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Microbiome–metabolome reveals 
the contribution of gut–kidney axis on kidney 
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Abstract 

Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which 
may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagen‑
omic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the 
mechanisms underlying gut microbiome–host interactions in healthy or diseased state remain elusive and their 
elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier 
dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota altera‑
tion, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes 
of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and 
kidney diseases (the gut–kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney 
injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and sym‑
biotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the 
treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in 
kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases 
and complications.
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Background
The microbiota in healthy human intestines is a com-
plex community of more than 100 trillion microbial cells 
among which are more than 1000 different species [1]. 
In the healthy state, these microbes live in a commen-
sal relationship with their host, modulating the immune 
system, protecting against pathogens, and regulating 
endogenous metabolism of carbohydrates and lipids, 
thus contributing to the nutritional balance [2]. The 
alterations in the microbiome are increasingly linked to 

the development of various diseases such as obesity, can-
cer, diabetes, inflammatory bowel disease, cardiovascular 
disease, and kidney disease [3]. Figure 1 presents the dys-
biosis of gut microbiome on the influence of various dis-
eases. Dysbiosis in gut microbiota has been implicated in 
the progression of various kidney diseases [4–10]. In fact, 
dysbiosis is often observed in uremic states characteristic 
of retention of uremic toxins, most of which derive from 
the imbalanced fermentation of nitrogen metabolites. 
These uremic toxins contribute to the progression and 
complications of CKD [11–15].

This review focuses on the pathogenic association 
between gut microbiota and kidney diseases (the gut–
kidney axis), touching on CKD, hemodialysis, peritoneal 
dialysis, immunoglobulin A nephropathy (IgAN), neph-
rolithiasis, hypertension and acute kidney injury (AKI) 
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patients. As we reflect on the relevant studies and sum-
marize the accumulating findings, we come to a notation 
that prebiotics and probiotics as well as their combina-
tion are important adjuvant therapies for CKD treatment. 
Dysbiotic gut microbiota provides a potential therapeutic 
target for preventing or harnessing complications.

Application of gut microbiome–metabolome 
approaches to the study of gut microbiota
Establishment of advanced next-generation sequencing 
technologies, including metagenomics and 16S riboso-
mal RNA (rRNA) sequence analysis has facilitated the 
analysis of a much larger number of gut microorgan-
isms. Both approaches have their own unique advan-
tages. Metagenomic sequencing is aimed at determining 
“what they can do” by random sequencing all extracted 
DNA in the sample [16], whereas the 16S rRNA analysis 
was more useful in finding “who’s there?” by sequencing 
the conserved 16S rRNA gene that present in all bacte-
ria [17]. Functional analysis by shotgun metagenomics is 
highly dependent on our underlying knowledge of how 
gene sequences code for enzymatic or other functions, 

and metabolic databases such as KEGG and MetaCyc 
are great resources in this respect. Figure 2 summarizes 
some methodologies used to the study of microbiome. 
Despite some advances in microbiome-sequencing work-
flows, gut microbiome research is faced with many chal-
lenges. The limited understanding of microbial function 
in disease causality severely impedes generating hypoth-
eses regarding complex mechanistic links between gut 
microbiome and diseases. The metabolomics could pro-
vide some important information in gut microbiome.

Metabolomics was defined as “the quantitative meas-
urement of the dynamic multiparametric metabolic 
response of living organisms to pathophysiological stim-
ulation or genetic modifications” [18–21]. As an impor-
tant tool for understanding function of gut microbiota, 
metabolomics has emerged as a systematic approach to 
low-molecular-weight endogenous metabolites and can 
examine their changes following disease, toxic exposure, 
or genetic variation [22–24]. Proton nuclear magnetic 
resonance spectroscopy and mass spectrometry-based 
approach are major analytical tools for metabolomic 
research [24, 25]. As a powerful analytical platform, 

Fig. 1  The contribution of the dysbiosis of gut microbiome on various diseases. Gut microbiome alterations and the leaky gut epithelial barrier are 
associated with chronic kidney disease, heart disease, obesity, non-alcoholic fatty acid disease, rheumatoid arthritis and depression



Page 3 of 11Chen et al. J Transl Med            (2019) 17:5 

recently, metabolomics has been widely applied to facili-
tate various diseases’ diagnosis and prognosis, biomarker 
discovery, pharmaceutical development, and drug effi-
cacy/toxicity evaluation [26–31]. Metabolomics has been 
widely used in studies of various kidney diseases [18–20]. 
Nevertheless, the application of metabolomics on gut 
microbiome-influenced samples from kidney diseases is 
rare. Such study is essential for understanding the links 
between gut microbiota and kidney diseases.

Overall, the infancy in both gut microbiome and 
metabolome data calls for the need to further our under-
standing mechanisms and phenotypes in links between 
gut microbiota and kidney diseases through multi-omics 
research.

The crosstalk underlying gut–kidney axis
Gut microbiome as a potential source of uremic toxins
Uremic toxins are traditionally categorized based on the 
physicochemical characteristics affecting their clear-
ance during dialysis. These contained low water-soluble 
molecules (molecular weight < 500  Da), larger middle 
molecules (molecular weight > 500  Da), and protein-
bound molecules. Uremic toxins also can be classified 
based on their site of origin: endogenous (mammalian 
metabolism), exogenous (diet) or microbial. Currently, 
known gut-derived uremic toxins include indoxyl sul-
phate, p-cresyl sulphate, indole-3 acetic acid, TMAO, 
and phenylacetylglutamine; these are found to associate 

Fig. 2  Work flows for 16S-based and metagenomics approaches. Microbial community samples contain various species of bacteria and 
other microorganisms, here indicated by different colors and shapes. After total DNA extraction, the community composition was detected 
by amplifying and sequencd the 16S rRNA gene. Highly similar sequences are grouped into OTUs, which were labeled by comparison with 
databases of recognized organisms. OTUs provided the presence/absence, abundance, or phylogenetic diversity. The total metagenomic DNA 
may be sequenced and compared with function-oriented databases to analyze biomolecular and metabolic functions present in the community. 
Additionally, sequenced community DNA can be compared with reference genomes. These can identify microbial sequence variants and 
polymorphisms and provides an alternative method of determining the presence and abundance of specific organisms
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with cardiovascular diseases, mortality in CKD, and 
other end-organ toxicity.

Indoxyl sulphate and indole-3 acetic acid are produced 
by dietary tryptophan metabolism [32, 33]. Tryptophan 
is metabolized into indole by tryptophanase of intestinal 
bacteria such as Escherichia coli; after intestinal absorp-
tion, indole is sulphated to indoxyl sulphate in the liver. 
Indoxyl sulphate is normally excreted in urine; it can-
not be efficiently cleaned by conventional hemodialysis 
because of its high binding affinity for albumin [34].

p-Cresol/p-cresyl sulphate is produced from phenylala-
nine and tyrosine catabolism by anaerobic gut bacteria. 
p-Cresol is conjugated by intestinal microbes to p-cresyl 
sulphate and p-cresyl glucuronide. p-Cresyl sulphate is 
a toxin due to its high circulated concentration and bio-
chemical impact in the body [35]. p-Cresol is conjugated 
also in the liver as well as it can compete with xenobiotics 
that have either similar structure or moiety in their skele-
tal structure, which in turn can affect their corresponding 
pharmacokinetic/pharmacodynamic profiles (including 
toxicity/adverse effects) [25].

TMAO is a gut-derived toxic metabolite from bacterial 
metabolism of quaternary amines that include betaine, 
l-carnitine or phosphatidylcholine that release trimeth-
ylamine [36]. Trimethylamine is absorbed and converted 
to TMAO by flavin monooxygenase enzymes in the 
liver. Unlike the protein-bound toxic metabolites such 
as indoxyl sulphate and p-cresyl sulphate, TMAO can be 
efficiently removed by dialysis.

Phenylacetylglutamine is another colonic microbial 
product, produced from phenylalanine fermentation. 
Microbes metabolize phenylalanine to phenylacetic acid, 
which undergoes glutamine conjugation to form pheny-
lacetylglutamine. Like TMAO, it is dialyzable. The ure-
mic state has been demonstrated to induce changes in 
gut microbiota. Despite no significant differences in total 
amount of microorganisms, an erosion of the aerobic 
bacteria by the anaerobic bacteria (especially Lactobacil-
lus and Bifidobacterium) has been described [37, 38]. The 
increase in anaerobic bacteria promoted the degradation 
of nitrogen compounds in deteriorative uremic state [39].

Dysbiosis of gut microbiota and the dysfunction 
of gut‑epithelial barrier
The intestinal epithelium is a single layer of columnar 
epithelial cells that separates intestinal lumen from the 
underlying lamina propria [40]. It plays an important 
role in nutrient absorption, and is a natural barrier that 
prevents or inhibits systemic translocation of patho-
gens and antigens [40]. These cells are bound together 
by tight junctions, forming a multifunctional complex 
as a seal between adjacent epithelial cells [40]. Probiotic 
bacteria improve intestinal epithelial barrier function in 

both animals and human [41]. Treating human epithelial 
cell monolayers with metabolites from Bifidobacterium 
infantis resulted in increase of tight junction proteins 
ZO-1 and occludin yet decrease of claudin-2, henceforth 
the selectivity of tight junction was indicated [42]. More-
over, commensal bacteria help maintain the intestinal 
epithelial barrier by suppressing intestinal inflammation 
[43].

First, urea is hydrolysed by urease to yield ammonia 
and carbamate that decomposes spontaneously to yield 
a second molecule of ammonia and bicarbonate. Ammo-
nia then undergoes an acid–base reaction with water 
to yield ammonium hydroxide. Blood urea diffuses into 
the gut lumen and was metabolized by bacteria-derived 
urease, producing NH3 that is hydrolyzed into NH4OH, 
which erodes the epithelial barrier [38, 44]. This further 
stimulated influx of leukocytes, which evoked the second 
mechanism whereby local inflammation and cytokine 
production induced retraction and endocytosis of the 
transcellular tight junction proteins (claudins and occlu-
din) [45]. As mentioned above, SCFA from gut bacteria 
was an important nutrient source for enterocytes, and 
theoretically a shift in the bacterial population jeopard-
ized the health of the epithelial barrier.

Gut microbiome in patients with kidney diseases
Kidney diseases were associated with intestinal wall 
congestion, intestinal wall edema, slow colonic transit, 
metabolic acidosis, frequent use of antibiotics, decreased 
consumption of dietary fibers, and oral intake of iron, 
which impact intestinal tight junctions, lead to increased 
intestinal permeability, and render translocation of 
bacterial metabolic products across the intestinal bar-
rier [46–49]. As a consequence, an immune response is 
evoked [46]. The immune response explains the systemic 
inflammation that contributes to deteriorating kidney 
disease [3, 50]. Moreover, the increased gastrointestinal 
urea secretion resulted in the dysbiosis of gut microbi-
ota and increased toxic ammonia formation. Addition-
ally, urea supplementation in drinking water contributed 
to alteration in bacterial gut microbiota [51]. Figure  3 
presented the contribution of gut–kidney axis on renal 
fibrosis through the dysbiosis of gut microbiota and dys-
regulation of endogenous metabolites.

Gut microbiota in CKD
Increasing evidence suggests that the gut microbiome 
was altered in patients with CKD. Approximately, 190 
microbial operational taxonomic units (OTU) were sig-
nificantly different in abundance when the gut microbi-
ome of patients with end-stage renal disease (ESRD) was 
compared with healthy controls [52]. The lower numbers 
of Lactobacillaceae and Prevotellaceae families (both are 
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considered normal colonic microbiota) and 100 times 
higher Enterobacteria and Enterococci species (which are 
normally present in lower proportion) were determined 
in CKD patients [52]. The quantity of aerobic bacteria, 
including the Enterococci and Enterobacteria species, 
was higher in patients with ESRD than in healthy con-
trols [53]. Dysbiosis of gut microbiota in patients with 
CKD contributed to elevated uremic toxin concentration 
which in turn promoted CKD progression [54, 55]. Gut 
microbiota imbalance in CKD occurred both quantita-
tively and qualitatively, is frequently accompanied with 
increase in Lachnospiraceae, Enterobacteriaceae and 
certain Ruminococcaceae, and decrease in some Prevotel-
laceae, Bacteroidaceae and particular Lactobacillus and 
Bifidobacterium species [56]. The absolute quantity of 
total bacteria was significantly reduced in ESRD patients. 
Prevotella was prevalent in healthy controls whereas Bac-
teroides was enriched in ESRD patients. The butyrate 
producing bacteria, including Roseburia, Faecalibacte-
rium, Clostridium, Coprococcus, and Prevotella, were 
reduced in ESRD patients [57].

Our studies further indicated that the dysregula-
tions of oxidative stress and inflammation were associ-
ated with the perturbations of serum amino acid, lipid, 
purine and lipid metabolisms in CKD [58, 59], which 
are associated with the metabolism of gut microbiota. 
Additionally, recent clinical studies have shown that 
blood triglycerides and HDL-cholesterol level and pre-
dict metabolic response to diet and drug were associ-
ated with gut microbiota composition [60]. Impaired 

renal function and dysbiosis of gut microbiota contrib-
uted to increased TMAO in CKD patients [61]. Faecal 
samples from CKD patients and healthy controls were 
administrated to antibiotic-treated C57BL/6 mice, 
and the mice that received gut microbiota from CKD 
patients had significantly higher plasma TMAO and 
different gut microbiota composition than the com-
parative mice [61]. Besides, ammonia was metabolized 
from urea by microbial urease. Ammonia could cause 
a massive disruption of the intestinal epithelial barrier 
structure and function, leading to the translocation of 
gut-derived uremic toxins, antigens, endotoxin, and 
intestinal microbial organisms/products into circula-
tion [44, 62, 63]. Indoxyl sulphate and p-cresyl sulphate 
were associated with increased inflammatory biomark-
ers in stage 3–4 CKD patients, such as glutathione 
peroxidase and interleukin-6 [64]. Another study 
revealed that 19 microbial families that were dominant 
in ESRD patients, 12 possessed urease (Alteromona-
daceae, Clostridiaceae, Cellulomonadaceae, Derma-
bacteraceae, Halomonadaceae, Enterobacteriaceae, 
Methylococcaceae, Moraxellaceae, Micrococcaceae, 
Polyangiaceae, Xanthomonadaceae, and Pseudomona-
daceae), 5 possessed uricase (Cellulomonadaceae, Mic-
rococcaceae, Dermabacteraceaea, Xanthomonadaceae 
and Polyangiaceae families), and 3 possessed indole 
and p-cresyl-forming enzymes (i.e. tryptophanase pos-
sessing families: Clostridiaceae, Verrucomicrobiaceae, 
and Enterobacteriaceae) [65]. Prevotellaceae and Lac-
tobacillaceae, the two families that possess SCFA 

Fig. 3  Gut–kidney axis contributes on renal injury through the dysbiosis of gut microbiota and dysregulation of endogenous metabolites. 
Schematic diagram presented several major metabolites involving in host-gut microbiota communication, originating from synthesis from 
microbial nutrient conversion, and the subsequent transport and interaction with kidney
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(butyrate) forming enzymes, were amongst the four 
microbial families that were depleted in ESRD patients 
[65].

Based on metabolomics, our previous studies demon-
strated that the perturbations of amino acid, lipid, purine 
metabolisms in serum [66–70] as well as bile acid and 
phospholipid metabolisms in faeces are related to CKD 
rats [71, 72]. The disruption of the intestinal barrier in 
CKD led to translocation of bacteria-derived uremic tox-
ins into the systemic circulation, thus inducing inflam-
mation and leukocyte stimulation. Using metabolomics 
methods, our previous studies demonstrated that the 
dysregulations of oxidative stress and inflammation were 
associated with the perturbations of serum amino acid, 
methylamine, purine and lipid metabolisms in patients 
with CKD [31, 73–75].

Gut microbiota in patients on hemodialysis and peritoneal 
dialysis
By replacing kidney excretory function, dialysis is 
intended to eliminate the symptom complex known as 
the uremic syndrome. Hemodialysis has made survival 
possible for more than a million people throughout the 
world who have ESRD with limited or no kidney func-
tion [76, 77]. Through metabolomics methods, our pre-
vious studies indicated that the uremic toxins and waste 
products in hemodialysis removed a large number of 
identified and as-yet unidentified metabolites [78]. Phy-
logenetic microarrays analysis demonstrated that the 
gut microbiome of ESRD patients with hemodialysis 
and compared them with healthy individuals, showing 
an increase in Proteobacteria (primarily Gammaproteo-
bacteria), Actinobacteria and Firmicutes (especially sub-
phylum Clostridia) [52]. However, hemodialysis patients 
showed higher inflammatory biomarkers and uremic 
toxins than non-dialysis patients [79]. Interleukin-6 and 
MCP-1, two inflammatory biomarkers, were positively 
correlated with indoxyl sulphate and p-cresyl sulphate 
[79]. The reduced levels of uremic toxins resulted in 
the decreased expression of inflammatory biomarkers 
[80]. The gut microbiome in pediatric patients undergo-
ing hemodialysis was compared against those of healthy 
individuals [81]. Bacteroidetes was significantly increased 
while Proteobacteria was significantly decreased in 
hemodialysis patients compared with healthy individuals 
[81]. Additionally, fecal analysis demonstrated that dial-
ysis patients showed decreased number of bacteria that 
were able to produce the SCFA butyrate [65].

One study described a decrease in gut Firmicutes and 
Actinobacteria, especially Bifidobacterium catenula-
tum, Bifidobacterium bifidum, Bifidobacterium longum, 
Lactobacillus plantarum and Lactobacillus paracasei in 
peritoneal dialysis patients [82]. In general, patients with 

CKD exhibited lower intestinal colonization of Bifidobac-
terium and Lactobacillus species [56]. Therefore, reduced 
populations and diversity of Lactobacillus and Bifido-
bacterium in peritoneal dialysis patients were associated 
with several adverse effects. Pediatric peritoneal dialysis 
patients showed a relative lower abundance of gut bac-
teria within the Firmicutes and Actinobacteria, whereas 
the Proteobacteria were significantly increased [81]. The 
increased Proteobacteria (iron oxidizing bacteria) was 
associated with the oral iron supplementation in peri-
toneal dialysis patients. Additionally, peritoneal dialysis 
patients enhanced intestinal absorption of glucose from 
the peritoneal dialysis dialysate that promoted glucose 
fermentable bacteria Enterobacteriaceae [81]. Consider-
ing the translocation of gut microbiota to the peritoneal 
cavity, it was presumed that the increase of Enterobac-
teriaceae was responsible for peritonitis development 
in peritoneal dialysis patients, since Enterobacteriaceae 
family accounted for up to 12% of all peritonitis episodes 
in these patients [83].

Gut microbiota in IgAN
Since immunoglobulin A (IgA) is widely found in gut 
mucosal immune system, dysbiosis of gut microbiota 
plays a role in the pathogenesis of IgAN [55]. Chronic 
bacterial infections and dysbiosis of gut microbiota 
enhanced epithelial cells to secrete B cell activating factor 
and proliferation-inducing ligand that speeded up over-
production of IgA. Additionally, dysbiosis of gut microbi-
ota were found in IgAN [55]. Exclusive differences in gut 
microbiota and metabolome composition were investi-
gated in patients with IgAN and healthy controls [84, 85], 
and the gut microbiota and urinary metabolites (includ-
ing free amino acids and organic volatile metabolites) 
were significantly altered between patients with progres-
sor and non-progressor IgAN [86]. It was speculated that 
the elevated serum free amino acids contributed to IgAN 
pathology where possibly associated the lowered absorp-
tion of gastrointestinal proteins, which presumably 
enhanced microbial proteolysis, changed microbiota, and 
contributed to elevated fecal p-cresol level. The potential 
link between bacterial lipopolysaccharides and hypoga-
lactosylation of IgA existed. Bacterial lipopolysaccharide 
could stimulate a systemic inflammatory response and 
lipopolysaccharides was involved in the hyperproduction 
and hypogalactosylation of IgA1, the important patho-
genesis involved in IgAN [87].

Gut microbiota in nephrolithiasis
Nephrolithiasis is a complex disease that could be caused 
by genetic and different environmental factors. Kidney 
stones are small deposits that build up in the kidneys, 
made of calcium, phosphate and other components of 
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foods. Hyperoxaluria is an important risk factor for the 
appearance of nephrolithiasis, since 75% of kidney stones 
contain calcium oxalate [88]. Since human body relies 
mainly on gut microbiota for oxalate homeostasis, Oxalo-
bacter formigenes has attracted attention in medicine 
[89]. The Oxalobacter formigenes, as an oxalate degrader 
bacterium in the intestinal tract, showed health benefits 
through the homeostasis of oxalic acid [90]. An inverse 
relationship was demonstrated between recurrent renal 
stones and intestinal colonization with Oxalobacter for-
migenes, which reduced the oxalate concentration that 
was available for absorption at constant rates in the intes-
tine. Oxalobacter formigenes could lower oxalate excre-
tion in urine and protect against formation of calcium 
oxalate kidney stones [91, 92]. Besides, gut microbiome 
participated in the pathophysiology of kidney stone for-
mation [92]. Patients with nephrolithiasis possessed a 
unique gut microbiota compared with healthy controls 
[93]. Bacteroides spp. was more abundant in kidney stone 
formers where Prevotella spp. was more abundant in the 
healthy controls [93].

In addition, cyanuric acid was produced from mela-
mine in gut by microbial transformation and it served as 
an integral component of the kidney stones responsible 
for melamine-induced renal toxicity in rats [94]. Kleb-
siella was subsequently identified in faeces and could 
convert melamine to cyanuric acid directly. Rats colo-
nized by Klebsiella terrigena displayed exacerbated mel-
amine-induced nephrotoxicity [94]. Currently available 
data supported that manipulation of gut bacteria may 
provide a novel therapy in patients with kidney stone in 
the future.

Gut microbiome in hypertension
Patients with elevated systolic blood pressure and CKD 
revealed altered bacterial composition and decreased 
bacterial richness [95]. The abundance of the gut 
microbes, Firmicutes and Bacteroidetes, is associated 
with increased blood pressure in several models of hyper-
tension [96]. It has been reported that major component 
of the olfactory pathway in kidneys, Olfr78, was an olfac-
tory receptor expressed in the renal juxtaglomerular 
apparatus, where it mediated renin secretion in response 
to SCFAs. SCFAs were fermentation end-products by the 
gut microbiota and were absorbed into the circulation 
[97]. Another possible link between the gut microbiota 
and hypertension was the gut microbiota metabolism of 
choline and phosphatidylcholine, which metabolized tri-
methylamine to TMAO. Trimethylamine is abundant in 
red meat and can be metabolized by intestinal microbiota 
of dietary l-carnitine, and further can be metabolized 
into TMAO and expedited atherosclerosis in mice [98].

Gut microbiome in acute kidney injury
Recently, several studies indicated that intestinal micro-
biota can regulate AKI. One possible mechanism was the 
renoprotective action of SCFAs against ischaemia–rep-
erfusion injury in models. SCFAs with anti-inflamma-
tory properties were produced by gut microbiota [99]. 
Treatment with three main SCFAs (acetate, propionate, 
and butyrate) improved renal dysfunction and reduced 
inflammation. Furthermore, the gut microbiota showed a 
wider influence and role in autoimmune kidney diseases 
via its immunomodulatory effects, known by its effect on 
polarization of T-cell subsets and natural killer cells [32].

Probiotic, prebiotic and synbiotic interventions 
to attenuate gut microbiome disturbances 
in kidney diseases
The use of probiotics and prebiotics are common thera-
peutics. Probiotics are living organisms ingested through 
food or supplements that could promote the health of 
the host. Probiotics are composed of living bacteria, such 
as Lactobacilli, Streptococci and Bifidobacteria species, 
that could alter gut microbiota and affect the inflam-
matory state to produce a less pathogenic microflora 
and thus lowered generation of uremic toxins. A pilot 
multinational trial in patients with CKD stages 3 and 4 
showed significantly decreased blood urea and improved 
life quality after treatment with the Renadyl formulation 
of Lactobacillus acidophilus, Streptococcus thermophi-
lus and Bifidobacterium longum over 6  months [100]. 
However, the follow-up randomized controlled trial in 
22 patients failed to lower plasma uremic toxins and did 
not improve life quality [101]. The few benefits with pro-
biotics could be explained by persistent uremia-induced 
alterations in gut biochemical milieu and dietary and 
medicinal regimens which led to an unfavorable milieu 
for the symbiotic microbiota [102]. To address this defi-
cit, one trial investigated the combination of probi-
otic and prebiotic therapies over a course of 6 weeks in 
pre-dialysis CKD patients, and showed lowered serum 
p-cresyl sulphate and gut microbiome alterations [103]. 
Therefore the choice of probiotic microbe is important. 
Inclusion of bacteria that expressed urease with the 
intention to metabolize gut urea caused the increased 
downstream products NH3 and NH4OH and promoted 
intestinal wall inflammation [102, 104].

Prebiotics are non-digestible carbohydrates that selec-
tively stimulate the growth and activity of beneficial gut 
bacteria in colon, such as Bifidobacteria [105]. Prebiot-
ics promote the growth of Bifidobacteria and Lactoba-
cilli species at the expense of other groups of bacteria in 
the gut [105]. Prebiotic oligofructose-enriched p-inulin 
also regulated weight loss, inhibited inflammation, and 
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improved metabolic function [105]. Serum p-cresol and 
indoxyl sulphate are lowered by the oral intake of p-inulin 
in hemodialysis patients [106]. However, feeding uremic 
rats treated with amylose maize-resistant starch could 
improve creatinine clearance and lower inflammation 
and renal fibrosis [107]. The semipurified low-fiber diet 
or a high-fiber diet significantly improved metabolomes 
in serum, urine and intestinal fluid accompanied by low-
ering dysbiosis of gut microbiota [108]. Resistant starches 
transited to the colon undigested and were metabolized 
by bacteria to SCFA which were important nutrients to 
enterocytes. The supplementation of oligofructose-inu-
lin or resistant starch significantly lowered circulating 
indoxyl sulphate and p-cresyl sulphate in hemodialysis 
patients [106, 109].

Synbiotics is the combination of prebiotic and probi-
otic treatments. Treatment with Probinul neutro, synbi-
otic treatment, showed decreased total plasma p-cresol 
without improvement of gastrointestinal symptoms in 30 
stage 3–4 CKD patients for 4 weeks [110]. The SINERGY 
trial showed a decrease in serum p-cresyl sulphate but 
not in indoxyl sulphate and a favorable change in stool 
microbiome in 37 stage 4–5 CKD patients [103]. Treat-
ment with the combination of Lactobacillus casei strain 
Shirota and Bifidobacterium breve strain Yakult plus 
galacto-oligosaccharides showed a significant decrease 
of serum p-cresol and improvement of stools quantity 
and quality in nine hemodialysis patients for 2  weeks 
[39]. More recently, a multicenter study in 42 hemodi-
alysis patients showed an improvement of gastrointes-
tinal symptoms and decreased C-reactive protein after 
2 months’ treatment [111].

Concluding remarks
Increasing evidence has demonstrated that a bidirec-
tional relationship existed between host and gut micro-
biome in patients with various kidney diseases. There is 
an urgent need for more studies to further characterize 
the gut microbiome in kidney diseases and explore the 
relationship between different kidney diseases and the 
gut microbiome. Intestinal inflammation and epithelial 
barrier breakdown accelerate systemic translocation of 
the bacterial-derived uremic toxins including indoxyl 
sulphate, p-cresyl sulphate, and TMAO, and cause oxi-
dative stress injury to the kidney, cardiovascular and 
endocrine systems. Recently, the study of the gut–kid-
ney axis has opened up novel therapeutic avenues for the 
management of inflammation, kidney injury and uremia 
to prevent adverse outcomes in CKD patients. Multi-
ple promising interventions were exerted to reverse gut 
microbiota imbalance and slow the progression of kid-
ney diseases. The probiotics or their byproducts have 
been employed to develop innovative signaling-targeted 

interventions which outperform traditional drugs with 
obvious side effects. Selecting specific probiotic species 
with well-known metabolic functions could alleviate 
various disease states. For example, Streptococcus ther-
mophiles can be used to reduce urea from uremia. Future 
attention and examination of these interventions are 
required to bring the knowledge of the microbiota into 
practical benefits of CKD patients. However, interven-
tions need to be further examined in large trials before 
they can become a primary therapy for patients with kid-
ney diseases.

The metagenomics and metabolomics have been used 
to investigate the function of key low-molecular-weight 
endogenous metabolites derived from the gut microbi-
ome in kidney diseases. Understanding the metabolic 
capabilities of gut microbiota is very important in eluci-
dating their functions on health and disease. Although 
16S rRNA sequencing analysis was employed to con-
veniently survey the composition and structure of gut 
microbiome, the information on their metabolite effects 
were limited by the incomplete knowledge in bacterial 
genomic databases. Metagenomic sequencing mines 
more knowledge of the existent genes, but the func-
tions of most of these genes remain unknown. KEGG 
and MetaCyc are the most comprehensive databases for 
linking orthologous gene groups to reactions and metab-
olites. To achieve more effective combination of micro-
biome and metabolome for understanding gut microbial 
metabolisms in the kidney disease context, advanced 
multi-omic integration methods need to be developed. 
To further our understanding of the functional potential 
of host-associated gut microbiota, we can fill the gaps of 
the aforementioned databases through genome sequenc-
ing, untargeted biochemistry, and functional studies. 
Thus, even with these enormous challenges, increas-
ing studies have found key microbes and their enzymes/
metabolites as potential targets of medical interventions 
in the context of kidney diseases. With improved under-
standing of the metabolic interplay between the microbi-
ome and the host, novel prebiotics and probiotics can be 
explored, and personalized treatment of CKD that utilize 
knowledge of gut microbiome and their interactions with 
the host will become feasible.
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