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Abstract 

Background:  Traumatic spinal cord injury (SCI) results in sensory and motor function impairment and may cause a 
substantial social and economic burden. For the implementation of novel treatment strategies, parallel development 
of objective tools evaluating spinal cord (SC) integrity during motor function recovery (MFR) is needed. Diffusion ten‑
sor imaging (DTI) enables in vivo microstructural assessment of SCI.

Methods:  In the current study, temporal evolvement of DTI metrics during MFR were examined; therefore, values of 
fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in a population of 17 paraplegic 
dogs with naturally-occurring acute SCI showing MFR within 4 weeks after surgical decompression and compared 
to 6 control dogs. MRI scans were performed preoperatively and 12 weeks after MFR was observed. DTI metrics were 
obtained at the lesion epicentre and one SC segment cranially and caudally. Variance analyses were performed to 
compare values between evaluated localizations in affected dogs and controls and between time points. Correlations 
between DTI metrics and clinical scores at follow-up examinations were assessed.

Results:  Before surgery, FA values at epicentres were higher than caudally (p = 0.0014) and control values 
(p = 0.0097); ADC values were lower in the epicentre compared to control values (p = 0.0035) and perilesional 
(p = 0.0448 cranially and p = 0.0433 caudally). In follow-up examinations, no significant differences could be found 
between DTI values from dogs showing MFR and control dogs. Lower ADC values at epicentres correlated with neuro‑
logical deficits at follow-up examinations (r = − 0.705; p = 0.0023).

Conclusions:  Findings suggest that a tendency to the return of DTI values to the physiological situation after surgical 
decompression accompanies MFR after SCI in paraplegic dogs. DTI may represent a useful and objective clinical tool 
for follow-up studies examining in vivo SC recovery in treatment studies.
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Background
Spinal cord injury (SCI), a devastating disease affecting 
the central nervous system, has a worldwide estimated 
incidence range in humans from 3.6 to 195.4 cases per 
million [1]. It involves individual damage of motor and 
visceral functions and consequently leads to detriments in 
quality of life and represents a high economic burden [2].

Curative therapies for SCI are currently subject of 
research and development of techniques that may enable 
an objective assessment of recovery phases are needed 
[3–6]. Traditionally, the use of rodent models has been 
established as a highly-standardized research tool for 
diagnostic, prognostic, and therapeutic approaches in 
SCI [3, 7, 8]. However, induced lesions in the rodent 
spinal cord still evidence large discrepancies in relation 
to human traumatic SCI concerning pathophysiology, 
anatomy and histopathology [9, 10]. Therefore, research 
in large animal models that can bridge the gap between 
rodents and humans is needed [11]. The dog is increas-
ingly recognized as a large animal translational model for 
various pathologies of the central nervous system includ-
ing multiple sclerosis, epilepsy and traumatic SCI [9, 
11–17].

Spinal cord injury caused by acute intervertebral disc 
herniation (IVDH) is one of the most common neuro-
logical conditions in dogs [18]. IVDH may occur when 
biomechanical forces are applied to the nucleus pulpo-
sus leading to rupture of the dorsal aspect of the annulus 
fibrosus and sudden extrusion of degenerated disc mate-
rial into the vertebral canal [19, 20]. This spontaneous, 
naturally-occurring, ventro-dorsal herniation induces 
a mixture of contusive and compressive forces acutely 
exerted to the spinal cord, strongly resembling human 
traumatic SCI [9, 11, 21]. Depending on several factors 
such as the localization of the herniation, degree of com-
pression and amount of material extruded, clinical signs 
may involve a wide spectrum of neurological deficits var-
ying from mild paravertebral hyperaesthesia to paraple-
gia without response to nociceptive stimulus [22].

Magnetic resonance imaging (MRI) of the spinal cord 
remains the gold standard for the diagnosis of canine 
IVDH [23–25]; however, versatility of this technique 
allows to transcend beyond diagnostic purposes and 
provide valuable and objective information concern-
ing integrity of spinal cord parenchyma [26]. Diffusion 
tensor imaging (DTI) is a modality of MRI that enables 
in vivo non-invasive tissue characterization by means of 
water molecule diffusion [27]. Microarchitecture of the 
nervous system, particularly the white matter, permits 
homogeneous and direction-dependent water molecule 
displacement with greater freedom of movement parallel 
to axonal bundles [27]. This directional dependency, also 
defined as anisotropy, enables DTI to infer and quantify 

diffusion behaviour [28]. Fractional anisotropy (FA) and 
apparent diffusion coefficient (ADC) are commonly 
reported indexes used for spinal cord DTI [29]. Measure-
ments of FA depict the degree of directionality present 
within a specific tissue, and are determined by inherent 
tissue characteristics, for instance myelin, cellular mem-
branes and microtubules [30, 31]. It ranges from 0 to 1, 
with values close to 0 meaning an unrestricted random 
diffusion, whereas measurements close to 1 are inter-
preted as highly restricted or anisotropic diffusion [32]. 
Furthermore, ADC represents the average magnitude of 
molecule displacement at any diffusion direction deter-
mined [28, 33].

As patient management may represent a restraining 
factor limiting the time for MRI scans in acute trau-
matic SCI, the interest for using DTI in the spinal cord of 
dogs as a large animal model for traumatic SCI has been 
increasingly growing [34–38]. We recently characterized 
acute and chronic stages of severe SCI and evaluated the 
prognostic value of DTI for predicting early MFR [34, 
39]. However, description of DTI metrics during MFR 
may represent a useful tool for objective in vivo evalua-
tion of the spinal cord parenchyma during clinical trials.

The aim of this study is to describe the temporal evolve-
ment of DTI metrics in paraplegic dogs with acute SCI 
showing MFR after surgical decompression of the spinal 
cord. We hypothesize that diffusion alterations present 
during acute, naturally-occurring SCI will not be detect-
able in dogs showing MFR after decompressive surgery 
and that DTI metrics at the lesion epicentre measured 
12 weeks after MFR will correlate with the clinical status.

Methods
SCI dogs
Private owned dogs admitted to the Department of Small 
Animal Medicine and Surgery, University of Veterinary 
Medicine Hannover were prospectively recruited in a 
period between June 2013 and April 2015 with the fol-
lowing inclusion criteria: acute (≤ 6 days) onset of para-
plegia consistent with T3-L3 SCI after IVDH with either 
presence or absence of deep pain perception (DPP), a 
body weight less than 20  kg and recovery of voluntary 
motor function within 4  weeks after decompressive 
surgery (Fig.  1). DPP was tested producing a noxious 
stimulus, clamping the digits of the hind limbs with 
forceps. A positive reaction to this test was considered, 
when an obvious and reproducible behavioural response 
that could be interpreted as pain was elicited, i.e. whin-
ing, turning the head towards the origin of stimulus or 
attempting to bite [40]. Voluntary motor function recov-
ery was defined as presence of pelvic limb movement 
evaluated with and without support and intact DPP. 
Dogs with diagnosis of IVDH or spinal cord compression 
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caudal to the intervertebral space L3/4, showing clinical 
signs compatible with a lower motor neuron lesion and/
or absence of MFR within 4 weeks postoperatively were 
excluded from the study.

Identifying the exact starting time point of SCI in 
naturally-occurring IVDH is challenging in dogs. In the 
current study, the onset of non-ambulatory status as 
first noticed by the dog’s owner was used to temporally 
classify and determine the acute stage of SCI [40]. Each 
SCI dog underwent a general physical and neurological 
examination, as well as diagnostic imaging consisting of 
radiographs of thoracic and lumbar vertebral column 
and MRI of the thoracolumbar spinal cord as described 
below. Additionally, a complete blood cell count, serum 
biochemistry analysis, urinalysis and examination of cer-
ebrospinal fluid were performed to exclude several dif-
ferential diagnoses. Subsequently, the spinal cord was 
surgically decompressed by hemilaminectomy [41, 42]. 
Diagnosis of IVDH was confirmed by MRI and presence 
of herniated intervertebral disc material during surgery. 
A follow-up neurological exam and MRI scan was per-
formed 12 weeks after MFR was observed.

As controls, six dogs, 5 males and 1 female, with 
either orthopaedic disease or neurological signs 
localized outside the T3-L3 segment of the SC were 
included and already used in another study [35, 39]. 
Their mean age was 6.4 years (median 6.4 years; range 
1.7–12.1  years) and their mean body weight 15.6  kg 
(median = 11.8  kg; range 6–30  kg). This study was 

performed after the approval of the German Animal 
Welfare authorities [Lower Saxony State Office for 
Consumer Protection and Food Safety (LAVES); Num-
ber: 33.9-42502-04-11/0661] and the written owners´ 
consent for each examination.

Magnetic resonance imaging
A 3 Tesla MRI scanner (Phillips Achieva, Phillips Medi-
cal Systems, Eindhoven, The Netherlands) together 
with a SENSE (sensitivity encoding)—spine coil with 15 
channels was used to perform the examinations.

Each examination was performed under general 
anaesthesia and artificial ventilation. For premedication 
either acepromacine (0.05 mg/kg BW IM) or diazepam 
(0.5 mg/kg BW IV) together with levomethadone (0.2–
0.6 mg/kg BW IV) was used. Anaesthesia was induced 
with propofol (2  mg/kg BW IV) and maintained with 
isoflurane in air and oxygen. For image acquisition, 
dogs were placed in dorsal recumbency and at least 
sagittal and transversal planes of Turbo-Spin-Echo 
T2-weighted sequences, transversal gradient-echo T2*-
weighted for assessment of presence of intramedul-
lary haemorrhages and Echo-Planar-Imaging DWI SE 
sequences of the thoracolumbar SC were performed.

For the acquisition of T2-weighted (T2W) sagittal 
images the following protocol parameters were used: 
TR of 3100 ms with a TE of 120 ms, slice thickness of 
1.8  mm, and a slice interval of 0.2  mm. The FOV var-
ied from 301.2 to 392  mm. For transversal planes of 
the same sequence TR varied from 4630.4 to 8418.8 ms 
with a TE of 120 ms, slice thickness of 2 mm, a 0.2 mm 
slice interval and a FOV of 190  mm. Transverse T2* 
sequences were acquired with a TE of 6.9 and a TR of 
520.5 to 662.2 ms; slice thickness of 2 mm, slice interval 
of 2.2 mm and a FOV of 150 mm.

The DTI protocol consisted of a TR range of 2758.1–
11668.8 ms, which varied according to dogs’ size, length 
of scanned area, and consequently number of slices. TE 
was 70  ms, a slice thickness of 2.00  mm with no slice 
interval and a FOV of 214 mm were implemented. Fur-
thermore, 32 diffusion directions were applied, low b 
value = 0  s/mm2, maximal b value = 800  s/mm2, and a 
voxel size of 1.65 × 1.65 × 2.0  mm [43]. To overcome 
interference with epidural fat, sequences were acquired 
using spectral presaturation with inversion recovery 
(SPIR) for fat suppression. Dynamic stabilization was 
automatically implemented to enhance image consist-
ency and to ameliorate signal drift [44]. A diffusion 
registration package was applied during acquisition in 
order to reduce geometrical distortions caused by eddy 
current induced artefacts [35, 45, 46].

Fig. 1  Flow chart illustrating the study design. DTI Diffusion tensor 
imaging, MFR motor function recovery, MRI magnetic resonance 
imaging, SC spinal cord, SCI spinal cord injury
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Methodology
Spinal cord injury dogs were classified according to a 
standardized clinical 5 grade scale [47], where (0) repre-
sents a dog without any neurological deficit indicative of 
a spinal cord lesion, (1) represents unaffected gait with 
pain at paravertebral palpation, (2) refers to ambulatory 
paraparesis, (3) non-ambulatory paraparesis, (4) paraple-
gia with intact DPP, and (5) paraplegia with absent DPP.

For DTI image processing, the software Extended MR 
workspace® (Version 2.6.3.4, 2012, Philips Medical Sys-
tems, the Netherlands) was used. T2W and T2* images 
were evaluated by board certified neurologists (AT and 
VMS) in order to determine the localization of the IVDH 
for subsequent surgical approach. Additionally, these T2W 
images served as a baseline for anatomical land marking 
for the DTI. As previous reports evidenced that trans-
versal DTI sequences minimize partial volume effects in 
comparison to sagittal sequences [36], regions of interest 
(ROIs) were placed at the defined localizations directly in 
the transversal colour-coded FA maps (Fig.  2). Since FA 
represents a normalized and rotational invariant value [48], 
colour coding was generated based on a combination of 
tensor anisotropy and direction within each voxel. In order 
to reduce measurement errors deriving from signals of sur-
rounding tissues such as cerebrospinal fluid or epidural fat, 
the application tool “Multiple ROIs” was used to set adja-
cent individual voxels within the white and grey matter of 
the SC in a transversal view. These voxels were afterwards 
fused to form a single ROI as previously described; all ROIs 
were placed on signal deriving from the SC tissue directly 
dorsal to intervertebral disc spaces. Lesion epicentres were 
defined as localizations of spinal cord compression caused 
by herniated disc material in T2W sequences [39]. ROIs 
were placed directly at the epicentre and one spinal cord 
segment adjacent to any compression (cranially and cau-
dally). FA and ADC values were gathered from each ROI.

Statistical analysis
Diffusion tensor imaging metrics of the control popula-
tion were calculated using mean values of at least two 
ROIs placed in the SC caudally of the twelfth thoracic 
vertebra and cranially of the third lumbar vertebra.

Measurements of FA and ADC values were com-
pared between preoperative and follow-up scans, as 
well as between dogs suffering from IVDH and controls 
by means of t-tests. Comparisons among the differ-
ent localizations, in the lesion epicentre, cranially and 
caudally of the lesion, were performed using a multiple 
analysis of variance and a Tukey–Kramer adjustment. 
The assumption of normality was tested by means of 
a Kolmogorov–Smirnov test and visual assessment of 
qq-plots of model residuals. Covariance analyses were 

additionally performed with each variance analysis 
to evaluate the effect of body weight and age between 
groups. Furthermore, Spearman tests were conducted 
to assess correlations between DTI metrics measured at 
the epicentre of the SCI (continuous variable) and clini-
cal scores after decompressive surgery (ordinal scaled 
variable). For this purpose, the commercially available 
software SAS®, version 9.2 (SAS Institute, Cary, NC, 
USA) and GraphPad Prism® (version 5, GraphPad Soft-
ware, CA, USA) were used for the statistical calcula-
tions and graphic elaboration, respectively. Significance 
level was considered when p < 0.05.

Fig. 2  Selection of regions of interest. Sagittal and transverse T2W 
images and transverse colour-coded FA maps of the spinal cord of 
a 17.7 kg mix-breed male dog, 6.6 years-old, with acute onset of 
paraplegia due to an intervertebral disc herniation (IVDH) at the level 
of L1–2 before (a) and 12 weeks after decompressive surgery (b). The 
red arrow points at the epicentre of lesion in sagittal T2W images. 
The star in A shows the degenerated disc material compressing 
the SC. The white arrow in B shows the hemilaminectomy defect 
performed to achieve SC decompression. Colour coding of FA maps: 
blue depicts craniocaudal diffusion axis, green and red indicate 
ventrodorsal and laterolateral diffusion axis, respectively
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Results
Dogs
Seventeen paraplegic dogs, 7 females and 10 males, 
affected by acute SCI caused due to IVDH were 
included. The SCI dogs had a mean age of 5.5  years 
(median = 4.6  years; range 2.2–13.1  years) and a mean 
body weight of 9.9  kg (median = 8.6  kg; range 3.8–
19.6  kg). Dachshunds (n = 5) and mixed-breed dogs 
(n = 5) were the most common. Moreover, two Jack Rus-
sell terriers, two Shih Tzu, and one individual of each 
of the following breeds were recruited: Havanese, small 
Munsterlander pointer, and French bulldog. The mean 
time between onset of non-ambulatory status and pre-
operative MRI examination was 1  day (median = 1  day; 
range 0–6 days). The most commonly affected interverte-
bral disk spaces were Th12/13 and Th13/L1. Twelve dogs 
showed a response to nociceptive stimulation and 5 dogs 
showed no presence of DPP in the pelvic limbs. Pres-
ence of intramedullary signal voidance in gradient-echo 
T2* sequences suggesting intramedullary haemorrhage 

could not be evidenced in any case. All 17 paraplegic 
dogs underwent surgical decompression of the spinal 
cord immediately after MRI and regained motor function 
within 4  weeks thereafter. Follow-up MRI examination 
was performed 12 weeks after first noticing MFR and at 
this time point, all dogs were able to walk, one of them 
with support. In one dog with clinical improvement the 
follow-up scan could not be performed. Clinical grading 
at both time points is depicted in Table 1.

Fractional anisotropy
Before decompressive surgery, values of FA at the site of 
the lesion epicentre in paraplegic dogs with acute SCI 
were higher than in the controls (p = 0.0097). At the same 
time point, FA values at epicentres were significantly 
higher compared to the values in the SC segment one 
vertebral body caudally (p = 0.0014; Fig. 3a). T-tests per-
formed between time points revealed a significant higher 
FA value before surgery at each localization (Table  2). 
Three months after MFR, FA showed no statistical dif-
ference when compared with the control group (Fig. 3b). 
Covariance analysis performed for the assessment of the 
effect of age and body weight found no differences among 
groups at both time points (Additional file 1: Table S1). 
Clinical scores 12  weeks after MFR did not correlate 
to FA values in the epicentre at the same time point 
(p = 0.39).

Apparent diffusion coefficient
In the acute stage before decompressive surgery, 
ADC values were lower in the epicentres compared 
to ROIs set one spinal cord segment cranially and cau-
dally (p = 0.0448 and p = 0.0433, respectively; Fig.  4a). 
Moreover, ADC values derived from the epicen-
tre of the lesion were significantly lower in dogs with 

Table 1  SCI dog characteristics

SCI spinal cord injury; clinical grading. 0: dog with no neurological deficits; 1: 
hyperaesthesia with paravertebral palpation; 2: ambulatory paraparesis; 3: non-
ambulatory paraparesis; 4: paraplegia with deep pain perception; 5: paraplegia 
without deep pain perception

Clinical grade At presentation (n = 17) At follow-up 
examination 
(n = 16)

0 – 4

1 – –

2 – 11

3 – 1

4 12 –

5 5 –

Fig. 3  Distribution of FA values. Tukey boxplots depicting the distribution of fractional anisotropy (FA) values at each localization before (a) and 
12 weeks after showing motor function recovery (b). Values at epicentres showed significant increases compared to controls and perilesional values 
measured caudal to the epicentre. No differences were found in the follow-up MRI examination
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acute contusive-compressive SCI than in control dogs 
(p = 0.0035; Fig.  3a). Temporal evolvement of ADC val-
ues could be evidenced with t-tests performed between 
pre-operative measurements and follow-up scans. ADC 
values were significantly lower in the compressed spinal 
cord than in the follow-up status at the epicentre and 
cranially (p = 0.0016 for epicentres; p = 0.0156 cranially; 
Table 2). Additionally, no significant differences in ADC 
values could be found between SCI affected dogs and 
controls at follow-up examinations (Fig. 4b); neither age 
nor body weight showed an effect in variance analysis 
performed among groups for the pre- and postoperative 
time points (Additional file  1: Table  S1). Clinical scores 
correlated negatively with diffusivity present at the epi-
centre of SCI in follow-up examinations (p = 0.0023; 
r = − 0.705).

Discussion
The clinical approach to acute traumatic SCI faces 
substantial challenges including the fact that cur-
rent techniques to assess severity and recovery rate are 

non-quantitative [49]. In this prospectively designed 
study, temporal evolvement of DTI values is described 
from the SC of paraplegic dogs with acute SCI showing 
MFR subsequent to decompressive surgery. The popula-
tion of dogs presented and treated for acute SCI caused 
by IVDH match with previous reports, being mostly 
middle-aged dogs of chondrodystrophic breeds [50–
52]. Furthermore, localization of disc herniation within 
the vertebral column occurred at the most commonly 
reported sites [22, 53, 54].

Limited information is available regarding DTI in the 
course of acute SCI in humans. Albeit elevations of FA 
values have been reported after acute onset of clini-
cal signs [55], a reduction of FA values in the epicentre 
of the lesion seems to occur more commonly [56, 57]. In 
humans, dural laceration occurs concomitantly with con-
tusion and/or compression of the SC, as consequence of 
vertebral fractures or luxations. Such laceration is more 
commonly observed in humans than in dogs and could 
be responsible for primary transection of axonal mem-
branes with associated intramedullary influx of CSF 

Table 2  Temporal evolvement of DTI metrics after spinal cord decompression

Italic values indicate significance of p value (p < 0.05)

Epicentres: ROIs placed in spinal cord compressed by herniated nucleus pulposus material, directly above the respective intervertebral disc space. Cranially: ROIs 
placed in spinal cord one vertebral body cranially to epicentres. Caudally: ROIs placed in spinal cord one vertebral body caudal to epicentres

DTI diffusion tensor imaging, FA fractional anisotropy, ADC apparent diffusion coefficient, SD standard deviation, SC spinal cord

Diffusion metrics SC segment At presentation (n = 17) Follow-up (n = 16) p value

FA; median ± SD Cranial 0.725 (± 0.105) 0.627 (± 0.075) 0.0025

Epicentres 0.781 (± 0.053) 0.611 (± 0.092) < 0.0001

Caudal 0.678 (± 0.087) 0.604 (± 0.074) 0.0049

ADC (10−3mm2/s); median ± SD Cranial 0.999 (± 0.317) 1.224 (± 0.575) 0.0156

Epicentres 0.817 (± 0.236) 1.134 (± 0.366) 0.0016

Caudal 0.985 (± 0.197) 1.198 (± 0.507) 0.0646

Fig. 4  Distribution of ADC values. Tukey boxplots depicting the distribution of apparent diffusion coefficient (ADC) values at each localization 
before decompressive surgery (a) and at follow-up scan 12 weeks after MFR (b). Before decompressive surgery, values gathered from the epicentre 
were significantly lower than that of controls. Epicentres displayed lower values than values cranially and caudally. At follow-up scans, ADC values 
from dogs with MFR did not differ from controls
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and haemorrhage fluids, subsequently leading to altera-
tions in the intra- to extracellular water content and 
therewith decreasing anisotropy [9, 55–57]. Conversely, 
an increase in anisotropy at the epicentre of the lesions 
occurred, which suggests presence of cytotoxic oedema 
and reduced space between axonal tracts caused by a 
reduction of the diameter of the vertebral canal due to 
the presence of herniated disc material during the acute 
phase [39, 58, 59]. Furthermore, increases of FA values 
have been proposed to be more dependent on changes 
of cellular membranes than on myelin sheaths and have 
been therefore proposed as a biomarker for cytotoxic 
oedema during the acute phase of axonal injury after 
traumatic brain lesions [28, 59–61].

Diffusivity changes depicted by decreased ADC were 
found in epicentres of the SC in dogs before undergo-
ing decompressive surgery compared to control values. 
Previous studies describing histopathologic changes in 
canine acute SCI showed that intra-axonal ultrastruc-
tural changes such as disarrangement of axoplasmic 
neurofilaments and mitochondrial accumulation occur 
predominantly at the lesion epicentre, although distant 
segments away from the compression site were also but 
less severely affected [14, 21]. Therefore, low diffusion 
magnitude found in dogs with SCI seems to be an indi-
cator of such intracellular damage. Additionally, signifi-
cantly lower ADC values at the epicentre compared to 
ADC values of the SC one vertebral body cranially and 
caudally suggest a complementary distorted diffusiv-
ity caused by mechanical compression and permanent 
deformation exerted by the extruded disc material on the 
spinal cord at the time of the preoperative MRI scan.

At follow-up examination 12  weeks after evidence of 
MFR, both, FA and ADC values showed no differences 
when compared to those of SC of control individuals, 
indicating absence of contusive-compressive forces or 
massive reduction of intraparenchymal architecture that 
could cause abnormal restriction of magnitude or direc-
tion of water molecule diffusion because of accordance 
between diffusion metric tendency to normality and 
MFR of the dogs.

Since the majority of dogs acutely affected with SCI 
had an intact DPP at presentation at the clinic, a rela-
tive conservation of tissue architecture after moderate to 
severe SCI may explain that FA and ADC values tend to 
normality after prompt surgical intervention. Moreover, 
timely decompression of the spinal cord could have led 
to effective reperfusion of parenchyma, thereby avoiding 
possible worsening of clinical signs by preventing fur-
ther tissue damage. Additionally, the fact that no differ-
ences in DTI metrics were found between SCI affected 
dogs with recovered motor function and controls may 
support that complex intrinsic reparatory mechanisms 

take place within the canine SC days after SCI caused by 
IVDH. Examples of such mechanisms are expression of 
Growth Associated Factor-43 (GAP-43) as indicator of 
axonal regeneration and remyelination accomplished by 
Schwann cells and oligodendrocytes playing an impor-
tant role in microarchitecture preservation and remodel-
ling [14, 21].

Interestingly, lower ADC values correlated with higher 
clinical grades in the follow-up examination. A possible 
interpretation of this result could be that, although direc-
tionality of diffusion was restored after decompression, 
intra-axonal ultrastructural changes inherent of the sec-
ondary injury such as mitochondrial accumulation may 
still represent a long-lasting effect on diffusion magni-
tude [14, 21]. Nevertheless, information regarding his-
topathological characterization of the spinal cord during 
motor function recovery is limited and this correlation 
derives from a relatively small population of dogs and 
therefore should be carefully interpreted.

As all dogs recruited in this study were still alive at 
the time of its completion, the lack of histopathologi-
cal and immunohistochemical studies of epicentres 
and perilesional SC segments represents a limitation. 
However, Yoon and colleagues recently found a correla-
tion between histopathologic findings and DTI metrics 
in dogs with experimentally induced SCI [38]. Moreo-
ver, normal anatomical structures of the spinal cord are 
displaced and deformed by the extruded intervertebral 
disc material during IVDH; therefore, a clear distinction 
between white and grey matter, as well as visualization 
or evaluation of diffusion metrics of individual funiculi 
using clinical applicable protocols in the canine spinal 
cord is still beyond the study’s scope.

Establishing quantitative methods that objectively 
evaluate the recovery phase after SCI is mandatory for 
treatment studies [5]. Performing DTI during MFR in 
people affected by acute compressive SCI is challeng-
ing, as the vertebral column fractures are often stabi-
lized with metallic implants being a source for artefacts 
in MRI scans [62–64]. For this reason, DTI in naturally-
occurring canine SCI represents a unique opportunity to 
understand microstructural changes of the spinal cord 
during MFR in a large animal translational model.

Conclusions
In conclusion, abnormal FA and ADC values evident at 
the epicentre of the acutely compressed spinal cord in 
paraplegic dogs and reflecting distortion in water mol-
ecule diffusion are normalised 12 weeks after MFR. The 
present study represents therefore a basic instrument for 
studies evaluating effects of novel therapeutic interven-
tions, since objective data might be gathered on a micro-
structural level in vivo using this technique.
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Additional file 1: Table S1. Covariance analysis evaluating the effect of 
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