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Abstract 

Background:  Hepatocellular carcinoma is a malignant tumor with a highly invasive and metastatic phenotype, and 
the detection of potential indicators associated with its recurrence and metastasis after surgical resection is critical for 
patient survival.

Methods:  Transcriptome data for large cohorts (n = 1432) from multicenter sources were comprehensively analyzed 
to explore such potential signatures. The prognostic value of the selected indicators was investigated and discussed, 
and a comparison with conventional clinicopathological features was performed. A survival predictive nomogram for 
5-year survival was established with the selected indicator using the Cox proportional hazards regression. To validate 
the indicator at the protein level, we performed immunohistochemical staining with paraffin-embedded slides of 
hepatocellular carcinoma samples (n = 67 patients) from our hospital. Finally, a gene set enrichment analysis (GSEA) 
was performed to detect the underlying biological processes and internal mechanisms.

Results:  The liver-specific protein paraoxonase 1 (PON1) was found to be the most relevant indicator of tumor recur-
rence, invasiveness, and metastasis in the present study, and the downregulation of PON1 might reveal poor survival 
for patients with hepatocellular carcinoma. The C-index of the PON1-related nomogram was 0.714, thus indicating a 
more effective predictive performance than the 7th American Joint Committee on Cancer (AJCC) tumor stage (0.534), 
AJCC T stage (0.565), or alpha-fetoprotein (0.488). The GSEA revealed that PON1 was associated with several hepa-
tocellular carcinoma-related pathways, including the cell cycle, DNA replication, gap junction and p53 downstream 
pathways.

Conclusions:  The downregulation of paraoxonase 1 may suggest worse outcomes and a higher recurrence 
rate. Thus, paraoxonase 1 might represent an indicator for predicting the survival of patients with hepatocellular 
carcinoma.

Keywords:  Hepatocellular carcinoma, Paraoxonase 1, Recurrence, Metastasis, Overall survival, Nomogram

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  wrc1985wrc@163.com; 15626020913@163.com 
†Zheng Yu and Qifeng Ou contributed equally to this work
1 Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen 
University, Guangzhou 510080, China 
3 Department of Gastrointestinal Surgery, The First Affiliated Hospital, 
Guangzhou Medical University, Guangzhou 510120, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3741-0751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-018-1707-0&domain=pdf


Page 2 of 13Yu et al. J Transl Med          (2018) 16:327 

Background
Recurrence and metastasis after hepatic resection of 
hepatocellular carcinoma (HCC) usually contributes 
to poor long-term patient survival [1]. HCC has strong 
invasiveness and metastasis abilities, thus enhancing 
its recurrence rate [2]. Although novel therapies have 
been developed in recent years, the mortality of HCC 
patients has not decreased [3]. The identification of 
potential indicators associated with recurrence and 
metastasis can improve treatment response in clinical 
trials and the quality of life of HCC patients. Transcrip-
tome data from very large cohorts were used in the pre-
sent study to show that paraoxonase 1 (PON1) might 
represent a potential signature that is strongly corre-
lated with HCC recurrence and metastasis.

Evidence has shown that PON1 is a member of the 
paraoxonase family, and it encodes a protein of an 
enzyme with lactonase and ester hydrolase activity 
[4]. It is an antioxidant defensive factor that is relevant 
in the pathogenesis of several inflammatory diseases 
[5]. Increasing evidence has demonstrated that PON1 
plays a significant role in atherosclerosis as its down-
regulation may lead to the disease [6, 7]. In addition, 
its clinical application value in cancer studies has been 
gradually discovered [8]. Increasing evidence has dem-
onstrated that PON1 could serve as a significant clini-
cal indicator for breast cancer and lung cancer [9, 10]. 
Meanwhile, several studies have also found that serum 
PON1 is highly fucosylated (Fuc-PON1) and could be 
utilized as a novel diagnostic biomarker of early-stage 
HCC [11]. However, the number of studies on PON1 
in HCC is limited, and its latent prognostic value and 
potential in clinical applications, especially its correla-
tion with metastasis, recurrence, overall survival (OS) 
and other clinical risk factors, has not been observed.

In the present study, we performed a bioinformatics 
analysis based on sequencing data of 1432 patients’ tis-
sues to find reliable prognostic signatures. A weighted 
correlation network analysis (WGCNA) was utilized 
using The Cancer Genome Atlas (TCGA) for a blind 
selection in our research. Latent prognostic indicator 
was selected for further analysis. Expression difference 
of selected indicator in tumor tissue and nontumor 
tissue was validated in 7 Gene Expression Omnibus 
(GEO) datasets from multicenters. We also established 
a 5-year predictive model that was visualized with 
a nomogram for predicting 5-year survival. Subse-
quently, we validated our results on protein levels via 
experimental tools based on clinical data and our own 
samples. Finally, we detected and discussed related 
biological pathways and how they are affected in HCC 
with PON1 downregulation.

Materials and methods
Transcriptome data of HCC patients in the present study
Data retrieved from multiple research centers were used 
for integrated analysis in this study, including data from 
The Cancer Genome Atlas (TCGA) project and Gene 
Expression Omnibus (GEO) databases. We systematically 
analyzed the expression profiles of transcriptomes from 
the following datasets to ensure the credibility of the cur-
rent study: TCGA [n = 423, National Cancer Institute 
(NCI) and the National Human Genome Research Insti-
tute (NHGRI), USA], GSE14323 (n = 124, Virginia Com-
monwealth University), GSE14520 (n = 481, National 
Cancer Institute, Laboratory of Human Carcinogenesis, 
USA), GSE6764 (n = 75, Mount Sinai School of Medi-
cine), GSE51401 (n = 64, Zhongshan Hospital affiliated 
with Fudan University), GSE41804 (n = 40, Kanazawa 
University Graduate School of Medical Sciences), 
GSE45436 (n = 134, National Yang-Ming University) and 
GSE62232 (n = 91, INSERM, UMR U-1162, Université 
Paris Descartes). The sequencing data used in the present 
study were collected on Affymetrix microarray and Illu-
mina platforms by different researchers. Complete data 
on the clinicopathologic characteristics of HCC patients 
in TCGA were obtained from Cbioportal (http://www.
cbiop​ortal​.org/), including 7th American Joint Commit-
tee on Cancer (AJCC) staging rules, serum alpha-feto-
protein (AFP) level, disease-free time, OS time, living 
status and recurrence time.

Identification of differentially expressed genes
Increasing evidence has demonstrated that the expres-
sion levels of cancer-related genes are abnormally 
changed during the initiation of HCC. Thus, discovering 
these genes for further analysis is critical. Based on 373 
tumor tissues and 50 adjacent nontumor tissues in TCGA 
datasets, we identified key differentially expressed genes 
(DEGs) via R/language (edgeR package, R version 3.34). 
Varying degrees of gene expression between tumor tis-
sues and adjacent non-tumor tissues were evaluated by 
log2(fold-change). Genes with abs(log2(fold-change)) > 1 
(absolute value) and P < 0.05 were selected as candidate 
signatures for further analysis.

Weighted correlation network analysis for discovering 
recurrence‑related gene modules
To uncover the recurrence-related DEGs, we conducted 
a WGCNA using DEGs [12, 13]. In general, genes with 
similar expression patterns are likely to exhibit coex-
pressed relationships and similar molecular functions. 
According to the connectivity of the coexpressed genes, 
WGCNA clustered thousands of genes into several gene 
modules using a soft thresholding power [14, 15]. The 
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relations between different gene modules and clinico-
pathologic characteristics of prognosis were revealed by 
Pearson correlation. In the present study, we investigated 
gene modules that were the most relevant to recurrence 
and metastasis. We performed the WGCNA analysis 
based on clinical data and sequencing data of 373 HCC 
samples from TCGA dataset. Samples with the dupli-
cated TCGA barcodes and uncomplete survival data were 
excluded. In total, 368 HCC patients were involved in the 
WGCNA, and the clinical information of these patients 
was also available for the WGCNA. The soft thresholding 
power was identified using the WGCNA algorithm and 
sequencing data of DEGs. Then, DEGs were clustered in 
different gene modules using the soft thresholding power, 
and the recurrence-related gene module was investigated.

Indicator selection procedure
The Kaplan–Meier method was performed for every gene 
in the selected gene module from the WGCNA. The gene 
with the most significantly different log-rank p value was 
retained as our final selected indicator, and its expression 
difference between tumors and nontumors was validated 
using the GEO datasets. The prognostic value of our can-
didate indicator was also investigated. The relationship 
between the clinicopathologic characteristics and expres-
sion of the candidate indicator was also investigated. Stu-
dent’s t-test was utilized for continuous variables, and 
Fisher’s exact test was used for categorical variables. In 
total, 369 patients with complete clinicopathologic infor-
mation were evaluated. Density plots were illustrated for 
clear views.

Prognostic nomogram with selected indicator
Patients with HCC usually have a poor prognosis due to 
tumor recurrence. Thus, establishing a recurrence-related 
model for predicting survival is significant. We estab-
lished a nomogram to predict 5-year survival. Multivari-
ate Cox proportional hazards regression was used for the 
nomogram. TCGA datasets of 368 HCC patients were 
used [16]. Compared with the traditional method, PON1 
expression (log2 transformed, Htseq-counts) was used as 
a novel variable for the establishment of a nomogram. For 
other variables, we selected several survival-related indi-
cators and basic information, including age, sex, AJCC 
staging indicators, tumor differentiation, vascular inva-
sion, and Child–Pugh classification. Five-year survival 
prediction performance was examined with the C-index. 
To avoid the potential bias caused by tumor heterogene-
ity, we performed internal validation by extracting 60% of 
samples randomly as the validation dataset for 10 times. 
C-index was calculated for testing the robustness. Cali-
bration curves were also illustrated to test the predicting 
accuracy. Univariate and multivariate COX proportional 

hazards tests were performed for conventional clinical 
features, and the receiver operating characteristic (ROC) 
curves of conventional features for predicting 5-year sur-
vival were also displayed for comparison.

Immunohistochemical staining for validation at protein 
level
To validate the selected indicator at protein level, we per-
formed immunohistochemical staining in the samples 
of human tissues. The slides of paraffin-embedded HCC 
tissues from 67 patients were obtained after surgical 
resection. All patients received radical resection without 
preoperative chemotherapy or radiotherapy in the First 
Affiliate Hospital of Sun-yat Sen University. All diagno-
ses were confirmed by pathology. The slides were incu-
bated for 2  h at 65  °C, deparaffinized, and rehydrated. 
Retrieval of the heat-mediated antigen was conducted in 
10  mmol/L Tris-citrate buffer (pH 7.0) with a pressure 
cooker. Blocking of endogenous peroxidase activity was 
performed by incubating sections with 3% hydrogen per-
oxide for 10 min at room temperature. Each section was 
then incubated with 5% normal goat serum in phosphate-
buffered saline containing 0.1% Tween 20 for 30  min at 
room temperature to block nonspecific binding of the 
primary antibody. The slides were incubated with pri-
mary antibodies (diluted 1:250) against PON1 (Abcam, 
ab92466) overnight at 4 °C. After washing, each slide was 
incubated with the appropriate horseradish peroxidase 
(HRP)-labeled secondary antibody and then developed 
with DAB solution (DAKO, Agilent) before counterstain-
ing with hematoxylin. Staining intensity was scored as 0, 
1, 2, or 3 for negative, weak, moderate, or strong, respec-
tively, and the staining percentage was given a score of 
0 (absent) for < 5% positive staining, 1 (focal) for 5% to 
< 50% positive staining, or 2 (diffuse) for ≥ 50% positive 
staining. The sum of the intensity and distribution scores 
was then used to determine PON1 immunoreactivity. A 
score of 1 or 0 was considered to show low expression, 
whereas higher scores were considered to indicate high 
expression. Two pathologists assessed the specimens 
independently. Images were obtained using an Olympus 
BX63 microscope (Olympus, Japan).

Biological pathway and internal mechanism detection
To investigate the pathways and biological parameters 
correlated with PON1, we conducted a gene set enrich-
ment analysis (GSEA) [17, 18]. The 368 HCC patients in 
the TCGA dataset were separated into high-expression 
and low-expression groups according to the median value 
of PON1 and retained as the phenotypes. GSEA software 
was obtained from GSEA website (http://softw​are.broad​
insti​tute.org/gsea/index​.jsp). One thousand permutations 
were performed to determine the statistically significant 
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and ensure the credibility of the results. Pathways with a 
FDR < 0.05 and P-value < 0.05 were selected as the enriched 
terms. The molecular signatures database from the GSEA 
were utilized as the annotation file. Pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Reactome and Pathway Interaction Database (PID) were 
used. A Gene Ontology enrichment analysis was also per-
formed to discover biological functions in HCC. Corre-
lated biological processes, molecular functions, and cellular 
components were identified.

Statistical software and data format
DEGs were identified using edgeR (Bioconductor/R version 
3.34) [19, 20]. Htseq-counts (TCGA) and RSEM (GEO, 
log2 scaled) were used as the sequencing data formats. 
WGCNA was performed by the WGCNA package (R ver-
sion 3.3.4). Nomogram was established using Regression 
Modeling Strategies (RMS, R version 3.34). Student’s t-test 
and Fisher’s exact test were performed in R (version 3.34).

Results
Identification of differentially expressed genes
A total of 985 DEGs were discovered by bioinformatics 
analysis, including 512 upregulated and 473 downregulated 
genes (Additional file  1: Table  S1). The variation degree 
of DEGs ranged from 8 to − 5 as evaluated by log2(fold-
change). A volcano plot was created to illustrate the distri-
bution of DEGs (Fig. 1a).

WGCNA analysis revealed blue gene module was related 
to tumor recurrence
Based on the complete clinical information and RNA-seq 
data of 985 DEGs (Htseq-count), we performed WGCNA 
analysis to cluster DEGs into different modules according 
to their coexpression relationships. We also revealed differ-
ent gene modules and their relevant clinical information. 
Patients were first clustered to show basic clinical informa-
tion (Fig. 1b). Then, a soft threshold power was calculated 
for gene clustering, and 7 was selected as the power in the 
present study (Fig. 1c). In total, 13 gene modules were dis-
covered (Fig. 1d). The relationships between gene modules 
and primary clinical indicators were discovered with Pear-
son correlation. Correlation coefficients (r) were illustrated 
as a heatmap (Fig. 1e). Blue modules were positively corre-
lated with OS time (r = 0.18) and recurrence time (r = 0.35). 
In addition, they were also negatively correlated with AJCC 

tumor staging rules, including T stage (r = − 0.20) and 
tumor stage (r = − 0.20). The results demonstrated that 
genes in the blue modules could be viewed as tumor sup-
pressors. Patients with higher expression of genes in blue 
modules had longer survival times. A total of 34 genes were 
found in blue modules (Fig. 1f). Survival analysis was per-
formed with genes in blue module. PON1 was the most rel-
evant gene for OS using the Kaplan–Meier (KM) method 
according to log-rank P values (Additional file 2: Table S2).

Reduction in PON1 expression indicated greater 
invasiveness and a poor prognosis
We detected the expression of PON1 in other GEO data-
sets and found that PON1 expression in HCC was down-
regulated in nearly all datasets (Fig.  2a, Additional file  3: 
Table  S3). Patients in the TCGA dataset were separated 
into two groups according the median value of PON1, 
including a high-expression group and a low-expression 
group. Differences between the two groups were investi-
gated with Student’s t-test and Fisher’s exact test (Table 1). 
The results revealed that significant differences existed in 
age, sex, AJCC TNM staging rules, tumor differentiation, 
and vascular invasion. We compared the diagnosis perfor-
mance of key clinical indicators in HCC, including marker 
Ki-67 (MKI67), AFP, and PON1 [21, 22]. The results indi-
cated that the area under curve (AUC) of PON1 was 
0.8119, which was higher than that of AFP (0.6857) but 
lower than that of MKI67 (0.9515) (Fig.  2b) [23]. Based 
on a density plot of PON1 expression, we clearly observed 
that low PON1 expression in HCC was correlated with 
stronger invasiveness and metastasis, including tumor T 
stage, AJCC tumor stage, tumor differentiation and vascu-
lar invasion (Fig. 2c–f) [24]. The KM curves of Disease-free 
survival and overall survival was present for visualizing sur-
vival data, whilst the Log Rank test was utilized for deter-
mining differences. Results revealed Log Rank P-values 
were 0.013 (DFS) and P = 0.0014 (OS) separately (Fig. 2g, 
h). HCC patients with low PON1 expression were found to 
have a poor prognosis in long-term survival. 

PON1‑related prognostic nomogram
A prognostic nomogram was established between PON1 
and several significant clinical factors, including age, sex, 
vascular invasion, Child–Pugh classification, AJCC stag-
ing rules, and tumor differentiation (Fig. 3a). The calibra-
tion curves indicated that the predictive performance of 

Fig. 1  Identifying recurrence-related prognostic indicators. a Volcano plot exhibiting the distribution of DEGs via log2(fold-change) and P values. b 
Sample clusters showing basic clinical information on HCC patients. c Soft threshold power selection for gene clustering; a value of 7 was selected 
as the threshold. d In total, 13 gene modules were discovered via gene clustering. e Heatmap exhibiting the relationship between different gene 
modules and clinical risk factors (Pearson correlation). Blue modules were the most relevant to recurrence and OS. f Plot showing 34 genes in blue 
modules and their coexpression relationships

(See figure on next page.)
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the model was excellent (Fig.  3b). In our nomogram, all 
variables were in accordance with clinical logic. PON1 was 
utilized as a new variable and promoted model accuracy. 
The expression of PON1 was negatively correlated with 
risk score. The C-index (an evaluating marker similar to 
the ROC curve) of the model was 0.714 (0.6753–0.7627, 
C-index in validation datasets). The results of the univari-
ate Cox hazards analysis revealed that the AJCC tumor 
pathological stage, tumor size, tumor metastasis, and AFP 
level were related to 5-year survival. Hazard ratios were 
listed (Additional file  4: Table  S4). As a comparison with 
the nomogram, we illustrated the ROC curves using the 
AJCC tumor stage, tumor size, and AFP in 5-year survival 
prediction (Fig. 3c). The results indicated that our nomo-
gram provided a more accurate prediction than using con-
ventional clinical features.

Experimental validation of PON1 at the protein level 
by immunohistochemistry
To validate these results, we conducted an immunohis-
tochemical analysis to reveal the protein level of PON1 
in 67 HCC patients to explore the relationship between 
PON1 and HCC clinicopathological characteristics. 
PON1 was found to be significantly located in the cyto-
plasm, and it was downregulated in HCC tissues. The 
junction area was illustrated for the comparison. The 
statistical results indicated that 42 (62.7%) of the 67 sam-
ples showed high expression levels according to staining 
intensity (Fig.  4a). Survival data were also available for 
67 patients. KM curves of the OS and disease-free sur-
vival was presented for visualizing survival data, whilst 
the Log Rank test was performed for determining differ-
ences. Result revealed that patients with low expression 
of PON1 in HCC tissue had a poor prognosis for overall 
survival (Fig. 4b, c).

Correlated biological pathways of PON1 in HCC
The GSEA was used to detect pathways that were cor-
related with PON1. HCC-related pathways were 
found to be related to PON1, including the cell cycle 
(P = 0.00122), DNA replication (P = 0.002093), gap 
junction (P = 0.01286), and p53 downstream path-
ways (P = 0.00252) (Fig.  5a, Additional file  5: Table  S5). 

Researchers have found that the cell cycle pathway is 
abnormally changed from normal liver functions to 
chronic hepatitis as well as during the transition into 
HCC [25]. Increasing evidence has revealed that gap 
junction pathways could affect HCC invasion and 
metastasis [26]. Apoptosis was also discovered to be 
related to PON1 (P = 0.008673). As a reference, per-
oxisome (P = 0.0001) and biological oxidation pathways 
(P = 0.0001) were also identified (Fig.  5b, c) [27]. These 
findings demonstrated that the results of the GSEA 
were reliable. Enrichment of Gene Ontology terms was 
also conducted and illustrated. The results indicated 
that PON1 variation in HCC leads to changes in oxida-
tion reduction processes (P < 0.001), oxygen binding 
(P < 0.001), extracellular exosomes (P < 0.001), and blood 
microparticles (P < 0.001) (Additional file 6: Table S6).

Discussion
Although many HCC-related prognostic biomarkers have 
been identified in recent years, most do not exhibit tissue 
specificity [28]. Thus, these biomarkers might be affected 
by various factors, and they lack significant value in clini-
cal applications. We performed a systematic analysis that 
discovered the prognostic value of PON1 in patients with 
HCC. We found that PON1 downregulation in HCC sug-
gests worse tumor differentiation, higher recurrence rate, 
stronger invasiveness, and poorer outcomes. Researchers 
in recent years have demonstrated that serum PON1 lev-
els can assist in diagnosing AFP-negative HCC at an early 
stage [29, 30]. Moreover, PON1 played an important 
role in the initiation of non-alcoholic fatty liver disease 
(NAFLD) [31, 32]. Meanwhile, NAFLD was found to be a 
potential risk factor for HCC, especially in patients with-
out hepatitis virus infection [33, 34]. However, discoveries 
about PON1 in HCC were mostly based on small cohorts 
from a single data source in retrospective studies, which 
ignored diversity in terms of race, age, and hepatitis virus 
infection. The prognostic application of PON1 was also 
rarely investigated or discussed. Finding crucial cancer 
biomarkers from thousands of genes is usually difficult. 
In the present study, we introduced WGCNA algorithm 
for discovering recurrence-related indicators. Compared 
with other algorithms, WGCNA systematically combined 

(See figure on next page.)
Fig. 2  Prognostic value of PON1 in clinical applications. a Validation of PON1 expression differences in tumor tissues and adjacent non-tumor 
tissues by analyzing multicenter data sources that included 1432 samples. PON1 was downregulated in HCC tissues. b Comparison of the 
diagnostic ability of PON1, MKI67, and AFP via ROC curves. The diagnostic accuracy of PON1 (0.8119) was higher than that of AFP (0.6857) and lower 
than that of MKI67 (0.9515). c–f Density plot exhibiting the relationship between PON1 expression and clinicopathologic characteristics, including 
AJCC tumor stage, tumor T stage, tumor differentiation, and vascular invasion. The trend in the peaks indicated that low tumor expression was likely 
to be classified as a poor prognosis, including stage III, G4, macro vascular invasion, and T4. g Disease-free survival analysis of patients with low 
PON1 expression and high PON1 expression in the TCGA dataset (P-value = 0.013). h OS analysis of patients with low PON1 expression and high 
PON1 expression in TCGA dataset (P = 0.0014)
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the sequencing data and clinical information. Using of 
WGCNA could assist in discovering underlying clini-
cal significance of some key genes. WGCNA also illus-
trated the connection of genes with similar expression 

patterns. Moreover, WGCNA algorithm was gradually 
used in analyzing the single-cell transcriptome data by 
researchers [35]. Meanwhile, our research was conducted 
on 1432 samples from multicenter data sources, and the 

Table 1  Association of PON1 with clinicopathological characteristics of HCC

Clinical factors PON1 level Total (n = 369) 95% CI P-value

Group High (n = 184) Low (n = 185)

Gender

 F 40 81 121 0.2198819 0.575337 8.10E−06

 M 144 104 248

Age (mean, SD) 61.17 57.64 0.7774031 6.287814 0.01212

Tumor pathologic_stage

 Stage I–II 145 129 256 1.140819 3.267362 0.009873

 Stage III–IV 36 56 89

Tumor size

 T1–T2 145 129 274 1.052772 2.921888 0.02976

 T3–T4 36 56 92

Tumor metastasis

 M0 129 136 265 0.2244094 150.4063 0.623

 M1 1 3 4

Tumor nodes

 N0 120 130 250 0.2181723 146.4568 0.6237

 N1 1 3 4

Child–Pugh classification

 A 115 101 216 0.1671

 B 15 6 21

 C 1 0 1

Grade

 G1 36 19 55 9.62E−05

 G2 99 77 176

 G3 42 79 121

 G4 4 8 12

Race

 American indian or alaska tive 1 1 2 0.1536

 Asian 68 90 158

 Black or african american 10 7 17

 White 98 84 182

Tumor status

 Tumor free 119 114 233 0.7075 1.8518 0.6426

 With tumor 52 57 109

Vascular invasion

 Macro 6 9 15 0.00552

 Micro 35 57 92

 Non-vascular invasion 118 88 206

Hepatic_infalmmation_adj_tissue

 Mild 44 55 99 0.02331

 Severe 10 8 18

 None 73 43 116

AFP (mean, SD) 16352.55 11481.7 0.7408
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Fig. 3  Establishment of the prognostic nomogram for 5-year survival. a Nomogram for predicting survival probabilities. Each clinical characteristic 
is shown with its corresponding score. PON1 was used as a novel liver-specific variable in the nomogram. The C-index of the nomogram was 0.714. 
b Calibration plot of OS at 5 years to visualize the difference between true values and predicted values. c ROC curves of AJCC tumor stage (0.5349), 
serum AFP (0.4888), and tumor T stage (0.5656) for predicting 5-year survival are shown for comparison
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prognostic and predictive values were validated at both 
the gene expression and protein level. We also detected 
possible internal mechanisms and biological processes 
related to HCC. Therefore, we promoted other research-
ers’ studies and provided more credible results.

Even though the expression of PON1 is negatively 
correlated with tumor recurrence, metastasis, and inva-
sion, we did not define it as a tumor suppressor. The 
PON1 gene encodes an enzyme that can be released 
from normal liver cells into the blood circulation and 
is of great antioxidant significance [36, 37]. According 

to our pathway detection results, PON1 downregula-
tion may not directly affect the invasiveness and metas-
tasis of tumor cells as PON1 is located downstream of 
cancer-related biological processes. In our view, PON1 
downregulation in HCC might be induced by losing the 
original function of normal liver cells in PON1 secre-
tion. In GSEA analysis, the results indicated that sev-
eral carcinogenesis-related pathways were enriched 
by varying degrees by PON1, including the p53 down-
stream pathway, gap junction, cell cycle, apoptosis, and 
DNA replication. Therefore, PON1 downregulation 

Fig. 4  Protein level validation using immunohistochemistry (IHC). PON1 protein expression in adjacent non-tumor tissues and tumor tissues. a 
PON1 location in HCC was demonstrated, particularly in the cytoplasm. Low and high expression in tumor tissues was also illustrated. The junction 
area is shown as a comparison. b Disease-free survival based on the IHC of 67 patients using the KM method (P = 0.14). c OS based on the IHC of 67 
patients using the KM method (P = 0.043)
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Fig. 5  Detection of biological pathways and internal mechanisms. a Plot of the GSEA; several key pathways are visualized, including the cell cycle, 
DNA replication, gap junction, and p53 downstream pathways. b Enriched pathways found by the GSEA using MsigDB. c Plot of the Gene Ontology 
enrichment analysis. Biological processes (BP), molecular functions (MF) and cellular components (CC) are illustrated
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might be increased by complicated internal mechanisms 
related to cell division, proliferation, and migration, 
which could also explain why the expression of PON1 
was related to tumor recurrence and clinical outcomes. 
However, a decrease in PON1 might still cause changes 
in tumor cells, especially tumor-derived inflammation, 
autophagy, and apoptosis [38, 39]. However, we still need 
more experimental evidence to prove our conclusions 
from sequencing data and pathological results. In addi-
tion, further detection of these mechanisms will be very 
necessary.

In recent years, next-generation sequencing (NGS) 
use has gradually increased [40, 41]. However, NGS in 
tumors is still based on tissue obtained from surgical 
resection, which limits the clinical application of this 
method. Although some novel test methods, includ-
ing sequencing of tumor-derived circulating DNA and 
exosomes in the blood, have been discovered, their prac-
ticability still needs to be validated [42–44]. Noninvasive 
methods, including blood tests, are still very important. 
Published research has shown that PON1 is an enzyme 
that is mainly synthesized in the liver and released into 
the circulatory system [45, 46]. The expression of PON1 
is mainly affected by liver cells, and the use of PON1 in a 
predictive model may reduce other possible interference 
factors. Therefore, we built a PON1-related nomogram 
with a Cox proportional hazards regression to investigate 
5-year patient survival. In our model, PON1 gene expres-
sion was quantified and served as an indicator to pro-
mote its specificity. Compared with conventional clinical 
indicators, our nomogram exhibited excellent prediction 
accuracy and effectiveness. However, the limitation of 
our model is that we did not examine serum PON1 levels 
or use them as a variable. The model will be more useful 
if serum PON1 levels are tested and used as a variable.

Conclusions
In summary, we performed a comprehensive analysis of 
the prognostic value of PON1. We discovered that PON1 
downregulation indicates a high recurrence rate and poor 
outcomes. We also provided a nomogram to use PON1 
in clinical applications. We supplied a more accurate plan 
than conventional methods for predicting prognosis.
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