethasone (VD) [45].

ASCT is still an effective treatment regimen for LCDD 
that achieves long-term haematological responses [23, 
40, 46]. Lorenz et  al. [46] described the outcomes of 6 
patients who underwent ASCT, and kidney function and 
renal response were significantly improved in 4 of the 6 
patients with LCDD [46].

After intensive chemotherapy, ASCT can completely 
alleviate the dysplasia of plasma cells in LCDD [41]. 
One patient developed uraemia after a median follow-
up of 44  months, but none of the 5 patients who had 
been treated with chemotherapy + ASCT died [4]. Bort-
ezomib-based induction, followed by a combination of 
HDM (high-dose melphalan) and ASCT, has been used in 
several studies. In 2009, bortezomib combined with dex-
amethasone was used to treat 4 patients with LCDD [47]. 

Complete haematological responses were achieved in 
two patients, with serum-free LCs reduced by > 50% and 
improved renal function in another two patients. Three 
patients who underwent HDM + ASCT had complete 
haematological responses and only microalbuminuria. 
Non-HDM patients had proteinuria recurrence after 2 
months but no haematological recurrence. In 2012, Tovar 
et al. [24] treated 3 patients with LCDD with bortezomib 
induction followed by HDM-conditioned ASCT, and 2 
of the 3 patients showed rapid and significant improve-
ment in renal function, but the remaining patient still had 
proteinuria residue. These reports show that the combi-
nation of bortezomib and dexamethasone followed by 
HDM-conditioned ASCT is a well-tolerated and effective 
treatment strategy for LCDD patients. Therefore, ASCT 
should be used as an intensifying therapy to achieve a 
response to chemotherapy induction that is tolerable. In 
addition, a pregnant patient with LCDD who responded 
to chemotherapy and ASCT remained in clinical remis-
sion with normal serum electrophoresis results at her 
1-year follow-up [48].

Dialysis is worth performing in uremic LCDD patients. 
Uraemia per se does not adversely impact survival, and 
renal replacement therapy (RRT) is beneficial for patients 
with LCDD who have achieved uraemic status. Two types 
of dialysis (peritoneal dialysis and haemodialysis) have 
similar chances of survival [4].

For some LCDD patients, renal transplantation (RTX) 
is a good choice after ASCT [49, 50]. RTX should not 
be considered if there is persistent disease or no previ-
ous treatment to control FLC production. Otherwise, 
the transplanted kidney will suffer injuries similar to the 
patient’s original kidney [23, 51, 52]. It has been reported 
that the recurrence rate of LCDD is more than 50% 
within 4  years after kidney transplantation and is often 
associated with transplant failure [53, 54]. Leung et  al. 
described that LCDD recurred in 5 of 7 kidney trans-
plants [54]. The earliest recurrence of LCDD after RTX 
was 2.9  months, and the median recurrence time was 
33.3 months. Moreover, there was a case report of a triple 
approach that combined ASCT, RRT, and nonmyeloabla-
tive ASCT in a young woman with κ-LCDD. She was in 
complete remission for over 9 years, and no immunosup-
pressive treatment was required [55].

Conclusions
The present article summarizes that immunofluorescence 
examination of the kidney is necessary for diagnosis and 
that MCs are critical in the pathogenesis of glomerulo-
sclerosis. Renal transplantation is a good choice when 
free light chains production is under control.
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