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Abstract 

Background: Maraviroc‑containing combined antiretroviral therapy (MVC‑cART) improved the response to the 
hepatitis B virus (HBV) vaccine in HIV‑infected subjects younger than 50 years old. We aimed here to explore the effect 
of this antiretroviral therapy on different immunological parameters that could account for this effect.

Methods: We analysed baseline samples of vaccinated subjects under 50 years old (n = 41). We characterized the 
maturational subsets and the expression of activation, senescence and prone‑to‑apoptosis markers on CD4 T‑cells; we 
also quantified T‑regulatory cells (Treg) and dendritic cell (DC) subsets. We used binary logistic regression to evaluate 
the immunological impact of MVC‑cART, correlation with MVC exposure and linear regression for association with the 
magnitude of the HBV vaccine response.

Results: HIV‑infected subjects on MVC‑cART prior to vaccination showed increased recent thymic emigrants levels 
and reduced myeloid‑DC levels. A longer exposure to MVC‑cART was associated with lower frequencies of Tregs and 
activated and proliferating CD4 T‑cells. Furthermore, the frequencies of activated and proliferating CD4 T‑cells were 
inversely associated with the magnitude of the HBV vaccine response.

Conclusion: The beneficial effect of MVC‑cART in the HBV vaccine response in subjects below 50 years old could 
be partially mediated by its reducing effect on the frequencies of activated and proliferating CD4 T‑cells prior to 
vaccination.
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Background
Human immunodeficiency virus (HIV)-infected subjects 
are at high risk for hepatitis B virus (HBV) infection and 
progression of severe, life-threatening hepatic complica-
tions, such as cirrhosis and hepatocellular carcinoma [1, 
2]. To prevent the associated morbimortality, worldwide 
current guidelines recommend vaccination against HBV 
in all HIV-infected subjects susceptible to be coinfected 
by HBV, but the response rates are lower than in HIV-
uninfected subjects [reviewed in 3].

The best-known predictors of vaccine efficacy are an 
undetectable viral load and CD4 T-cell counts above 
350 cells/mm3 [3]. Thus, it is well assumed that success-
ful combined antiretroviral therapy (cART) favours the 
vaccine response; however, the influence of the type 
of antiretroviral treatment has been scarcely explored 
until now. In this line, it was first described that maravi-
roc (MVC), a CCR5 antagonist, enhanced meningococ-
cal neo-immunization and accelerated the response to 
tetanus boost [4]. More recently, we also reported that 
MVC-containing cART (MVC-cART) was associated 
with a better response against the HBV vaccine, at least 
in subjects younger than 50  years old [5]. Nevertheless, 
the potential underlying mechanisms were unaddressed.

Different antiretroviral combinations including MVC 
have comparatively proved their beneficial effects on the 
levels of inflammatory biomarkers [6, 7] and the T-cell 
immunophenotype [8]. In two clinical trials, an improve-
ment of duodenal immunity and a reduction in bone 
loss has been associated with such combinations [9, 10]. 
Furthermore, MVC monotherapy also reduced the fre-
quency of regulatory T-cells (Treg) in antiretroviral-naïve 
subjects [11], even improving the distribution of Treg 
subsets [12]. This could be relevant since we observed 
that Treg cells negatively impacted the HBV vaccine 
responsiveness in a previous cohort [13]. It is possible 
that MVC could enhance different functions required to 
mount an effective response following HBV vaccination, 
including antigen-presentation, T-cell help, regulatory 
T-cell suppression and B cell functions [14, 15].

In the present study, we aimed to explore the poten-
tial effect of MVC-cART in different parameters related 
to inflammation, T-cell function and dendritic cell sub-
sets that could account for its effect on the HBV vac-
cine response; to this aim, we studied the same cohort of 
vaccinated subjects that had revealed a positive effect of 
such MVC-cART.

Methods
Study design, patients and samples
The vaccination protocol has been reported elsewhere 
[5]. Briefly, HIV-infected subjects from the Virgen del 
Rocío University Hospital were consecutively vaccinated 

against HBV. These subjects (a) were on suppres-
sive cART (at least in the last 6  months), (b) had CD4 
T-cell counts of > 300 cells/µl, (c) had negative serol-
ogy for HBsAg and anti-HBc and (d) had anti-HBs titers 
of ≤ 10 mIU/ml. The vaccination protocol consisted of 
3 intramuscular double doses (40  µg) of the recombi-
nant Engerix-B vaccine (GlaxoSmithKline, Brentford, 
United Kingdom) at 0, 1, and 3  months. The vaccine 
response was measured 6 months after the first dose. A 
group of subjects was simultaneously vaccinated at 0 and 
6  months against hepatitis A virus (HAV) (simultane-
ous HAV vaccination) with two intramuscular doses of 
the vaccine Havrix-1440 (GlaxoSmithKline, Brentford, 
United Kingdom). This subgroup of subjects had a previ-
ous negative serology for HAV. Fresh blood samples were 
collected at baseline, just before the administration of the 
first vaccine dose. All patients gave informed consent to 
enter the study, which was approved by the Ethic Com-
mittee of our Hospital. We restricted the present analyses 
to subjects younger than 50  years old (n = 41) from the 
total vaccinated population because the beneficial effect 
of MVC-cART on the vaccine response was observed in 
this population [5].

Laboratory measurements
Absolute numbers of CD4 and CD8 T cells were deter-
mined with an Epics XL-MCL flow cytometer (Beckman-
Coulter). Plasma HIV-1 RNA levels were measured using 
quantitative PCR (Cobas Ampliprep/Cobas TaqMan 
HIV-1 test; Roche Molecular Systems, Basel, Switzerland) 
with a detection limit of 20 HIV-RNA copies/ml. Plasma 
samples were tested for HBV-related markers (HBsAg, 
anti-HBs, and anti-HBc) using an HBV enzyme-linked 
immunosorbent assay (ELISA; Siemens Healthcare Diag-
nosis, Malvern, PA). Qualitative PCR amplification was 
used for plasma hepatitis C virus (HCV) amplification 
(Cobas Amplicor; Roche Diagnosis, Mannheim, Ger-
many) with a detection limit of 15 IU/ml. The highly sen-
sitive C-reactive protein (hsCRP) levels were determined 
with an immunoturbidimetric serum assay using a Cobas 
701 (Roche Diagnostics, Mannheim, Germany).

Flow cytometry
Peripheral blood mononuclear cells (PBMCs) were 
isolated from fresh blood before the first dose of vac-
cine and cryopreserved. For the immunophenotyping 
of cellular subsets, PBMCs were thawed and imme-
diately stained with the following surface antibodies: 
anti-CD31 PE-CF594, anti-CD56 BV510, anti-CD25 
BV605, anti-CD45RA BV650, anti-CD4 BV786, anti-
CD3 APC-H7, Lin2 FITC (anti-CD3, anti-CD19, anti-
CD20, anti-CD14 and anti-CD56), anti-CD11c BV650, 
and anti-HLA-DR BV711 (BD Biosciences, USA); 
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anti-CD39 FITC, anti-CD57 PE-Cy7, anti-HLA-DR 
BV570, anti-CD95 BV711, and anti-CD27 AF700 (Bio-
Legend, USA); and anti-CD123 AF700 (R&D, San Diego 
CA, USA). When necessary for intracellular staining, 
cells were fixed and permeabilized according to the 
manufacturer’s instructions (FoxP3/Transcription Fac-
tor Staining Buffer, Ebioscience, USA) and stained with 
the following intracellular antibodies: anti-Ki67 PerCP-
Cy5.5, anti-FoxP3 PE and anti-CTLA-4 APC (BD Bio-
sciences, USA). Isotype controls for CD39, CD31, 
CD25, CD95, Ki67, FoxP3 and CTLA4 were included in 
each experiment.

We characterized peripheral CD4 T-cells 
according to the distribution of their matura-
tional subsets [naïve  (CD27+CD45RA+), cen-
tral memory  (CD27+CD45RA−), effector memory 
 (CD27−CD45RA−) and TemRA  (CD27−CD45RA+)], 
also including recent thymic emigrants (RTEs; naïve-
CD31+) and the expression of activation (HLA-
DR), cell-cycle entry (Ki67), senescence (CD57) and 
prone-to-apoptosis (CD95) markers. We also iden-
tified Tregs with classical markers  (CD25hiFoxP3+) 
and their expression of the mentioned activa-
tion markers but also of functional markers (CD39, 
CTLA-4). We immunophenotyped myeloid dendritic 
cells (mDCs) as  Lin2−HLA-DR+CD123−CD11c+ 
and plasmacytoid dendritic cells (pDCs) as 
 Lin2−HLA-DR+CD11c−CD123+.Viable cells were iden-
tified using LIVE/DEAD fixable Aqua Blue Dead Cell 
Stain (Life Technologies, USA). One million cells of 
each sample were stained, and a minimum of 100,000 
events of total lymphocytes and 150,000 dendritic cells 
were acquired. Flow cytometry was performed on an 
LSR Fortessa (BD Biosciences, USA). Analysis was per-
formed using FlowJo version 9.3 (TreeStar).

Statistical analysis
Continuous variables were expressed as medians and 
interquartile ranges [IQRs] and categorical variables 
as the number of cases and percentages. Binary logis-
tic regression was used to analyse the potential effect of 
MVC-cART on the clinical and immunological param-
eters. Variables with a p value < 0.1 in the univariate 
analysis were considered in multivariable models. Linear 
regression analyses were performed to determine factors 
associated with the magnitude of response (absolute anti-
HBs titre). Correlations were assessed using the Spear-
man’s rho correlation coefficient. A p value of < 0.05 was 
considered statistically significant. Statistical analysis was 
performed using SPSS software (version 22; IBM SPSS, 
Chicago, USA), and graphs were generated using Prism 
(version 5, GraphPad Software, Inc.).

Results
Demographic, clinical and immunological variables 
associated with MVC‑containing cART 
Around half of the population (51%) received MVC-
cART, consisting of MVC and a boosted protease inhibi-
tor (PI) or MVC and two nucleoside-reverse transcriptase 
inhibitors (NRTIs). We compared the demographic, clini-
cal and immunological variables between patients receiv-
ing MVC-containing cART or MVC-lacking cART at the 
moment of vaccination (Table  1). The age,  CD4+/CD8+ 
ratio, time on HIVtreatment, %CD4+RTE and %mDCs 
had p values < 0.1 in the univariate analyses and were 
therefore included in the multivariate analysis. Notably, 
19% of the subjects treated with MVC-cART were also 
receiving NRTIs, whereas 70% of the subjects on MVC-
lacking cART were receiving NRTIs. Thus, the absence 
of NRTIs was highly collinear with the presence of 
MVC and was not included for adjustment in the mul-
tivariate analysis. As is shown, the  CD4+/CD8+ ratio 
(p = 0.086; OR [95% CI], 0.19 [0.03–1.26]) showed a trend 
toward independent association; however, %CD4+RTE 
(p = 0.024; OR [95% CI], 1.20 [1.02–1.41]) and %mDCs 
(p = 0.048; OR [95% CI], 0.16 [0.02–0.98]) were indepen-
dently associated with MVC-cART.

Relationship between the time of exposure 
to MVC‑containing cART and immunological variables
Since we observed a high degree of variability in the time 
of exposure to MVC-cART prior to vaccination (median 
[IQR], 16 [5–38] months), we explored whether this fact 
could have affected the immunological variables of the 
study. This analysis was logically restricted to the MVC-
cART group (N = 21) (Additional file  1: Table  S1). We 
found significant negative correlations between the time 
of exposure to MVC-cART and the %CD4+Ki67+, the 
%CD4+HLA-DR+ and the %CD4+CD25hiFoxP3+ (Fig. 1).

On the other hand, since we expected to find a direct 
association between MVC-cART and the inflammation-
related marker hsCRP, we also explored potential correla-
tions between the five immunological variables affected 
by MVC-cART in both a direct or a time-dependent 
way and the levels of hsCRP. hsCRP was only corre-
lated with %CD4+RTE (r = − 0.326; p = 0.049) and with 
%CD4+HLA-DR+ with borderline significance (r = 0.316; 
p = 0.057) (Additional file 2: Figure S1).

Impact of immunological variables targeted by MVC‑cART 
on the magnitude of the HBV vaccine response
To explore to what extent each of the immunological fac-
tors that were affected by MVC-cART could affect the 
magnitude of the response, we tested potential associa-
tions between these five variables and the magnitude of 
the HBV response. When analysed in the entire cohort 



Page 4 of 8Herrero‑Fernández et al. J Transl Med  (2018) 16:238 

Table 1 Demographic, clinical and immunological variables associated with MVC-containing cART 

Continuous variables are expressed as median values [IQR], and categorical variables are expressed as the number of cases (%). All demographic, clinical and 
immunological variables with p values of < 0.1 in the unadjusted model, except NRTI‑containing cART*, were included in the adjusted model and are shown in 
bolditalics. Hence, age,  CD4+/CD8+ ratio, time on HIV treatment, %CD4+RTE and %mDCs were included in the multivariate model (n = 38). Variables with p values 
of < 0.1 are shown in italics. Variables with p values of < 0.05 in the adjusted model were considered statistically significant and are shown in bolditalic. * The absence of 
NRTIs was collinear with the presence of MVC

Demographic, clinical 
and immunological variables 
(n = 41)

MVC‑containing 
cART (N = 21)

MVC‑lacking 
cART (N = 20)

Unadjusted p value; OR [95% CI] Adjusted p value; OR [95% CI]

Male sex, n (%) 15 (71) 16 (80) 0.525; 0.625 [0.147–2.659]

Age (years) 36 [31–44] 44 [39–48] 0.024; 0.892 [0.800–0.985] 0.878; 1.01 [0.87–1.18]

Nadir  CD4+ T‑cell count (cells/mm3) 294 [184–412] 264 [206–379] 0.539; 1.001 [0.997–1.005]

CD4+ T‑cell count (cells/mm3) 703 [565–869] 725 [529–911] 0.775; 1.000 [0.997–1.002]

CD8+ T‑cell count (cells/mm3) 781 [538–961] 596 [491–829] 0.109; 1.002 [1.000–1.004]

CD4+/CD8+ ratio 0.9 [0.6–1.2] 1.1 [0.9–1.6] 0.084; 0.309 [0.082–1.170] 0.086; 0.20 [0.03–1.26]

Time since diagnosis (months) 65 [32–212] 132 [67–235] 0.158; 0.995 [0.989–1.002]

Time on HIV‑treatment (months) 46 [33–147] 120 [64–201] 0.057; 0.992 [0.984–1.000] 0.105; 0.99 [0.97–1.00]

Sexual transmission, n (%) 18 (86) 18 (90) 0.677; 1.500 [0.223–10.077]

Previous AIDS, n (%) 1 (5) 1 (5) 0.972; 0.950 [0.055–16.293]

Previous HCV coinfection, n (%) 4 (19) 1 (5) 0.199; 4.471 [0.454–44.011]

NRTI containing cART, n (%)* 4 (19) 14 (70) 0.002; 0.101 [0.024–0.430]
hsCRP (mg/l) 0.8 [0.5–1.1] 0.9 [0.6–1.5] 0.324; 0.612 [0.231–1.623]

%  CD4+ naive 44.1 [34.5–55.6] 44.9 [33.7–50.1] 0.829; 0.995 [0.954–1.039]

%  CD4+ RTE 78.0 [69.9–82.5] 69.3 [64.3–76.4] 0.016; 1.116 [1.021–1.220] 0.024; 1.20 [1.03–1.41]
%  CD4+ central memory 29.4 [23.3–33.2] 28.3 [22.9–42.5] 0.752; 0.989 [0.926–1.057]

%  CD4+ effector memory 20.0 [18.0–27.5] 22.0 [12.9–28.5] 0.968; 0.999 [0.936–1.065]

%  CD4+ TemRA 2.4 [1.1–4.3] 1.6 [0.8–4.4] 0.873; 1.017 [0.831–1.243]

%  CD4+ HLA‑DR+ 1.8 [1.0–2.0] 1.6 [1.1–2.3] 0.880; 1.066 [0.464–2.451]

%  CD4+  Ki67+ 2.4 [2.0–3.2] 2.2 [2.1–2.6] 0.219; 1.629 [0.748–3.547]

%  CD4+  CD57+ 4.8 [3.5–8.0] 4.47 [2.1–10.8] 0.879; 0.990 [0.873–1.124]

%  CD4+  CD95+ 55.0 [40.7–66.0] 54.4 [44.1–63.9] 0.590; 1.011 [0.971–1.052]

%  CD4+  CD25hiFoxP3+ 1.2 [0.9–2.0] 1.5 [1.1–1.7] 0.992; 0.995 [0.358–2.765]

%  CD4+  CD25hiFoxP3+HLA‑DR+ 13.9 [9.9–21.6] 16.1 [12.2–22.1] 0.543; 0.973 [0.889–1.064]

%  CD4+  CD25hiFoxP3+ki67+ 18.5 [13.5–25.2] 20.1 [17.6–25.0] 0.216; 0.930 [0.830–1.043]

%  CD4+  CD25hiFoxP3+CD39+ 82.0 [41.7–88.2] 83.7 [81.2–85.1] 0.716; 1.005 [0.980–1.029]

%  CD4+  CD25hiFoxP3+CTLA4+ 59.0 [46.2–65.2] 57.7 [47.8–69.2] 0.545; 0.986 [0.941–1.032]

% mDCs 0.5 [0.3–0.8] 0.8 [0.6–1.4] 0.042; 0.226 [0.054–0.949] 0.048; 0.16 [0.03–0.98]
% pDCs 0.2 [0.1–0.2] 0.2 [0.1–0.3] 0.529; 0.109 [0.000–108.297]
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Fig. 1 Relationship between the time of exposure to MVC‑cART and immunological variables. Only significant correlations between the time of 
exposure to MVC‑cART and immunological variables are represented
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(n = 41) (Additional file 3: Table S2), only the %CD4Ki67+ 
showed a negative association with the magnitude of the 
response, with borderline significance (p = 0.053; B [95% 
CI], − 199.5 [− 401.4 to 2.5]). However, when restrict-
ing to the population treated with MVC-cART (n = 21) 
(Table 2), both the %CD4+Ki67+ (p = 0.027; B [95% CI], 
− 241.7 [– 452.8 to 30.5]) and the %CD4+HLA-DR+ 
(p = 0.038; B [95% CI], – 211.2 [– 409.6 to 12.8]) showed 
significant associations with the anti-HBs titres.

Discussion
We recently observed a beneficial effect of MVC-cART 
in the HBV vaccine response in a cohort of HIV-infected 
subjects younger than 50  years old [5]. We report 
now that HIV-infected subjects on MVC-cART have 
increased RTE but reduced mDC frequencies prior to 
vaccination. In addition, a longer time of exposure to 
MVC-cART was associated with lower frequencies of 
Tregs and activated and proliferating CD4 T-cells, with 
proliferating CD4 T-cells being inversely associated with 
the magnitude of the HBV vaccine response.

In the response to the HBV vaccine, a peptide antigen 
administered intramuscularly, helper CD4 T-cell func-
tion plays a major role [14, 15], and it is well assumed 
that T-cell exhaustion and senescence related to HIV 
infection may result in response failure [16]. Antiretrovi-
ral treatment improves antigen-specific T-cell responses 
and recovers the T-cell repertoire [17]. In fact, the dura-
tion of cART was associated with the HBV vaccine 
response [18]. However, the specific effects of different 
antiretroviral families have been less studied. It is reason-
able to expect a negative impact of NRTIs because they 
favour cellular senescence through inducing accelerated 
shortening of telomeres in peripheral T-cells [19]. In fact, 

telomere length has been associated with the response to 
influenza vaccine in elderly non-HIV-infected subjects 
[20]. Moreover, we have recently found a better profile 
in T-cells in subjects on NRTI-lacking regimens regard-
ing cell survival and replicative senescence [21]. On the 
other hand, there is some controversy about the poten-
tial immunological effects of MVC-cART. While some 
authors have described no effects on inflammatory bio-
markers [10, 22], others have comparatively demon-
strated their beneficial effects on these markers [6] and 
on the T-cell immunophenotype [8].

We have now explored the immunological profile asso-
ciated with MVC-cART in the context of the HBV vac-
cine response, finding a less activated and proliferative 
phenotype, a higher contribution of RTEs and a lower 
frequency of mDC and Treg cells. Notably, HBV vaccine 
responsiveness has been associated with most of these 
factors in other cohorts, including decreased activation 
of T-cells [23], a higher frequency of  CD34+ precursors 
[24, 25] and a lower frequency of Tregs [13]. Dendritic 
cells are being targeted for improvement of HBV vaccine 
responsiveness [26]. As far as we know, no previous data 
link proliferative CD4 T-cells with vaccine response in 
this context. However, it is known that HIV-infected sub-
jects have increased memory CD4 T-cell cycling, which 
has been proposed to be consequence of the inflamma-
tory environment of HIV infection [27], and a compro-
mised thymic output [28].

Since we found an increase of the RTE frequency 
along with a reduction of the frequency of proliferat-
ing CD4 T-cells associated with MVC-cART, we specu-
late a potential regenerative capacity for this regimen 
that requires further research. Indeed, proliferating 
CD4 T-cells in the absence of thymic output may show 
limited immunocompetence due to the constriction of 
TCR diversity [29]. Thus, this regimen could contribute 
to a potential enrichment of TCR diversity, which would 
favour the response against vaccine antigens. Along these 
lines, MVC positively impacted the response to different 
vaccine antigens in HIV-infected subjects [4, 5].

The effect on Treg cells also deserves discussion. We 
previously showed a net effect of MVC monotherapy 
in reducing Tregs in antiretroviral-naïve subjects [11]. 
In the present cohort of cART-experienced subjects, 
this reducing effect was dependent on the time of expo-
sure. Notably, both cohorts differed very much, not only 
because of the presence/absence of treatment but also in 
age or time from diagnosis, among other factors. Thus, 
our current results strengthen the hypothesis that MVC 
exerts immunomodulatory effects through reducing Treg 
cells. Treg cells are being studied in several immunization 
models [30–32] because they suppress the proliferation 
and cytokine secretion of CD4 and CD8 T cells as well 

Table 2 Relationship between  variables affected by  MCV-
containing cART and  the  magnitude of  the  HBV vaccine 
response

Continuous variables are expressed as median values [IQR]. Linear regression 
analyses were performed to determine variables associated with the magnitude 
of response (absolute anti‑HBs titre). Variables with p values of < 0.1 are shown 
in italics. Variables with p values of < 0.05 were considered statistically significant 
and are shown in bolditalic

Immunological 
variables

MVC‑cART (n = 21) Unadjusted p value; B 
(95% CI)

%  CD4+ RTE 78.0 [67.0–82.5] 0.599; 6.2 [− 18.0–30.3]

%  CD4+ HLA‑DR+ 1.8 [1.0–2.0] 0.038; − 211.2 
[− 409.6–12.8]

%  CD4+  ki67+ 2.4 [2.0–3.1] 0.027; − 241.7 
[− 452.8–30.5]

%  CD4+  CD25hiFoxP3+ 1.2 [0.9–2.0] 0.889; − 17.0 [− 267.7–
233.78]

% mDCs 0.5 [0.3–0.8] 0.272; 196.1 [− 166.3–
558.5]
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as monocytes, dendritic cells and B cells [33, 34]. In fact, 
Treg cells were found within germinal centres of human 
lymphoid tissues, suppressing the B cell immunoglobu-
lin class switching needed to mount a proper antibody 
response [35]. In our cohort, the frequencies of activated 
and proliferating Treg cells, which could be highly sup-
pressive, were inversely associated with the magnitude of 
the vaccine response (data not shown).

Importantly, plasma levels of soluble inflamma-
tory markers before vaccination negatively predicted 
responses to HAV, HBV, and tetanus vaccines in HCV 
and HIV infection [36]. Moreover, hsCRP levels were a 
significant predictor of herpes zoster vaccine response in 
elderly nursing home residents [37]. hsCRP levels were 
also inversely associated with the magnitude of the vac-
cine response in our cohort (data not shown), but we 
failed to observe a direct association between hsCRP 
levels and MVC-containing cART. However, we cannot 
exclude a potential effect of MCV-cART on other inflam-
matory cytokines, as previously reported [6]. Moreo-
ver, hsCRP was inversely associated with the frequency 
of RTEs and positively associated with activated CD4 
T-cells, both of which were impacted by MVC-cART, 
suggesting a potential indirect effect of MVC-cART on 
the inflammatory state.

As a limitation, the size of our cohort was restricted 
to the vaccinated population younger than 50 years old, 
where the effect of MVC-cART on the magnitude of vac-
cine responsiveness was clear [5]. It is well-known that 
age limits HBV vaccine responsiveness [38]. Thus, it is 
reasonable to speculate that the added age-associated 
immunodeficiency could limit or mask the potential ben-
efits of such antiretroviral therapy on the immunologi-
cal profile. In this sense, aged people have lower thymic 
output concomitant with higher peripheral T-cell pro-
liferation [27]. Interestingly, the group on MVC-cART 
had lower CD4/CD8 ratios, which have been reported to 
negatively impact the vaccine response [39]. This could 
be due to the shorter period of treatment in this group, 
which is critical for CD4/CD8 T-cell ratio normalization 
[40]. In any case, despite the lower CD4/CD8 ratio, the 
group on MVC-cART showed better vaccine responsive-
ness and improved CD4 T-cell profiles. Finally, we cannot 
discriminate among the particular effects due to the pres-
ence of MVC or to the absence of NRTIs in the cART, 
and thus, we can only draw conclusions about the benefi-
cial effects of such combined therapy. Similar combined 
therapies are being explored in the clinical setting in an 
attempt to reduce toxicities and to improve immune 
reconstitution [41].

Conclusion
The beneficial effect of MVC-cART in the HBV vaccine 
response in subjects below 50  years old could be medi-
ated at least partially by its reducing effect on the fre-
quencies of activated and proliferating CD4 T-cells prior 
to vaccination. This fact could be related with a potential 
regenerative capacity of such therapy and deserves fur-
ther research due to its relevance in the search for novel 
therapeutic targets that could improve immune function 
and vaccine responsiveness in HIV-infected subjects.
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