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Abstract 

Background:  Despite great development in genome and proteome high-throughput methods, treatment failure 
is a critical point in the management of most solid cancers, including breast cancer (BC). Multiple alternative mecha-
nisms upon drug treatment are involved to offset therapeutic effects, eventually causing drug resistance or treatment 
failure.

Methods:  Here, we optimized a computational method to discover novel drug target pathways in cancer subtypes 
using pathway cross-talk inhibition (PCI). The in silico method is based on the detection and quantification of the 
pathway cross-talk for distinct cancer subtypes. From a BC data set of The Cancer Genome Atlas, we have identified 
different networks of cross-talking pathways for different BC subtypes, validated using an independent BC dataset 
from Gene Expression Omnibus. Then, we predicted in silico the effects of new or approved drugs on different BC 
subtypes by silencing individual or combined subtype-derived pathways with the aim to find new potential drugs or 
more effective synergistic combinations of drugs.

Results:  Overall, we identified a set of new potential drug target pathways for distinct BC subtypes on which thera-
peutic agents could synergically act showing antitumour effects and impacting on cross-talk inhibition.

Conclusions:  We believe that in silico methods based on PCI could offer valuable approaches to identifying more 
tailored and effective treatments in particular in heterogeneous cancer diseases.
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Background
Breast cancer (BC), the most invasive cancer in women 
worldwide, is a heterogeneous disease, characterized by 
different subtypes that lead to different clinical prognosis 
and responses to treatments [1].

The advent of genome-wide technologies has made 
possible the generation of new hypotheses about the role 
of genomics in the efficiency of drugs developed for can-
cer and the event of adverse responses to cancer therapy.

In this context, several studies examined the effects 
of drugs considering protein network approaches [2]. 

In particular, the analysis of network models revealed 
that the partial inhibition of a small number of proteins 
belonging to a network has a higher impact on the dis-
ease than the complete inhibition of a single protein: 
indeed, drugs that have only one target (single hit) often 
do not affect complex system networks of proteins in an 
effective way [2]. Moreover, experimental studies have 
shown that cancer cells are able to resist to drug treat-
ments by creating and establishing news interactions 
in order to have an alternative signaling [3]. In network 
approaches, the effect of a drug treatment on some pro-
teins, represented by the nodes of a network, is amplified 
by the interactions of these proteins with other proteins 
in the networks, being these connections represented by 
edges [2]. However, notwithstanding useful to assess the 
drug effects on proteins, these approaches have not still 

Open Access

Journal of 
Translational Medicine

*Correspondence:  isabella.castiglioni@ibfm.cnr.it 
†Claudia Cava and Gloria Bertoli have contributed equally
Institute of Molecular Bioimaging and Physiology, National Research 
Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-018-1535-2&domain=pdf


Page 2 of 17Cava et al. J Transl Med  (2018) 16:154 

impacted in increasing the number of efficient drugs or 
in suggesting new potential targets for cancer treatment.

Hence, two critical points for drug discovery tools are: 
(i) to inhibit not single but multiple targets at the same 
time, and (ii) to prevent the formation of new interac-
tions that could lead to phenomena of resistance or inef-
ficacy of the drug.

Moreover, these two critical conditions can be further 
complicated by the interactions between pathways (path-
way cross-talk) that can modify the effect of drugs.

For instance, in some cancer cells, rapamycin-like 
drugs inhibit mTORC1 complex but at the same time 
indirectly activate phosphatidylinositol 3-kinase (PI3-
kinase) and AKT, mitigating the inhibitor effect of drugs 
[3]. Similarly, in triple negative BC the inhibition of AKT 
as a consequence of a drug is indirectly damped by the 
activation of receptor tyrosine kinases (RTKs), reducing 
the efficacy of the drug [4]. Moreover, pathway cross-talk, 
i.e. the one existing between EGFR and HER2, is a pos-
sible evasive way for the cell to develop resistance to HER 
family receptor inhibitors [5]. These examples illustrate 
how drugs targeting an individual protein or pathway 
may not yield to the expected therapeutic effect due to 
activation of alternative pathways that avoid the barrier 
inflicted by the cancer drug.

Therefore, understanding how and where the pathway 
cross-talk can be inhibited by drug treatments during a 
disease process ideally could lead to more effective thera-
pies, reducing the problem of drug resistance.

Once a map of pathway cross-talk specific of a disease 
is known, a potential solution hindering the formation 
of alternative signaling pathways created in response 
to therapy could be the administration of drugs able to 
act on both direct and indirect targets (generated by the 
inhibition of direct targets).

However, on this potential solution, the current opin-
ions are conflicting. Indeed, multi-target drugs show 
lower affinity than one-target-drugs [2, 3]. One of the 
most promising approaches is the use of synergistic 
drug combinations therapy able to act on both direct 
and indirect targets [2, 3]. The use of drug combinations 
could overcome drug resistance issues associated with 
high doses of single-hit drugs, and their best efficacy 
could lead to use a lower drug concentrations reducing 
unwanted side-effect toxicity [2, 3].

Understanding the effect of individual or combined 
drugs is critical in clinical studies. An important issue is 
the low reliability of the cell lines to predict the efficacy 
of drugs since cell lines did not show to be good mod-
els [3]. Thus, computational methods are demanded to 
deepen the potential role of a drug in a context of path-
way cross-talk.

A recent work by Jaeger et al. [6] has proposed a com-
putational method to simulate pathway cross-talk inhibi-
tion (PCI) given by individual or combined drugs in BC. 
In that study the authors considered the pathway cross-
talk between two different pathways for shared protein 
interactions. The authors developed their computational 
algorithm (PCI index) considering all those KEGG path-
ways that contain any of the primary targets of the Food 
and Drug Administration (FDA) approved drugs in BC. 
No selections on pathways have been performed.

In our recent studies on BC [7, 8], we generated a com-
putational approach to select a network of pathways 
specific for distinct BC subtypes and quantified their 
cross-talk. In these works, we focused on a network of 
pathways composed of interactions among ten pathways; 
our aim was to study the role of miRNAs regulating path-
way interactions in distinct BC subtypes.

In the present study we propose a computational 
method based on the work of Jaeger et  al. [6] and opti-
mized by taking advantage from results of our previous 
studies [7, 8]. More precisely, here we describe a proce-
dure to build a network of pathways de-regulated for dif-
ferent BC subtypes using gene expression data from The 
Cancer Genome Atlas (TCGA) and a list of pathways 
obtained by Ingenuity Pathway Analysis (IPA). We quan-
tified pathway cross-talk with a dissimilarity measure and 
we assessed potential drug target pathways through PCI. 
We then applied PCI to quantify the effects of individual 
or combined drugs in distinct BC subtypes on our net-
work of pathways. Finally, we speculated about the mode 
of action of FDA approved drugs and new potential drug 
targets that could decrease the activity of pathway-cross 
talk and therefore enhance clinical efficacy.

Methods
Datasets
We applied the computational approach on four BC 
subtypes with different diagnostic classification and 
prognosis [9]: “luminal A” tumors expressing hormone 
receptors, with a favorable prognosis; “luminal B” tumors 
expressing hormone receptors and high expression of 
proliferation genes with a good prognosis although with 
an increased risk of recurrence; “basal-like” tumors lack-
ing the expression of hormone receptors and HER2 but 
increased levels of cytokeratin (myoepithelial) (CK 5/6 
and CK 17), with shorter observed survival; and “HER2” 
tumors overexpressing HER2, with the worse survival.

We considered gene expression data from tissue sam-
ples studied by IlluminaHiSeq RNASeqV2 and derived 
from TCGA dataset: 233 BC luminal A samples, 103 BC 
luminal B samples, 43 BC HER2-overexpressing samples, 
74 BC basal samples and 113 normal samples (NS).
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We tested the approach with respect to its performance 
in classifying different subtypes by using an independent 
testing dataset from Gene Expression Omnibus (GEO) 
database (GSE58212): 121 luminal A, 69 luminal B, 36 
basal and 32 HER2-overexpressing samples.

We validated the approach with respect to its perfor-
mance in identifying drug target pathways, by using the 
Matador database [10] that provides interactions between 
chemicals and proteins. The association between drugs 
and BC was obtained using 13 drugs already known 
and approved by FDA for BC [11]: Tamoxifen, Ralox-
ifene, Torimefene, Anastrozole, Letrozole, Exemestane, 
Capecitabine, Fluorouracil, Gemcitabine, Docetaxel, Vin-
blastine, Everolimus, and Methotrexate.

The computational approach
The computational approach consists of seven steps (1. 
Differential expression analysis; 2. Pathway enrichment; 3. 
Pathway cross-talk; 4. Classification; 5. Pathway network; 
6. Pathway cross-talk inhibition; 7. Drug target pathway 
network).

All the steps were applied to each of the four BC sub-
types. The first four steps were applied 50 times in order 
to obtain a solid network of de-regulated cross-talking 
pathways for each BC subtype. More specifically, in order 
to perform a bootstrapping, we implemented a Monte 
Carlo cross-validation by randomly selecting some por-
tions of the dataset (60%) to build the training dataset of 
the classifier and the rest of data (40%) as testing data-
set. Step 1, 2, and 3 were applied on the training data set. 
Step 4 was applied on both training and testing dataset. 
To avoid problems of unbalanced classes, we randomly 
generated the same number of samples for each class of 
BC subtypes and NS.

Then, for each BC subtype, we generated a network-
based model of BC subtype pathways (5. Pathway net-
work), and we simulated in silico the drug-induced 
inhibition of pathways (6. Pathway cross-talk inhibition) 
focusing on the change of network efficiency.

At the end of the sixth steps, we found potential drug 
target pathways for each BC subtype, which, if inhibited, 
can change significantly the network efficiency. These 
drug targets could be considered for future applications 
in drug discovery (7. Drug target pathway network).

Figure  1 summarizes the proposed computational 
approach.

We validated our network-based models of BC subtype 
pathways and BC drug target pathways.

For the first validation task, we assessed the accuracy 
of using our subtype pathways in classifying four dif-
ferent BC subtypes using the GEO dataset, as data set 
independent from the TCGA dataset used for the identi-
fication of the subtype-derived pathways.

For the second validation task, we evaluated the mech-
anism of action of 13 FDA approved drugs for BC on our 
BC subtype drug target pathway network (DTPN). We 
compared the decrease of pathway cross-talk within the 
DTCN followed by inhibition of drug target pathways.

Step 1: differential expression analysis
For each BC subtype, differential expression analysis 
(DEA) was applied with respect to NS using TCGAbi-
olinks [12]. In particular, we used the edgeR package from 
Bioconductor [13] to find differential expressed genes 
(DEGs) between each BC subtype and NS. For each DEG 
we calculated the log fold-change between the two condi-
tions and corrected p-values using Benjamini–Hochberg 
procedure for multiple testing correction [14]. We defined 
DEGs if the absolute value of log fold change was > 1 and p 
value < 0.01. This step was applied 50 times on the 50 train-
ing datasets producing every time a different list of DEGs.

Step 2: pathway enrichment analysis
For each BC subtype, we identified a group of pathways 
significantly enriched with the list of subtype-derived 
DEGs. The original list of pathways (589) was obtained 
from IPA. Pathway Enrichment Analysis (PEA) was per-
formed with a Fisher’s test between DEGs and genes 
within IPA pathways [15]. We defined pathways enriched 
with DEGs if p-value of Fisher’s test was < 0.01. p-values 
were corrected using Benjamini–Hochberg procedure 
for multiple-testing correction [14]. As for the step 1, the 

Gene expression data

1. Differential Expression Analysis

2. Pathway enrichment

3. Pathway cross-talk

4. Classification

5. Pathway Network

6. Pathway cross-talk inhibition

Monte  Carlo 
Cross-Validation
(repeated 50 times)

7. Drug target pathway network

Fig. 1  Proposed approach for each subtype
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step 2 was applied 50 times on the same training dataset 
of the step 1.

Step 3: pathway cross‑talk
Pathway cross-talk between pathways enriched with sub-
type-derived DEGs was quantified using a discriminating 
score (DS) [7, 8]. This score was defined by comparing 
the mean of the gene expression levels of each pair of 
pathways enriched with subtype-derived DEGs:

where Mx and Sx represent the mean and the standard 
deviation of the gene expression levels in the pathway x, 
and My and Sy represent the mean and the standard devi-
ation of the gene expression levels in the pathway y.

From this step we created a matrix for each sample (BC 
subtypes and NS) containing a DS value for each pair of 
pathways enriched with subtype DEGs.

Step 4: classification
In order to select the best discriminating pairs of cross-
talking pathways, we implemented a Random Forest 
Classification using the R-package [16, 17] to classify 
each BC subtype versus NS using the DS matrix obtained 
from step 3 as input of the classifier.

For each combination of pathways we estimated the 
Area Under Curve (AUC) values by cross-validation 
method (k-fold cross-validation, k = 10). We used the fol-
lowing parameters: mtry (number of variables randomly 
sampled as candidates at each split) = sqrt(p), p being the 
number of variables in the matrix of data; ntree (number 
of trees grown) = 500.

The classification was performed on the training data-
set 50 times for each matrix obtained from the previous 
three steps. Every time we obtained the top-10 pairs of 
subtype cross-talking pathways with the best AUC value. 
Then we validated these pathways on the testing dataset.

In conclusion, for each BC subtype and for all 50 boot-
straps we obtained 10 × 50 couples of pathways with the 
best AUC values validated on the testing dataset.

Step 5: pathway network
For each BC subtype, by univocally selecting the pairs 
of cross-talking pathways better discriminating each 
subtype, we then generated a network-based model of 
BC subtype pathways, where the nodes of each subtype 
network represent pathways and the links that connect 
nodes the pathway cross-talks.

DS =
Mx −My

Sx + Sy

Step 6: pathways cross‑talk inhibition
In a network-based model, the network efficiency is 
defined as the sum of the reciprocals of the short-
est direct path lengths between all pairs of network 
elements.

If N is the number of network elements and di,j is the 
shortest direct path lengths of two elements i and j,

NE can range from 0 to 1, where 1 means that all nodes 
interact directly with each other expressing the best effi-
ciency of the network [2].

For each BC subtype, the network efficiency (NE) of 
the disease was calculated starting from the subtype 
pathway network, the number of the pathways (nodes) 
and the shortest direct path lengths between two path-
ways (e.g. i, j in N).

The efficient drug-induced inhibition of a single path-
way can be modelled by the elimination of all direct 
interactions at the pathway. The corresponding drug 
effect on the network can be measured by NE as an 
index of network integrity reduction measuring the 
drug efficiency [2].

For each BC subtype, we simulated, in silico, the 
drug-induced inhibition of pathways cross-talk by 
eliminating, one-by-one, all direct cross-talks. We 
thus quantified the new NE value of the network, that 
we called nNE. nNE is thus a function of k, being k the 
pathway or the combination of the pairs of pathways 
inhibited in the network.

As effect of this operation, nNE was < NE or > NE, 
resulting in increasing or decreasing the drug effi-
ciency, respectively.

Step 7: drug target pathway network
For each BC subtype, we selected those cross-talking 
pathways from the network, that, if inhibited, caused 
nNE < NE, thus building a potential DTPN.

Furthermore, from the equation:

we quantified the percentage activity of the subtype path-
way network that is inhibited, defined as PCI [6].

Figure  2 explains steps 6 and 7 of the proposed 
approach.

(1)NE =

∑

i �=j
1

d(i,j)

N (N − 1)
i, j ∈ N

(2)PCI = 100×

(

1−
nNE

NE

)
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Validation of DTPN
From the independent GEO dataset GSE58212 (121 
luminal A BC, 69 luminal B BC, 36 basal BC and 32 
HER2-overexpressing) we considered the gene expres-
sion levels belonging to our BC subtype pathway net-
works. We tested their ability to classify each subtype. 
We then investigated the role of the top-10 genes that 
obtained the best classification performance in the per-
spective of DTPN.

We validated DTPN by assessing if FDA-approved 
BC drugs have the target pathways within DTPN, and 
evaluating how these drugs could reduce effectively the 
NE of the DTPN.

For each BC subtype, we evaluated the association of 
13 FDA-approved BC drugs (from Matador database) 
and DTPN. For this purpose, we applied PEA with a 

Fisher’s test between gene targets of the drug and genes 
within IPA pathways. We defined pathways enriched 
with drug target genes if p-value of Fisher’s test was 
< 0.01.

For each BC subtype, we measured the effects of the 
considered drugs, when administered individually and in 
combination on the DTPN. We quantified this effect by 
PCI.

Results
Luminal A
For the Luminal A we found a pathway network com-
posed of 73 individual pathways and 157 pathway cross-
talks (Fig. 3a). AUC for this pathway network was 0.93 in 
the TCGA training dataset and 0.88 in the TCGA testing 
dataset, respectively (Fig. 3b).

i
j

Pathway network

Network efficiency, NE New network efficiency, nNE

Yes:
nNE<NE

?

New network efficiency, nNE

Yes:
nNE<NE

?

New network efficiency, nNE

1 2

3

5 6 7

4

Fig. 2  Drug target pathway network. In de-regulated pathway network, the activity of pathway interactions (network efficiency, (NE)) is calculated. 
1 and 4 Inhibition of an individual pathway and its interactions. A new-NE (nNE) is calculated. 2 and 5 If nNE < NE the inhibited pathway could be a 
potential drug target. 3 and 6 integration of drug-pathway associations. 7 nNE is calculated inhibiting two pathways
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The efficiency of the pathway network (NE) was 0.3218. 
nNE, calculated after the drug-induced in silico inhibi-
tion of each single pathway (among the 73) or each com-
bination of pair of pathways (among the 2628) is shown 
in Fig.  3c and d, respectively. The inhibition of 34/73 
individual pathways reduces NE (red line) of the path-
way network with nNE values that ranges from 0.3043 
to 0.3217 (Fig. 3c). The inhibition of 1388 combinations 
(among 2628) reduces the NE (red line) of the pathway 
network with values that range from 0.2927 to 0.3217 
(Fig.  3d). Thus, the inhibition of couples of pathways of 
the cloud seems to reduce the efficiency more than indi-
vidual pathway.

Additional file  1 shows nNE values in the lumi-
nal A network after inhibition of individual and pairs 
pathway(s). The top-10 pathways, which, if inhibited, 
have resulted in a better efficiency reduction of the net-
work are: ‘LXR/RXR Activation’, ‘Extrinsic Prothrom-
bin Activation Pathway’, ‘Estrogen Receptor Signaling’, 
‘Human Embryonic Stem Cell Pluripotency’, ‘Ethanol 
Degradation IV’, ‘RAR Activation’, ‘Fatty Acid oxidation’, 

‘Bladder Cancer Signaling’, ‘Factors Promoting Cardio-
genesis in Vertebrates’ and ‘Glioma Invasiveness Sign-
aling’. ‘LXR/RXR Activation’ plays the most important 
role since its single inhibition reduces the network 
efficiency of 5.5% (PCI). The inhibition of both ‘LXR/
RXR Activation Pathway’ and ‘Extrinsic and Prothrom-
bin Activation Pathway’ is the most effective reducing 
the efficiency of the network of 9% (PCI). In line with 
the use of synergistic drug combinations, drugs acting 
on both ‘LXR/RXR Activation Pathway’ and ‘Extrinsic 
and Prothrombin Activation Pathway’ could be more 
effective.

DTPN of Luminal A was built considering only the 34 
pathways of the network that if inhibited, reduced the NE 
(nNE < NE).

Starting from the 13 FDA approved drugs for BC (fluo-
rouracil, anastrozole, capecitabine, docetaxel, exemes-
tane, fulvestrant, gemcitabine, letrozole, methotrexate, 
raloxifene, tamoxifene, toremifene, and vinblastine) we 
obtained 8 drugs that interact with the DTPN of Luminal 
A (capecitabine, fulvestrant, gemcitabine, methotrexate, 

a b
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Fig. 3  Luminal A BC. a Pathway network: nodes represent pathways (73) and edges represent interactions between pathways (157); b Boxplot of 
AUC values for training and testing dataset; c Trend of new network efficiency (nNE) calculated after removal of each of the 73 individual pathways; 
d nNE values calculated after removal of all combinations of 2628 couples of pathways. Red lines represent the efficiency of the original network 
(NE)
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raloxifene, tamoxifen, toremifene and vinblastine) 
(Table 1).

In particular, the inhibition of the ‘Estrogen Receptor 
Signaling’ reduces the NE of 2.50%. This inhibition could 
be obtained using three FDA approved drug (fulvestrant, 
raloxifene and tamoxifen) that have a significant number 
of target genes belonging to this pathway.

The ‘FXR/RXR Activation Pathway’ if inhibited, 
reduces the NE of 0.75%, and it is target of three drugs 
(methotrexate, toremifene and vinblastine). The ‘RAR 
Activation Pathway’, if inhibited, reduces the NE of 1.5% 
and it is target of two drugs (raloxifene and tamoxifen). 
The ‘Regulation of Cellular Mechanics by Calpain Pro-
tease’ pathway, if inhibited, reduces the NE of 0.6% and is 
target of two drugs (fulvestrant and gemcitabine).

Among the drug target pathways found in our 
DTPN, we found 5/34 pathways that were ranked as 
part of the top 10 pathways, playing the major role 
in the reduction of NE. These pathways are ‘Estro-
gen Receptor’ targeted by tamoxifen and raloxifene; 

‘Human Embryonic Stem Cell Pluripotency’ targeted 
by tamoxifen; ‘RAR Activation Pathway’ targeted by 
raloxifene and tamoxifen; ‘Bladder Cancer Signaling’ 
targeted by fulvestrant; ‘Factors Promoting Cardiogen-
esis in Vertebrates’ targeted by tamoxifen. In particu-
lar, tamoxifen acting on 4 pathways reduces the NE of 
8.59%, thus it is very effective.

FDA-approved drugs do not seem to act on ‘LXR/
RXR Activation’, ‘Extrinsic Prothrombin Activation’; 
‘Ethanol Degradation IV’, ‘Fatty Acid oxidation’ and 
‘Glioma Invasiveness Signaling’. In particular the first 
two pathways, according to our findings, could be 
potential dug targets for anticancer drug treatment.

Furthermore, considering FDA-approved drugs, our 
study confirms that tamoxifen is the drug with the best 
efficacy on the pathway network since it is able alone 
to inhibit four pathways (‘Estrogen receptor’, ‘Human 
Embryonic Stem Cell Pluripotency’, ‘Factors Promoting 
Cardiogenesis in Vertebrates’ and ‘RAR activation’).

Table 1  Drug-pathway association in the DTPN of Luminal A subtype

Drug Pathway nNE and PCI (vs NE = 0.3218)

Capecitabine Eicosanoid 0.3194 (PCI 0.75%)

Fulvestrant Bladder cancer signaling (1); estrogen receptor (2); regulation of cellular mechanics by calpain protease 
(3)

(1) 0.3179 (PCI 1.18%)
(2) 0.3137 (PCI 2.50%)
(3) 0.3198 (PCI 0.59%)
(1–2) 0.3094 (PCI 3.84%)
(1–3) 0.3159 (PCI 1.81%)
(2–3) 0.3115 (PCI 3.18%)
(1–2–3) 0.3071 (PCI 4.56%)

Gemcitabine Regulation of cellular mechanics by calpain protease 0.3198 (PCI 0.59%)

Methotrexate FXR/RXR activation 0.3193 (PCI 0.75%)

Raloxifene Estrogen receptor (1); RAR activation (2) (1) 0.3137 (PCI 2.50%)
(2) 0.3170 (PCI 1.47%)
(1–2) 0.3098 (PCI 3.70%)

Tamoxifen Estrogen receptor (1); factors promoting cardiogenesis in vertebrates (2); human embryonic stem cell 
pluripotency (3); RAR activation (4)

(1) 0.3137 (PCI 2.50%)
(2) 0.3180 (PCI 1.17%)
(3) 0.3157 (PCI 1.86%)
(4) 0.3170 (PCI 1.47%)
(1–2) 0.3092 (PCI 3.88%)
(1–3) 0.3071 (PCI 4.56%)
(1–4) 0.3098 (PCI 3.70%)
(2–3) 0.3098 (PCI 3.70%)
(2–4) 0.3129 (PCI 2.74%)
(3–4) 0.3103 (PCI 3.56%)
(1–2–3) 0.3003 (PCI 6.68%)
(2–3–4) 0.3025 (PCI 5.98%)
(3–4–1) 0.3051 (PCI 5.18%)
(1–2–3–4) 0.2941 (PCI 8.59%)

Toremifene FXR/RXR activation (1); pregnenolone biosynthesis (2) (1) 0.3193 (PCI 0.75%)
(2) 0.3192 (PCI 0.79%)
(1–2) 0.3165 (PCI 1.61%)

Vinblastine Axonal guidance signaling (1); FXR/RXR activation (2) (1) 0.3216 (PCI 0.05%)
(2) 0.3193 (PCI 0.75%)
(1–2) 0.3190 (PCI 0.86%)
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Luminal B
In luminal B we found a pathway network composed 
of 73 individual pathways and 129 pathway cross-talks 
(Fig.  4a). In the TCGA training dataset mean AUC was 
0.98 and 0.96 in the TCGA testing dataset (Fig. 4b).

The efficiency of the pathway network was 0.3272. Fig-
ure 4c and d show the trend of nNE in case of inhibition 
of 73 individual pathways or each combination of pairs of 
pathways (among 2628), respectively.

The inhibition of 27/73 individual pathways reduces the 
NE of the pathway network with values that range from 
0.3123 to 0.3270 (Fig.  4c). The inhibition of 1199/2628 
combinations of pairs of pathways reduces the NE with 
values that range from 0.2935 to 0.32720 (Fig.  4d). As 
for luminal A, also in luminal B the inhibition of pairs of 
pathways of the pathway network reduce the efficiency 
more than individual pathway.

Additional file 2 shows nNE values in the luminal B after 
the inhibition of individual and combined pathway(s). 
The top-10 pathways, which if inhibited, lead to the best 
reduction of network efficiency include: ‘Cell Cycle Con-
trol of Chromosomal Replication’, ‘P2Y Purigenic Recep-
tor Signaling Pathway’, ‘Growth Hormone Signaling’, 
‘Epithelial Adherens Junction Signaling’, ‘Regulation of 

the Epithelial-Mesenchymal Transition Pathway’, ‘Mitotic 
Roles of Polo-Like Kinase’, ‘Tight Junction Signaling’, ‘Role 
of BRCA1 in DNA Damage Response’, ‘Cellular Effects 
of Sildenafil (Viagra)’ and ‘Cell Cycle: G2/M DNA Dam-
age Checkpoint Regulation’. The inhibition of ‘Cell Cycle 
Control of Chromosomal Replication’ plays an important 
role reducing the efficiency of 4.5% (PCI). The inhibition 
of both ‘Growth Hormone Signaling’ and ‘Regulation of 
the Epithelial-Mesenchymal Transition Pathway’ plays 
the most important role reducing the efficiency of the 
network of 10% (PCI).

DTPN of luminal B was built considering the 27 path-
ways that inhibited reduced the NE. We obtained 4 BC 
drugs (among the 13 FDA approved) (docetaxel, fulves-
trant, raloxifene, and tamoxifen) that interact with the 
DTPN of luminal B (Table 2).

In particular, the ‘Estrogen-mediated S-phase Entry 
Pathway’ is target of three approved drugs (fulvestrant, 
raloxifene and tamoxifen). The ‘Epithelial Adherens Junc-
tion Signaling Pathway’, if inhibited, reduces the NE of 
2.3% and it is target of docetaxel. The ‘Germ Cell-Sertoli 
Cell Junction Signaling Pathway’, if inhibited, reduces 
the NE of 0.4% and it is target of docetaxel. The ‘Regula-
tion of the Epithelial-Mesenchymal Transition Pathway’, 
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Fig. 4  Luminal B. a Pathway network: nodes represent pathways (73) and edges represent interactions between pathways (129); b Boxplot of AUC 
values for training and testing dataset; c Trend of new network efficiency (nNE) calculated after removal of individual pathways; d Trend of nNE 
values calculated after removal of all combinations of couples of pathways. Red lines represent the efficiency of the original network (NE)
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if inhibited, reduces the NE of 2.1% and it is target of 
tamoxifen. The ‘Wnt/catenin Signaling Pathway’, if inhib-
ited, reduces the NE of 0.5% and it is target of tamoxifen.

Among the drug target pathways found in luminal B 
DTPN, we found 2/27 pathways that were ranked as to be 
part of the top 5 pathways playing the major role in the 
reduction of NE. These pathways are ‘Epithelial Adherens 
Junction Signaling’ and ‘Regulation of the Epithelial-Mes-
enchymal Transition Pathway’ targeted by docetaxel and 
tamoxifen, respectively.

FDA-approved drugs do not seem to act on ‘Cell Cycle 
Control of Chromosomal Replication’, ‘P2Y Purigenic 
Receptor Signaling Pathway’ and ‘Growth Hormone 
Signaling’; pathways that according our findings were the 
best potential drug targets. In particular, tamoxifen act-
ing on three pathways reduces the NE of 3%.

Furthermore, considering FDA-approved drugs our 
study demonstrates that docetaxel is the drug with the 
best action on pathway network since is able to inhibit 
‘Epithelial Adherens Junction Signaling’.

HER2‑overexpressing BC
We found a pathway network in HER2 BC composed 
of 100 individual pathways and 222 pathway cross-talks 
(Fig.  5a). Mean AUC was 0.98 and 0.91 in the TCGA 
training and testing dataset, respectively (Fig. 5b).

The efficiency of the pathway network in HER2 was 
0.3492. Figure  5c and d show nNE in case of inhibition 
of individual pathways or each combination of pairs of 
pathways, respectively. The inhibition of 39/100 indi-
vidual pathways reduces the NE of the pathway network 
with values that range from 0.3309 to 0.3492 (Fig.  5c). 
The inhibition of 2271/4950 combinations of pathways 
reduces the NE of the pathway network with values that 
ranges from 0.3189 to 0.3492 (Fig.  5d). It is confirmed 
that the inhibition of couples of pathways of the pathway 

network reduces the efficiency more than individual 
pathway.

Additional file  3 shows nNE values after inhibition of 
individual and combined pathway(s) in HER2. The top-
10 pathways, which if inhibited, have resulted in a bet-
ter efficiency reduction of the network include: ‘Role of 
BRCA1 in DNA Damage Response’, ‘NAD biosynthesis II 
(from tryptophan)’, ‘Protein Kinase A Signaling’, ‘Ephrin 
Receptor Signaling’, ‘Growth Hormone Signaling’, ‘Cellu-
lar Effects of Sildenafil (Viagra)’, ‘Human Embryonic Stem 
Cell Pluripotency’, ‘Axonal Guidance Signaling’, ‘CXCR4 
Signaling’ and ‘Acute Phase Response Signaling’. The inhi-
bition of ‘Role of BRCA1 in ‘‘DNA Damage Response’ 
an important role reducing the efficiency of 5.2% (PCI). 
The inhibition of both ‘NAD biosynthesis II (from tryp-
tophan)’ and ‘Role of BRCA1 in DNA Damage Response’ 
plays a more important role reducing the efficiency of the 
network of 8% (PCI).

DTPN was built considering 39 pathways whose inhibi-
tion reduces the efficiency of the network. Starting from 
the 13 BC drugs, we obtained five drugs (fluoracil, doc-
etaxel, fulvestrant, methotrexate, and tamoxifen) that 
interact with the HER 2 DTPN (Table 3).

In particular, the ‘Salvage Pathways of Pyrimidine 
Deoxyribonucleotides’ is target of two FDA-approved BC 
drugs (fluoracil, and methotrexate). The ‘Bladder Can-
cer Signaling Pathway’, if inhibited, reduces the NE of 
0.5% and it is target of fulvestrant. The ‘Epithelial Adhe-
rens Junction Signaling Pathway’, if inhibited, reduces 
the NE of 0.2%, and it is target of docetaxel. The ‘Human 
Embryonic Stem Cell Pluripotency pathway’, if inhibited, 
reduces the NE of 0.8% and it is target of tamoxifen. The 
‘Regulation of the Epithelial-Mesenchymal Transition 
Pathway’ if inhibited, reduces the NE of 0.1% and it is 
target of tamoxifen. The ‘Regulation of the Salvage Path-
ways of Pyrimidine Deoxyribonucleotides’, if inhibited, 

Table 2  Drug-pathway association in the DTPN of luminal B subtype

Drug Pathway nNE and PCI (vs NE = 0.3272)

Docetaxel Germ cell-sertoli cell junction signaling (1); epithelial adherens junction signaling (2) (1) 0.3256 (PCI 0.46%)
(2) 0.3196 (PCI 2.30%)
(1–2) 0.3180 (PCI 2.80%)

Fulvestrant Estrogen-mediated S-phase entry 0.327093 (PCI 0.03%)

Raloxifene Estrogen-mediated S-phase entry 0.327093 (PCI 0.03%)

Tamoxifen Wnt/catenin signaling (1); regulation of the epithelial-mesenchymal transition pathway (2); 
estrogen-mediated S-phase entry (3)

(1) 0.3254 (PCI 0.53%)
(2) 0.3201 (PCI 2.14%)
(3) 0.3270 (PCI 0.03%)
(1–2) 0.3182 (PCI 2.73%)
(1–3) 0.3251 (PCI 0.64%)
(3–2) 0.3196 (PCI 2.29%)
(1–2–3) 0.3174 (PCI 3.06%)
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reduces the NE of 0.2% and it is target of fluoracil, and 
methotrexate.

Among the drug target pathways found in our DTPN 
we found 1 pathway that was ranked as to be part of the 
top 10 pathways playing the major role in the reduction 
of NE (‘Human Embryonic Stem Cell Pluripotency’).

FDA-approved drugs do not seem to act on ‘Role of 
BRCA1 in DNA Damage Response Pathway’ and ‘NAD 
biosynthesis II (from tryptophan)’, pathways that, accord-
ing to our findings, were the best potential drug targets.

Furthermore, considering FDA-approved drugs, our 
study confirms that tamoxifen is the drug with the best 
action on pathway network since it is able to inhibit 
‘Human Embryonic Stem Cell Pluripotency’.

Basal BC
We found a pathway network in basal BC composed of 43 
individual pathways and 74 pathway cross-talks (Fig. 6a). 
In the TCGA training dataset the mean AUC was 0.98 
and 0.97 in the TCGA testing dataset (Fig. 6b).
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Fig. 5  HER2-overexpressing BC (HER2). a Pathway network: nodes represent pathways (100) and edges represent interactions between pathways 
(222); b Boxplot of AUC values for training and testing dataset; c Trend of new network efficiency (nNE) calculated after removal of individual 
pathways; d nNE values calculated after removal of all combinations of couples of pathways. Red lines represent the efficiency of the original 
network (NE)

Table 3  Drug-pathway association in the DTPN of HER2 subtype

Drug Pathway nNE and PCI (vs NE = 0.3492)

Fluoracil Salvage pathways of pyrimidine deoxyribonucleotides 0.3482 (PCI 0.27%)

Docetaxel Epithelial adherens junction signaling 0.3485 (PCI 0.17%)

Fulvestrant Bladder cancer signaling 0.3473 (PCI 0.51%)

Methotrexate Salvage pathways of pyrimidine deoxyribonucleotides 0.3482 (PCI 0.27%)

Tamoxifen Human embryonic stem cell pluripotency (1); regulation of the epithelial-
mesenchymal transition (2)

(1) 0.3464 (PCI 0.78%)
(2) 0.3490 (PCI 0.02%)
(1–2) 0.3462 (PCI 0.84%)
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The efficiency of the pathway network in basal BC was 
0.3445. nNE in case of the single inhibition of the 43 indi-
vidual pathways or each combination of pairs of pathways 
are shown in Fig.  6c and d, respectively. The inhibition 
of 19/43 of individual pathways reduces the NE of the 
pathway network with values that ranges from 0.2959 to 
0.3443 (Fig. 6c). The inhibition of 416/903 combinations 
of pathways reduces the NE of the pathway network with 
values that ranges from 0.2148 to 0.3445 (Fig.  6d). The 
inhibition of couples of pathways is confirmed to reduce 
the efficiency more than individual pathway.

Additional file  4 shows nNE values after inhibition of 
individual and combined pathway(s) in basal BC. The 
top-10 pathways which, if inhibited, have resulted in a 
better efficiency reduction of the network include: ‘EIF2 
Signaling’, ‘Mismatch Repair in Eukaryotes’, ‘Aryl Hydro-
carbon Receptor Signaling’, ‘Cell Cycle Control of Chro-
mosomal Replication’, ‘Cell Cycle: G2/M DNA Damage 
Checkpoint Regulation’, ‘Role of BRCA1 in DNA Damage 

Response’, ‘Noradrenaline and Adrenaline Degradation’, 
‘Histamine Degradation’, ‘Tryptophan Degradation X 
(Mammalian, via Tryptamine)’ and ‘Dopamine Degra-
dation’. The inhibition of ‘EIF2 Signaling’ plays a more 
important role reducing the efficiency of 14% (PCI). The 
inhibition of both ‘Mismatch Repair in Eukaryotes’ and 
‘Cell Cycle:G2/M DNA Damage Checkpoint Regulation’ 
plays a more important role reducing the efficiency of the 
network of 37% (PCI).

DTPN of basal BC was built considering 19 pathways 
that reduced NE. We obtained 6 drugs (fluoracil, capecit-
abine, fulvestrant, methotrexate, raloxifene and tamox-
ifen) that interact with the DTPN in basal BC (Table 4).

In particular, the ‘Salvage Pathways of Pyrimidine 
Deoxyribonucleotides’ is target of two FDA-approved 
drugs (fluorouracil, and methotrexate) and ‘Aryl Hydro-
carbon Receptor Signaling’ of 4 FDA-approved drugs 
(fluorouracil, fulvestrant, raloxifene, and tamoxifene). 
The ‘Aryl Hydrocarbon Receptor Signaling’, if inhibited, 
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Fig. 6  Basal. a Pathway network: nodes represent pathways (43) and edges represent interactions between pathways (74); b Boxplot of AUC values 
for training and testing dataset; c Trend of new network efficiency (nNE) calculated after removal of individual pathways; d Trend of nNE values 
calculated after removal of all combinations of couples of pathways. Red lines represent the efficiency of the original network (NE)
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reduces the NE of 5%. The ‘Salvage Pathways of Pyrimi-
dine Deoxyribonucleotides’, if inhibited, reduces the 
NE of 0.5%. The ‘Triacylglycerol Degradation Pathway’, 
if inhibited, reduces the NE of 0.4% and it is target of 
capecitabine.

Among drug target pathways found in our DTPN we 
found 1 pathway of the top 5 pathways playing the major 
role in the reduction of NE (‘Aryl Hydrocarbon Receptor 
Signaling’). In particular, fluorouracil acting on 2 path-
ways reduces the NE of 6.86%, thus it is very effective.

The considered FDA approved drugs for BC do not 
seem to act on ‘EIF2 Signaling’ and ‘Mismatch Repair 
in Eukaryotes’, pathways that, according to our findings, 
could be interesting potential drug targets.

Validation of DTPN
To classify luminal A, we considered the expres-
sion levels of 2693 genes from the independent GEO 
dataset GSE58212 and belonging to our luminal A 
pathway network. We found PRC1 (AUC = 0.862), 
CCNB2 (AUC = 0.847), BIRC5 (AUC = 0.838), 
PTTG1 (AUC = 0.831), CCNA2 (AUC = 0.827), 
E2F1 (AUC = 0.826), KIF11 (AUC = 0.826), CDC25A 
(AUC = 0.823), UBE2C (AUC = 0.82), and CDK1 
(AUC = 0.817) as the top 10 genes obtaining the best 
classification performance. Among them, 7/10 genes 
play a crucial role in luminal A DTPC. PRC1, CCNB2, 
PTTG1, KIF11, and CDC25A belong to ‘Mitotic Roles of 
Polo-Like Kinase’ pathway. The inhibition of this pathway 
can reduce the NE of luminal A of 1% (PCI). CCNA2 and 
CDK1 belong to ‘Regulation of Cellular Mechanics by 
Calpain Protease’ pathway. Its inhibition can reduce the 
NE of luminal A of 0.6% (PCI).

In luminal B BC we considered the expression lev-
els of 2158 genes from the GEO dataset belong-
ing to our luminal B pathway network. We found 
CX3CL1 (AUC = 0.779), KIF11 (AUC = 0.777), 
PTTG1 (AUC = 0.766), PRC1 (AUC = 0.761), 
CCNA2 (AUC = 0.757), ACTG2 (AUC = 0.756), 
CCNB1 (AUC = 0.755), RND3 (AUC = 0.752), KIF23 

(AUC = 0.751), and CLDN8 (AUC = 0.749) as the top 
10 genes. Among them, 6/10 genes play a crucial role in 
luminal B DTPN. KIF11, CCNB1, PTTG1, PRC1, and 
KIF23 belong to ‘Mitotic Roles of Polo-Like Kinase’ path-
way, whose inhibition can reduce the NE of luminal B of 
2% (PCI). ACTG2 belongs to ‘Tight Junction Signaling’ 
pathway. Its inhibition can reduce the NE of 1.7% (PCI).

In HER2 BC we considered the expression levels of 
1172 genes from the GEO dataset belonging to 100 path-
ways of our HER2 pathway network. We found ESR1 
(AUC = 0.811), E2F1 (AUC = 0.78), RARG (AUC = 0.769), 
PNMT (AUC = 0.758), PLCB3 (AUC = 0.757), ERBB2 
(AUC = 0.741), MYL5 (AUC = 0.729), PPP1R10 
(AUC = 0.729), BCL2 (AUC = 0.727), and WNT3 
(AUC = 0.724), as the top 10 genes.

Among them 6/10 genes play a crucial role in DTPN 
in HER2. E2F1 belongs to ‘Role of BRCA1 in DNA Dam-
age Response’ and ‘Growth Hormone Signaling’ path-
ways. These pathways are involved in HER2 DTPN since 
their inhibition can reduce the NE of 5.3 and 1.1% (PCI), 
respectively.

PLCB3, ERBB2, MYL5, and WNT3 belong to ‘Axonal 
Guidance Signaling’ pathway, whose inhibition can 
reduce the NE of HER2 of 0.8% (PCI). PPP1R10 belongs 
to ‘Protein Kinase A Signaling’. Its inhibition can reduce 
the NE of 2.8% (PCI).

Furthermore, ESR1 is targeted by fulvestrant, 
toremifene, raloxifene, and tamoxifen; ERBB2 is targeted 
by tamoxifen, and BCL2 is targeted by fulvestrant, gem-
citabine, docetaxel and tamoxifen.

In basal BC we considered expression levels of 1196 
genes from the GEO dataset belonging to 43 pathways of 
basal pathway network. We found RHOB (AUC = 0.946), 
FBP1 (AUC = 0.942), RARA (AUC = 0.911), PPP1R14C 
(AUC = 0.909), E2F3 (AUC = 0.905), F7 (AUC = 0.904), 
RND1 (AUC = 0.903), ESR1 (AUC = 0.902), CDC20 
(AUC = 0.892), and CCNE1 (AUC = 0.892), as the top 10 
genes.

RARA, ESR1, and CCNE1 belong to ‘Aryl Hydrocarbon 
Receptor Signaling’ pathway whose inhibition can reduce 

Table 4  Drug-pathway association in the DTPN of basal BC subtype

Drug Pathway NE nNE and PCI (vs NE = 0.3445)

Fluorouracil Aryl hydrocarbon receptor signaling (1); salvage pathways of 
pyrimidine deoxyribonucleotides (2)

0.3445 (1) 0.3241 (PCI 5.9%)
(2) 0.3425 (PCI 0.56%)
(1–2) 0.3208 (PCI 6.86%)

Capecitabine Triacylglycerol degradation 0.3445 0.3429 (PCI 0.46%)

Fulvestrant Aryl hydrocarbon receptor signaling 0.3445 0.3241 (PCI 5.9%)

Methotrexate Salvage pathways of pyrimidine deoxyribonucleotides 0.3445 0.3425 (PCI 0.56%)

Raloxifene Aryl hydrocarbon receptor signaling 0.3445 0.3241 (PCI 5.9%)

Tamoxifene Aryl hydrocarbon receptor signaling 0.3445 0.3241 (PCI 5.9%)
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Table 5  Pathways in common in all breast cancer subtypes and specific for each subtype as derived from the proposed 
network approach

In italics pathways that are target of FDA-approved drugs for breast cancer are indicated

Common to all Luminal A Luminal B HER2 Basal

Assembly of RNA polymer-
ase II complex

Cell cycle regulation by BTG 
family proteins

Antioxidant action of 
vitamin C

Actin cytoskeleton signaling Aryl Hydrocarbon Receptor 
Signaling

Axonal guidance signaling Chemokine signaling Germ cell-sertoli cell junc-
tion signaling

Adrenergic signaling eNOS signaling

Coagulation system Chondroitin sulfate biosyn-
thesis

HMGB1 signaling Breast cancer regulation by 
Stathmin1

Fatty acid oxidation I

Colorectal cancer metastasis 
signaling

chondroitin sulfate biosyn-
thesis (late stages)

IL-6 signaling cAMP-mediated signaling Gluconeogenesis I

EIF2 signaling Ephrin B signaling Linolenate biosynthesis II 
(animals)

Cardiac hypertrophy signal-
ing

Glycolysis I

Ethanol degradation II Granulocyte adhesion and 
diapedesis

Antioxidant action of 
vitamin C

Caveolar-mediated endocy-
tosis signaling

IL-1 signaling

Ethanol Degradation IV Heparan sulfate biosyn-
thesis

Germ cell-sertoli cell junc-
tion signaling

Corticotropin Releasing 
Hormone Signaling

Mitochondrial Dysfunction

Extrinsic prothrombin 
activation pathway

Heparan sulfate biosynthe-
sis (late stages)

HMGB1_Signaling CREB signaling in neurons mTOR signaling

Fatty acid-oxidation LXR/RXR activation IL-6 signaling DNA damage-induced 
14–3–3 signaling

Phenylalanine Degradation IV 
(Mammalian, via Side Chain)

HIF1 signaling Pancreatic adenocarcinoma 
signaling

Linolenate biosynthesis II 
(animals)

Endothelin-1 signaling Phototransduction pathway

Histamine degradation Pregnenolone biosynthesis Gap junction signaling PI3K/AKT signaling

Noradrenaline and adrena-
line degradation

Regulation of cellular 
mechanics by calpain 
protease

GDNF family ligand–recep-
tor interactions

Oxidative ethanol degrada-
tion III

Semaphorin signaling in 
neurons

Glycine betaine degrada-
tion

Putrescine degradation III Superoxide radicals degra-
dation

Glycogen degradation II

Tryptophan degrada-
tion X (mammalian, via 
tryptamine)

Induction of apoptosis by 
HIV1

Leptin signaling in obesity

Macropinocytosis signaling

NAD biosynthesis II (from 
tryptophan)

Ovarian cancer signaling

Relaxin signaling

RhoGDI signaling

Role of IL-17A in psoriasis

Role of tissue factor in 
cancer

Sperm motility

Synaptic long term depres-
sion

tRNA splicing

Tryptophan degradation to 
2-amino-3-carboxymuco-
nate semialdehyde

TWEAK Signaling
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the NE of 6% (PCI). E2F3 belongs to ‘Role of BRCA1 
in DNA Damage Response’ pathway. This pathway is 
involved in basal DTPN since its inhibition can reduce 
the NE of 4% (PCI).

DTPN pathways in BC subytpes
We have constructed a model of BC heterogeneity based 
on different subtype pathway networks. Table  5 shows 
de-regulated pathways in common in all subtypes, which 
can be considered as responsible for the initial stages of 
BC, and those de-regulated pathways present only in one 
subtype, specific of the behaviour of that subtype.

We can observe in particular that: (i) ‘LXR/RXR Acti-
vation Pathway’, that in our analyses emerged as a new 
potential drug target for luminal A, is specific for this 
subtype; (ii) ‘NAD biosynthesis II (from tryptophan)’ 
pathway, that according to our findings was found the 
best potential drug target in HER2, is specific for HER2 
subtype; and (iii) ‘Aryl Hydrocarbon Receptor Signaling’, 
that is targeted by 4 FDA-approved drugs (fluoroura-
cil, fulvestrant, raloxifene, and tamoxifene) is specific of 
basal subtype.

Discussion
The formation of new alternative signaling pathways 
upon drug treatment is one of the main causes of inef-
ficacy or development of drug resistance in cancer. The 
study of alternative signalling through pathway cross-
talk can help drug-development strategies. Therefore, 
in this work, we optimized a computational method to 
investigate the role of pathways target of FDA approved 
drugs or new drugs that specifically addresses this issue. 
Our in silico method is based on the identification and 
quantification of the pathway cross-talk for distinct can-
cer subtypes. The effects of drugs inhibiting individual or 
combined pathways can be simulated and measured with 
the purpose to find new potential drug-targets or syner-
gistic combination drugs.

Most works that study drug-development approaches 
use network models. Usually the most used methods 
to examine the effects of drugs involve protein–protein 
interactions, metabolic control analysis or neural net-
work [18–21]. Nevertheless, most of these methods are 
focused on the detection of drugs that have only one tar-
get (single hit) and often are not able to reveal the path-
way interactions in an effective way [2]. Furthermore, 
these methods show to depend on a large number of 
parameters [2]. Pathway cross-talk can be an ideal frame-
work to assess pathway interactions that could origi-
nate phenomena of resistance or inefficacy of the drug. 
The investigation of drug-induced modifications on the 
different levels of pathway cross-talk can improve the 
knowledge of drug effects and potential drug targets.

Although based by the computational method of Jae-
ger et al. [6], our application presents several differences: 
(1) the Jaeger’s work was focused on cross-talk due to the 
presence of overlapping genes between different path-
ways, we instead explore cross-talk as regulatory inter-
actions among distinct pathways; (2) in Jaeger’s work 
all KEGG pathways were considered, we instead made 
a selection on pathways based on their different activity 
in different cancer subtype vs normal tissues. In line with 
the last scenario, the computational method of Jaeger 
et al. is suitable to model static pathway cross-talks, while 
our method could be used to represent dynamic disease 
progression.

Using Monte-Carlo cross validation and classifica-
tion, we built networks of cross-talking pathways able to 
classify with high performance cancer subtypes versus 
NS. We inhibited pathway cross-talks in such subtype-
derived networks and identified a number of pathways 
that could be potential targets of drugs by measuring 
drug ability in reducing the network efficiency.

We applied our network-based model of cross-talking 
pathways to the BC subtype gene expression level of an 
independent GEO dataset, to test independently the abil-
ity of the pathway networks to classify BC subtypes. We 
found that the top 10 genes achieving the best classifica-
tion performance belong to the expected cross-talking 
pathways.

We then associated some drugs already approved by 
FDA for BC with the networks of cross-talking path-
ways. The association was done considering the number 
of known drug-target proteins mapped on pathways and 
selecting potential synergistic combination of drugs. In 
general, the inhibition of pairs of pathways of the pathway 
network reduces the network efficiency more than the 
inhibition of individual pathways. The considered FDA 
approved drugs for BC act on several pathways included 
in the networks of cross-talking pathways. However, they 
do not act on other pathways that, according to our find-
ings, could be interesting potential drug targets in BC.

In luminal A, we found that the individual inhibition of 
‘LXR/RXR Activation’ pathway reduces the efficiency of 
the network of 5.6%. LXRs are nuclear receptors (NRs) 
involved in cholesterol, glucose, fatty acid metabolism 
and inflammatory responses. NRs are a family of tran-
scription factors that bind to respond to lipophilic sign-
aling molecules (ligand) regulating downstream effectors. 
They also represent one of the most important drug-
development targets, since the designing of synthetic 
compounds that mimic the functions of ligands can 
selectively modulate the activity of NRs [22]. Selective 
estrogen receptor modulators (SERMs) and aromatase 
inhibitors (AI) are examples of synthetic compounds, 
which block the production of estrogen [23]. LXRs 
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ligands on prostate cancer reported an effect on cell pro-
liferation and cell cycle, acting on p27 and SKP2 [24]. In 
BC the effects of LXRs ligands seem to be slightly differ-
ent, as there is a decrease of SKP2 but not of p27 [25]. 
However, there are conflicting reports about the poten-
tial role of ‘LXR/RXR Activation’ pathway in BC [25–28]. 
In our diagnostic pathway cloud, synergistic drug combi-
nations acting on: (1) ‘LXR/RXR Activation’ and ‘Extrin-
sic and Prothrombin Activation’ Pathways; (2) ‘LXR/RXR 
Activation’ and ‘Estrogen Receptor Signaling’; (3) ‘LXR/
RXR Activation pathway’ and ‘RAR Activation’ reduce 
of almost 9% the efficiency of the network in luminal A. 
To date, synergistic drug combinations performing on 
these pathways are not reported. Therefore, in luminal A 
we suggest LXR/RXR Activation as drug-pathway target 
combined with a drug acting on ‘Extrinsic and Prothrom-
bin Activation’ Pathway, ‘Estrogen Receptor Signaling’ or 
‘RAR Activation’.

In luminal B subtype we found that the individual inhi-
bition of ‘Cell Cycle Control of Chromosomal Replica-
tion’ reduces the efficiency of the network of 4.5% while, 
in our pathway network, synergistic drug combinations 
acting on: (1) ‘Growth Hormone Signaling’ and ‘Regu-
lation of the Epithelial-Mesenchymal Transition’ Path-
ways; (2) ‘Mitotic Roles of Polo-Like Kinase’ and ‘Cell 
Cycle Control of Chromosomal Replication’; (3) ‘Cell 
Cycle Control of Chromosomal Replication’ and ‘Growth 
Hormone Signaling’ reduce of almost 10% the efficiency 
of the network. To date, synergistic drug combinations 
targeting on these pathways are not presented. Regard-
ing FDA approved drugs, we confirm docetaxel and 
tamoxifen as promising candidates for synergistic drug 
combinations since they can modulate ‘Epithelial Adhe-
rens Junction Signaling’ and ‘Regulation of the Epithelial-
Mesenchymal Transition Pathway’, respectively. Previous 
studies showed that a combination therapy of these drugs 
in BC cell lines increases the anti-proliferative effects of 
single agents [29, 30].

In HER2 subtype we found that the inhibition of 
BRCA1 in ‘DNA Damage Response’ reduces the effi-
ciency of 5.2% while, in our pathway network, synergis-
tic drug combinations acting on ‘NAD biosynthesis II 
(from tryptophan)’ and ‘Role of BRCA1 in DNA Damage 
Response’ reduce the efficiency of 8%.

In basal subtype we found that the inhibition of EIF2 
Signaling reduces the efficiency of 8.5%. While, in our 
diagnostic pathway cloud, synergistic drug combina-
tions acting on ‘Mismatch Repair in Eukaryotes’ and 
‘Cell Cycle:G2/M DNA Damage Checkpoint Regu-
lation’ reduce the efficiency of the network of 37%. 
Regarding FDA-approved drugs, we suggest fulves-
trant, or fluorouracil and/or capecitabine as promising 

candidates for synergistic drug combinations since 
they can modulate ‘Epithelial Salvage Pathways of 
Pyrimidine Deoxyribonucleotides’, ‘Aryl Hydrocarbon 
Receptor Signaling’ and ‘Triacylglycerol Degradation’.

Our approach presents some limitations. One limit is 
the dependence on expression data analysis to identify 
affected pathway, mainly based on the use of changes in 
gene expression that are largest in size or level. How-
ever, some studies [31] show that even small changes 
in expression levels, which seems not to be of greatest 
functional significance, can be relevant in terms of phe-
notypic difference. For example a yeast cell containing a 
mutation in a gene that confers temperature sensitivity, 
thus essential for survival at non-permissive tempera-
ture, can indeed growth at the normal or permissive 
temperature. The temperature-sensitive gene in this 
mutant cell usually has a point mutation that leads to 
subtle changes in its protein production, but has a high 
impact in the protein function and thus in the pheno-
type of the cell. Thus, one possible risk of our approach 
is to lose significant features from a biological point of 
view (e.g. significant pathways), even if not from a sta-
tistical point of view. Furthermore, in our work, as in 
common in many studies, there is also a dependency 
in the data analysis workflow based on the used pub-
lic datasets. Computational methods that use biological 
information (as pathways) from prior knowledge could 
have a bias towards pathways or genes that are better 
known, since they are more present in the literature and 
databases [32–34]. Moreover, different pathway data-
bases can give different list of genes of the same path-
way leading to affect the results of the computational 
method. On the other hand, public experimental data 
could derive by different experimental conditions and/
or lack of standardizations of experimental designs. In 
addition, the details of cell-specific information or clin-
ical data of samples are not always available [32–34]. 
However, we optimized our computational method 
based on the reported databases by reducing the bias 
on data from such databases performing a Monte Carlo 
cross-validation.

As overall result, our approach have generated prom-
ising hypotheses for identifying altered pathways as 
potential therapeutic targets, either by using synergistic 
drug combinations and new/approved drugs. Despite 
the number of drugs is increasing, the specific molec-
ular mechanisms underlying drug combinations with 
therapeutic effect remain often unclear. We believe 
that the current efforts based on pathway cross-talk 
drug strategies will provide key information that are 
required to decipher molecular mechanism contribut-
ing to resistance or inefficacy of drugs.
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Conclusions
Overall, our computational method has identified a set 
of new potential drug targets that have a large impact 
on cross-talk inhibition. We consider that further 
experiments are required to enable the translation of 
new drug target pathways into therapeutic strategies, 
however our results show that methods focusing on the 
Monte Carlo cross-validation and PCI could offer valu-
able approaches to discover synergistic drugs.

Moreover, we focused our study on BC, but we sug-
gest the application of our approach also to other com-
plex and heterogeneous diseases, in which pathway 
cross-talk is likely to cooperate important functions.
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