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Abstract

antibody signatures that predict irAE development.

ing and microRNA biogenesis.

Background: Immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, or the combination) enhance anti-tumor
immune responses, yielding durable clinical benefit in several cancer types, including melanoma. However, a subset
of patients experience immune-related adverse events (irAEs), which can be severe and result in treatment termina-
tion. To date, no biomarker exists that can predict development of irAEs.

Methods: We hypothesized that pre-treatment antibody profiles identify a subset of patients who possess a sub-clin-
ical autoimmune phenotype that predisposes them to develop severe irAEs following immune system disinhibition.
Using a HuProt human proteome array, we profiled baseline antibody levels in sera from melanoma patients treated
with anti-CTLA-4, anti-PD-1, or the combination, and used support vector machine models to identify pre-treatment

Results: We identified distinct pre-treatment serum antibody profiles associated with severe irAEs for each therapy
group. Support vector machine classifier models identified antibody signatures that could effectively discriminate
between toxicity groups with >90% accuracy, sensitivity, and specificity. Pathway analyses revealed significant enrich-
ment of antibody targets associated with immunity/autoimmunity, including TNFa signaling, toll-like receptor signal-

Conclusions: Our results provide the first evidence supporting a predisposition to develop severe irAEs upon
immune system disinhibition, which requires further independent validation in a clinical trial setting.
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Background

Immune checkpoint inhibitors (ICI) target cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4, e.g. ipili-
mumab) or programmed cell death protein 1 (PD-1,
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e.g. nivolumab, pembrolizumab) to promote T cell
mediated anti-tumor immunity and produce durable
clinical benefit in a subset of patients with advanced
melanoma [1]. More recently, the combination of anti-
CTLA-4 and anti-PD-1 has been shown to be more
efficacious than single agent therapy [2]. Despite this
progress a substantial proportion of patients receiv-
ing ICI develop immune-related adverse events (irAEs)
[3], which are often more severe in patients receiving
combination regimens [4]. IrAEs can necessitate sys-
temic immunosuppression therapy and/or treatment
termination [5]. Hence, there is an urgent clinical need
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to identify patients who are more likely to develop
severe irAEs, particularly as more patients receive
these immune therapies due to the approval of ICI for
other cancer types (e.g. bladder, lung), and in the adju-
vant setting for stage III/IV melanoma [6, 7]. A bio-
marker predictive of immunotherapy toxicity would
facilitate a personalized approach to patient manage-
ment, enabling more-effective combination treatments
to be used in patients who are less likely to develop
severe irAEs. Additionally, identifying toxicity-prone
patients would improve the clinical management of
irAEs by allowing for earlier or prophylactic interven-
tions to mitigate toxicities.

Although there is intense interest in identifying mark-
ers that predict the efficacy of ICIs [8, 9], pre-treatment
biomarkers of ICI toxicity and irAEs have been less thor-
oughly investigated. Changes in IL-17, CD8 T-cell clonal
expansion, eosinophil counts, and markers of neutrophil
activation have been associated with specific irAEs after
treatment induction, but did not predict toxicity devel-
opment when tested at baseline [10-12]. Several other
potential baseline risk factors for development of irAEs
from ICI have been suggested, including a family history of
autoimmune diseases, previous viral infections, and use of
medicines with known autoimmune toxicities [13, 14], but
these require further validation. More recently, in a small
study, the baseline microbiome composition of melanoma
patients was found to be associated with onset of immune
mediated colitis following anti-CTLA-4 treatment [15];
while this finding demonstrates the potential utility of pre-
treatment/baseline biomarkers of toxicity development, it
does not reflect the spectrum of different irAEs associated
with ICL. In light of the similarities in clinical presentation
between patients experiencing irAEs from ICI therapy and
those with autoimmune disorders, such as colitis, hepatitis,
thyroiditis, nephritis, hypophysitis, rashes and arthralgias
[16], we hypothesized that a subset of melanoma patients
have a baseline (pre-treatment) autoimmune susceptibil-
ity, characterized by a repertoire of pre-existing autoanti-
bodies against specific antigen targets, which can predict
development of irAEs following ICI therapy. We tested this
hypothesis using a human proteome microarray to iden-
tify toxicity-associated autoantibodies in pre-treatment
sera from 75 metastatic melanoma patients who received
anti-CTLA-4, anti-PD-1, or combination treatment (anti-
CTLA-4 and anti-PD-1 together).

Methods

Study population and serum collection

Metastatic melanoma patients treated with ICI therapy
at New York University (NYU) Langone Health from
2011 to 2016 were enrolled in the Interdisciplinary
Melanoma Cooperative Group (IMCG) biospecimen
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database protocol. This protocol, approved by the
NYU Institutional Review Board, prospectively enrolls
patients with melanoma presenting to surgical and
medical oncologists at the NYU Perlmutter Cancer
Center (PCC), and banks patient biospecimens (linked
to extensive, prospectively recorded clinicopathological
data) for research purposes with protocol-driven fol-
low up every 3 months [17]. Informed consent for use
of clinical data and specimens was obtained from all
patients at the time of enrollment.

To minimize pre-analytical variability, samples were
routinely collected, processed, and stored using stand-
ardized NYU IMCG protocols. Blood was collected in
Becton—Dickinson vacutainer SST venous blood collec-
tion—serum tubes (catalog #366430). For consistency
and reproducibility, samples were processed <90 min
after collection by centrifugation for 10 min at 2500 rpm
at room temperature. Aliquots (1 ml) of sera were stored
in 1.8 ml cryovials at —80 °C, and thawed once at the
time of the proteomic array assay.

For assay validation purposes, two identical serum
samples were collected from 10 immunotherapy treated
patients: (i) anti-CTLA-4 (n=3), (iii) anti-PD-1 (n=3),
and (iii) combination therapy (n=4), to assess the repro-
ducibility of the proteomic microarray. All sera were ali-
quoted into smaller volumes and stored at — 80 °C until
further use, and thawed on ice prior to the assay.

Pre-treatment sera samples (n=78) were prospec-
tively collected from three different ICIbased cohorts of
stage IV metastatic melanoma patients: (i) anti-CTLA-4
(n=39 samples from 37 patients), (ii) anti-PD-1 (n=28
samples from 27 patients), and (iii) anti-CTLA4/anti-
PD-1 combination therapy (n=11 samples from 11
patients). Patient-matched post-treatment samples were
also collected for the anti-CTLA-4 cohort. Samples were
grouped based on immunotherapy toxicity outcomes
that were determined from treatment initiation to at
least 6 months after the last treatment. Clinicians treat-
ing patients at the NYU PCC rigorously assessed toxic-
ity according to objective common terminology criteria
for adverse events (CTCAE) criteria. All patient medi-
cal records underwent additional review by a medical
oncologist (MW) to account for differences in toxicity
monitoring of patients treated on and off protocol. Toxic-
ity was stratified into three clinically-relevant groups: no
toxicity (CTCAE grade 0), mild toxicity (CTCAE grade
1-2), and severe toxicity (CTCAE grade 3—4).

Serum antibody profiling using a human proteome
microarray

To profile serum antibodies, we utilized a human pro-
teome microarray (HuProt Human Proteome Microarray
v3.1, CDI Labs, Mayaguez, PR) that contains over 19,000
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unique, individually-purified full-length human proteins
in duplicate, covering more than 75% of the proteome
[18]. Briefly, the HuProt arrays were blocked with block-
ing solution (5% BSA/1xTBS-T) at room temperature
for 1 h, and then probed with serum samples (diluted
1:1000) at 4 °C overnight. The arrays were then washed
with 1xTBS-T for 3 times, 10 min each, and probed with
Alexa-647 labeled anti-human IgG (Jackson ImmunoRe-
search, West Grove, PA) at room temperature for 1 h,
followed by three washes of 1xTBS-T, 10 min each, and
then spun to dryness prior to scanning.

Array data pre-processing

Slides were scanned using a GenePix 4000B instrument
(Molecular Dynamics, Sunnyvale, CA) and GenePix Pro
(v7.2.22) software was used to measure the signal intensi-
ties for IgG binding to array features as well as any back-
ground signal present. Before pre-processing, each array
was manually inspected and problematic probes were
flagged. For each sample array, resulting GPR files were
processed using the Bioconductor (v3.5) package PAA
(v1.10.0) in R (v3.4.1).

To assess the overall quality of individual arrays, fore-
ground and background signal intensities were plotted by
array position to determine any regions containing tech-
nical artifacts. These regions were noted and compared
to array plots made following all preprocessing to assess
the cumulative effect of all procedures on individual
arrays. The signal intensities for probes which had been
manually flagged were replaced by the median signal
intensity for all probes which were not flagged, and arrays
were subsequently corrected for background intensities
using the Bioconductor package limma (v3.32.5) with the
“normexp” model and a saddle-point approximation. To
determine the appropriate normalization procedure, MA
plots were created for each sample array and the effects
of cyclic loess, quantile, and vsn normalization visualized.
Cyclic loess normalization gave the best normalization
across all arrays and was applied using the normalizeAr-
rays function in the PAA package. Finally, a combined
signal intensity was generated from the duplicate probes
for each antibody using the mean of the individual signal
intensities and changing to log, scale.

Analysis of differential levels of serum antibodies

For each treatment type, pre-treatment samples were
assigned to one of two toxicity groups (no/mild toxicity
versus severe toxicity) for differential expression analysis.
Student’s t test was used to determine if there was a sig-
nificant difference between average signal intensities for
each antibody across toxicity groups, and p values and
log, fold change (FC) were recorded for each antibody.
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The power calculations for comparing the toxicity groups
for the three treatments are shown in Additional file 1:
Table S1, and indicate that the studied sample sizes are
adequately powered (>80%) to detect antibodies with
FCs at 1.15, 1.13 and 1.48 at alpha=0.01 for the anti-
CTLA-4, anti-PD-1, or combination treatments, respec-
tively. Antibodies with p<0.05 between toxicity groups
were defined as being differentially expressed (DE), and
those with p<0.01 and |log,(FC)|>log,(1.5) were des-
ignated as belonging to a “filtered” list of DE antibodies
associated with toxicity. Both DE and “filtered” antibod-
ies were used in further analyses.

Classification models for treatment toxicity

For each treatment type and each antibody in the “fil-
tered” differentially expressed list, the Shannon entropy
was calculated and information gain derived. Informa-
tion gain describes how important a particular feature
(antibody) is with regards to the model being developed.
Any antibodies with corresponding information gain
>0.05 were retained as a part of a “curated” antibody fea-
ture set. While this threshold is low, it was necessary due
to the relatively low number of samples available and still
enables the identification of antibodies involved in toxic-
ity prediction.

Using the “filtered” and “curated” antibody sets sepa-
rately, two support vector machine (SVM) classification
models were built using R package €1071 (v1.6.8) with
type parameter C-classification and radial bias kernel.
For each model, samples were divided into either three
or fivefolds, depending on the number of samples avail-
able in each toxicity group, and cross-validation used
to assess model performance. Each fold was left out for
testing once, and a model trained using the remaining
folds. Every model was evaluated for training and testing
accuracy, sensitivity, and specificity, and for each sample
the probability of being designated severe toxicity was
recorded. Samples with no/mild toxicity were designated
as “negative” and those with severe toxicity designated
as “positive”; therefore, sensitivity describes the propor-
tion of severe toxicity samples accurately identified while
specificity describes the proportion of no/mild toxicity
samples identified as such. This three or fivefold cross-
validation scheme was repeated 100 times in order to
mitigate the effects of overfitting due to limited sample
numbers. By repeating the cross-validation procedure
and reporting the average results, it is possible to ensure
that reported statistics are not overestimated due to how
samples are assigned to training versus testing groups.

Functional analysis of antigen targets of toxicity-asso-
ciated antibodies. The HOMER (v4.9) enrichment analy-
sis tool and functional annotations from WikiPathways
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(http://www.wikipathways.org/) were used to deter-
mine the potential significance of the antigen targets of
antibodies that were strongly differentially expressed
between no/mild and severe toxicity groups.

Results

Reproducibility of a proteomic microarray for serum
antibody profiling

As assay reproducibility is critical for biomarker devel-
opment, we first assessed the intra-chip and inter-chip
reproducibility of a human proteome microarray (HuProt
v3.1, CDI Labs) using pre-treatment sera from a cohort
of 10 metastatic melanoma patients (Additional file 2:
Table S2). We assessed the correlation between duplicate
immunoglobulin G (IgG) spots on each chip and found
a high degree of intra-chip reproducibility (r*=0.98;
Fig. 1a, top). The same 10 sera samples were also assayed
on two separate occasions to assess inter-chip reproduc-
ibility, which showed a strong correlation between IgG
antibody readings across chips (r>=0.95; Fig. 1a, bot-
tom). We then tested anti-CTLA-4 IgG antibody levels
between matched pre- and posttreatment sera from an
independent anti-CTLA-4 cohort (n=39 samples) as an
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internal control, and found that anti-CTLA-4 IgG anti-
body levels were significantly increased in post-treat-
ment vs. pre-treatment sera (p<0.0001; Fig. 1b). Our
analysis also showed a strong correlation (mean r*=0.89)
between global IgG antibody levels from pre- and post-
anti-CTLA-4 treatment sera (Additional file 3: Figure S1).
Hence, the human proteome microarray allows repro-
ducible and sensitive profiling of serum autoantibodies,
making it suited to identification of differences in pre-
treatment autoantibody levels in patient sera.

Differences in baseline serum autoantibodies predict
development of immunotherapy toxicity

To test our hypothesis that a specific baseline autoanti-
body profile can predict development of toxicity follow-
ing treatment with ICI, we assessed IgG antibody levels
in 78 baseline serum samples from 75 ICI-treated meta-
static melanoma patients. We assayed 39 serum sam-
ples from 37 anti-CTLA-4-treated patients, 28 serum
samples from 27 patients treated with anti-PD-1, and
11 samples from 11 patients treated with combined
anti-CTLA-4/anti-PD-1 (Additional file 4: Table S3).
The severity of immune toxicity was graded according
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Table 1 Baseline patient characteristics
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Anti-CTLA-4 Anti-PD-1 Combination Fisher’s test
(n=37) (n=27) (in=11) p value
No. (%) No. (%) No. (%)
Gender Female 12(32) 11(41) 4 (36) 0.848
Male 25 (68) 16 (59) 7 (64)
Age at treatment initia- Mean (SD) 66.2 (13) 69.9 (14) 59.9(13) 1
tion
Median 674 71 61.1
ECOG PS (pretreatment) 0 28 (76) 19 (70) 7 (64) 0.736
>1 9 (24) 8 (30) 4 (36)
LDH (pretreatment) Normal 31(91) 19 (70) 9(82) 0.114
Elevated 0(9) 8(30) 2(18)
Unknown 3 0 0
Response to treatment POD 22 (59) 10 (37) 4 (36) 0.01
SD 10 (27) 5(19) 109
PR 5(14) 8(30) 2(18)
CR 0 2(7) 4 (36)
UNC 0 2(7) 0
Toxicity None 8(22) 4(15) 0
Mild 20 (54) 15 (55) 4 (36) 0.16
Severe 9 (24) 8 (30) 7 (64)
Gl toxicity Mild 9(23.1) 12 (42.9) 3(273) 0.08
Severe 6(154) 3(10.7) 6 (54.5)
Skin toxicity Mild 15 (38.5) 17 (60.7) 5(45.5) 043
Severe 0 1(3.6) 1(9.1)
Endocrine toxicity Mild 5(12.8) 11(39.2) 4(36.4) 0.71
Severe 0 1(3.6) 1(9.1)
Required treatment Yes 4011) 3(11) 6 (54) 0.006
termination
No 33(89) 24 (89) 5 (46)

Summary of clinical features from 75 melanoma patients treated with anti-CTLA-4 (n=37), anti-PD-1 (n=27), or anti-CTLA-4 and anti-PD-1 (n=11). LDH lactate
dehydrogenase, POD progression of disease, SD stable disease, PR partial response, CR complete response, UNC unclassified. Fisher’s exact test was used to examine
the significance of the association between patient characteristics and treatment type. Two anti-CTLA-4 patients were sampled twice (11-311,in 2011 and 2013;
12-071,in 2012 and 2013), and one anti-PD-1 patient was sampled twice (13-185, in 2015 and 2016)

to objective common terminology criteria for adverse
events (CTCAE), following detailed review of patient
medical records by a single investigator (MW), as either
no toxicity (grade 0), mild toxicity (grade 1-2) or severe
toxicity (grade 3-4). We also noted the location and
type of immune toxicity (gastrointestinal, skin, endo-
crine) experienced by each patient. Comparing patients
treated with anti-CTLA-4, anti-PD-1, or combined
anti-CTLA-4/anti-PD-1, there was no statistically sig-
nificant difference in gender, age at treatment initiation,
pre-treatment lactate dehydrogenase (LDH) levels, or
pre-treatment Eastern Cooperative Oncology Group
Performance Status (ECOG PS; [19]) (Table 1). Further-
more, we did not observe significant differences in the
severity or location of toxicity between treatment groups.
Compared to anti-CTLA-4 or anti-PD-1 monotherapy

patients, the combination treatment cohort showed sig-
nificantly better response to therapy (p=0.01) but also
significantly more treatment termination (p=0.006),
which is consistent with clinical trials demonstrating the
greater efficacy and increased toxicity with combined ICI
[2].

To identify pre-immunotherapy toxicity-associated
autoantibodies, we compared IgG autoantibody profiles
between anti-CTLA-4- or anti-PD-1-treated patients
who experienced no or mild vs. severe toxicity. For pre-
treatment samples from the combined anti-CTLA-4 and
anti-PD-1 treatment group, we compared IgG antibodies
between mild and severe toxicity samples, as all patients
developed some degree of immune-related toxicity with
this regimen. We observed toxicity-associated differences
in IgG antibody levels for each ICI treatment (Fig. 2a—c),
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Fig. 2 Antibodies from baseline sera of melanoma patients are associated with ICl toxicity. a Volcano plot of differential antibody levels from
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samples comparing mild vs. severe toxicity for combination anti-CTLA-4 and anti-PD-1-treated patients (n=11)

and set two thresholds for differential antibody expres-
sion for each comparison based on power calcula-
tions derived from experimental data. Differentially
expressed (DE) antibodies were defined as those with
p<0.05 between no/mild and severe toxicity (Fig. 2d-f).
We identified 914 DE antibodies associated with severe
toxicity in the anti-CTLA-4 cohort, 723 DE antibodies
associated with severe toxicity in the anti-PD-1 cohort,
and 1161 DE antibodies associated with severe toxicity
in the combination treatment cohort (Additional file 5:
Table S4 and Additional file 6: Table S5). Interestingly,
we observed a minimal degree of overlap in toxicity-
associated IgG antibodies (DE) between monotherapy

groups (antiCTLA-4 or anti-PD-1) and the combination
therapy (anti-CTLA-4+ anti-PD-1) group. For example,
there were only 99 IgG antibodies in common between
849 unique anti-CTLA4 toxicity-associated IgG antibod-
ies and 1071 unique anti-CTLA-4 and anti-PD-1 toxicity-
associated antibodies. Similarly, there were only 54 IgG
antibodies in common between 683 unique anti-PD-1
toxicity-associated IgG antibodies and 1071 unique anti
CTLA-4 and anti-PD-1 toxicity-associated antibodies
(data not shown). This suggests that discrete, treatment
type-specific sets of antibodies are associated with ICI
toxicity.
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RPS6KB1 0.000709 0.74 Highin T cells, NK cells NHSL2 0.002238 1.21 High in T cells TREX1 0.000914 0.47 Autoimmunity
IGKC 0.000766 1.33  High in serum/plasma KJ902780 0.002286 0.44 N/A SLC25A26 0.000919 0.63  High in liver, brain

Fig. 3 Functional significance of toxicity-associated antibodies. a Functional pathway enrichment (WikiPathways) of protein targets from the
filtered set of toxicity-associated antibodies from anti-CTLA-4-treated patients. b As for a, but for anti-PD-1-treated patients. ¢ As for a, but for
combination-treated patients. d Summary of immune toxicity associations for protein targets of top 15 DE termination-associated antibodies from
anti-CTLA-4-treated patients. e As for d, but for anti-PD-1-treated patients. f As for d, but for combination-treated patients

To gain insight into potential causative roles for tox-
icity-associated antibodies in development of irAEs, we
performed pathway analysis on the protein antigen tar-
gets identified for each treatment group. We elected to
focus our analysis on the filtered sets of toxicity-asso-
ciated antibodies for each treatment type, as defined
above. Our results revealed significant enrichment of
proteins in pathways that have been previously associ-
ated with immunity/autoimmunity (Additional file 7:
Table S6), including “apoptosis’, “TNF-a signaling’,
“lung fibrosis’, “IL-1 pathway’, “toll-like receptor (TLR)
signaling”, “E. coli infection”, and “microRNA biogen-
esis” (Fig. 3a—c). A literature analysis for the fifteen
most DE toxicity-associated antibodies for each treat-
ment group (Fig. 2d—f) revealed that their protein tar-
gets were highly expressed in tissues that are commonly
affected in patients experiencing irAEs, including liver
and skin, and have been implicated in the regulation
of immune cell activity and in autoimmune disorders
(Fig. 3d-f, and Additional file 8: Table S7). Together,
our findings suggest that a subset of toxicity-associated
antibodies could not only highlight patients at risk of
irAEs from immunotherapy, but might also play a caus-
ative role in the development of immune toxicity.

To develop a tool to predict toxicity development in
melanoma patients treated with ICI, we derived sup-
port vector machine (SVM) classification models to
classify patients according to their risk of developing

severe immunotherapy-related toxicity based on the
levels of specific antibodies (features) in baseline sera.
We performed SVM model training and testing for each
treatment group using “filtered’ and “curated” feature
lists (as defined above). For each model, we used three-
fold (combination therapy) or fivefold (monotherapy)
cross-validation and repeated the scheme 100 times to
mitigate the impact of overfitting (Fig. 4a—c). “Filtered”
antibody sets predicted severe toxicity development
with excellent (>0.98) accuracy, sensitivity, and speci-
ficity for antiCTLA-4 (Fig. 4d) and anti-PD-1 (Fig. 4e)
monotherapy groups, and with good (>0.71) accuracy,
sensitivity, and specificity for the smaller group of com-
bined anti CTLA-4 and anti-PD-1 patients (Fig. 4f).
The prediction models we derived using the smaller
“curated” antibody sets (n =45 for anti-CTLA-4, n=25
for anti-PD-1, n=575 for combination treatment)
showed very good (>0.85) accuracy, sensitivity, and
specificity for all three treatment groups (Fig. 4d-f).
These results suggest that baseline antibody signatures
should be evaluated further for their clinical utility as
biomarkers to predict toxicity from immunotherapy.

Discussion

Immune-related toxicities are a significant barrier limit-
ing the utility of ICI in melanoma treatment, particu-
larly when given in combination [20]. At this time, there
is no predictive biomarker to identify patients who are
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Train

Set

Test

Anti-CTLA-4

Train

Set

Test

Anti-PD-1 Anti-CTLA-4 + anti-PD-1

Train

Set

Test

000 025 050 075 1.00 0.00 025
P(Severe toxicity)

P(Severe toxicity)

050 075 1.00 0.00 025 050 0.75 1.00

P(Severe toxicity)

Filtered: training 519 1 1 1
Filtered: testing 519 0.99 0.99 0.99

Curated: training 45 1
Curated: testing 45 096 0.99 0.85

anti-CTLA-4 and anti-PD-1 samples (mild toxicity, n =4; severe, n=7)

Filtered: training 221 1
Filtered: testing 221  0.99
1 1 Curated: training 25 1
Curated: testing 25 0.97

1 Filtered: training 1344 0.84 0.75 0.88
0.98 Filtered: testing 1344 0.81 071 0.91
1 Curated: training 575 0.94 0.93 0.94

1
1
1
1 0.89 Curated: testing 575 0.93 0.89 0.97

Fig. 4 Development of classification models to predict immunotherapy toxicity using antibodies from pre-treatment melanoma patient sera. a
Scatterplot showing distribution of decision values from support vector machine (SVM) classifier models based on “filtered” antibody (feature) lists
for prediction of severe toxicity. Data summarizes training and testing results from 100 repetitions of fivefold cross validation for pre-anti-CTLA-4
samples. Gold circles represent true positives (severe toxicity sample called as severe toxicity) and green crosses represent true negatives (no/

mild toxicity sample called as no/mild toxicity). Red circles represent false negatives (severe toxicity sample called as no/mild toxicity) and blue
crosses represent false positives (no/mild toxicity called as severe toxicity). b As for a, but summarizing 100 repetitions of fivefold cross validation
for anti-PD-1 samples. ¢ As for a, but summarizing 100 repetitions of threefold cross validation for anti-CTLA-4 and anti-PD-1 combination samples.
d Summary of accuracy, sensitivity, and specificity cross validation statistics based on SYM models for prediction of toxicity in anti-CTLA-4 samples
(no/mild toxicity, n=30; severe, n=9). e As for d, but for anti-PD-1 samples (no/mild toxicity, n=19; severe, n=9). f As for d, but for combined

likely to develop severe irAEs that can necessitate sys-
temic immunosuppression or treatment termination.
We hypothesized that a subset of metastatic melanoma
patients possesses a sub-clinical autoimmune phenotype,
characterized by a specific serum autoantibody profile,
which predisposes them to develop severe irAEs follow-
ing ICI therapy, in part due to enhanced recognition of
self-antigens by T-cells. We used an unbiased proteomic
microarray approach to compare global antibody levels
in pre-treatment sera from melanoma patients treated
with anti-CTLA-4, anti-PD-1, or the combination, and
identified sets of toxicity-associated antibodies for each
of the three treatment cohorts. Interestingly, the toxicity-
associated antibody signatures were treatment-specific,
with very little overlap across therapy groups, a finding
that might be explained by the distinct cellular mecha-
nisms of action for these treatments [21]. We found that
the antigen targets for toxicity associated autoantibodies
were significantly enriched for proteins that are highly
expressed in organs affected by irAEs, and/or involved in

cellular pathways that have been associated with immune
pathology, suggesting a potential causative role for spe-
cific autoantibodies in development of irAEs. Finally, we
generated SVM classifier models to identify sets of fea-
tures (antibodies) that could be used to predict toxicity
from baseline sera with excellent accuracy, sensitivity
and specificity, demonstrating the potential utility of this
approach to develop biomarker assays to guide the clini-
cal management of melanoma patients treated with ICIL.
By reinvigorating the immune system, immunomodu-
latory antibodies (anti-CTLA-4, anti PD-1) can promote
anti-tumor immunity but also the development of irAEs.
The precise mechanisms underlying irAEs induced by ICI
are still unclear. Gastrointestinal (GI) irAEs have been
associated with increased levels of neutrophil activation
markers CD177 and CEACAM]1, which are correlated
with neutrophilic inflammation [10]. Additionally, it has
been suggested that high baseline serum levels of IL-17,
a cytokine that activates neutrophils, are associated with
development of colitis following antiCTLA-4 treatment
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[12]. A recent report also suggested that hypophysitis fol-
lowing antiCTLA-4 treatment might be associated with
development of antibodies, which were negative at base-
line, against thyrotropin-, follicle-stimulating hormone-,
and corticotropin-secreting pituitary gland cells [22].
While these pituitary-specific antibodies might medi-
ate this irAE, they cannot be utilized as a predictive bio-
marker of treatment-induced pituitary toxicity as they are
not detectable in pre-treatment sera. Other studies have
failed to identify baseline serum antibodies associated
with development of irAEs in immunotherapy-treated
patients, although these focused solely on antibodies
previously implicated in autoimmune diseases, such as
anti-nuclear [23] or anti-thyroid [24] antibodies. ANAs,
targeting both nuclear proteins and nucleic acid deriva-
tives, comprise a large proportion of autoimmune dis-
ease-associated antibodies and have the most-recognized
diagnostic and/or prognostic value for autoimmune dis-
eases such as systemic lupus erythematosus (SLE) [25].
Our analyses identified significant enrichment of the
protein targets of toxicity associated antibodies among
functional pathways that have been associated with auto-
immunity, such as TNF-a signaling [26], lung fibrosis [27],
IL-1 [28] and TLR [29] signaling, and E. coli infection [30].
Interestingly, our results also showed that the most differ-
entially-expressed antibodies between no/mild and severe
toxicity groups for each therapy group target protein anti-
gens that are highly expressed in tissues affected by irAEs,
including liver, skin, thyroid, pancreas, and adrenal gland
[31]. In this regard, it is interesting to speculate that spe-
cific baseline antibodies could predict the development of
severe site-specific toxicities that are more clinically-sig-
nificant; for example, severe hepatotoxicity versus severe
skin toxicity, although this would require further testing
and validation in a larger sample size. Many of the puta-
tive protein targets of the antibodies most significantly-
associated with severe toxicity have been implicated
in immune function or in autoimmune disorders. For
example, autoantibodies against the complement factor
H (CFH) protein have been associated with autoimmune
diseases such as hemolytic uremic syndrome, membrano-
proliferative glomerulonephritis, or age-related macular
degeneration [32], and levels of anti-CFH antibodies were
elevated in our study in patients who developed severe
toxicity from anti-CTLA-4 treatment. In this regard, it
would be informative to compare serum antibody pro-
files from patients who developed severe toxicity from ICI
therapy to those with autoimmune disease states, such
as SLE or inflammatory bowel disease. While the precise
roles of toxicity-associated antibodies we identified in
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mediating irAEs are yet to be established, their potential
biological significance supports the concept that a subset
of antibodies could promote the development of irAEs
in patients treated with ICI. In view of the underlying
similarities between the clinical manifestation of auto-
immune disorders and irAEs induced by ICI, our data
support a model in which some ICI-treated melanoma
patients possess an underlying, subclinical autoimmune
phenotype, which renders them susceptible to severe irAE
development and is characterized by a specific baseline
serum antibody profile. This autoimmune phenotype is
likely to result from a combination of host- (germline),
environment-, and tumor-specific factors. We previously
reported the association between germline genetic vari-
ants in immune pathways and melanoma prognosis [33,
34]. Thus it is possible that an inherent genetic repertoire
may generate a propensity for host immunity and as such
might impact production of antibodies, including those
that target putative “self” antigens. Parallel assessment
of the inherited genome (in the context of autoimmunity
risk), the proteome, and immune profile (in tumor and
circulation) is required to assess the causative biological
role of “baseline” host immunity in development of irAEs
in patients treated with ICL

We acknowledge the limitations to our study. First, the
findings should be replicated with a larger, independ-
ent cohort. Ideally, this clinical validation would involve
a retrospective study of patient sera from a large clini-
cal trial, where toxicity grading, treatment, and baseline
patient characteristics are rigorously graded and con-
trolled. Clinical validation would also require prospec-
tive testing before serum antibody biomarkers could
have utility as predictors of ICI toxicity development.
Second, our study does not address the contribution
of host genetic factors as determinants or predictors of
immune toxicity. Third, although our data suggest that
baseline antibody levels can predict irAEs from ICI, the
proteomic array platform we used cannot assess levels of
anti-nucleotide or anti-lipid autoantibodies, which have
been shown to have diagnostic and prognostic value in
various autoimmune diseases. Nevertheless, the associa-
tion between levels of specific antibodies and immuno-
therapy toxicity development in our study, together with
the SVM classification models we derived, suggests that
predictive antibody panels can be used to differentiate
between melanoma patients based on their likely suscep-
tibility to severe irAEs from ICI. As there is no existing
biomarker for immunotherapy toxicity in clinical use, at
this time there is no standard-of-care benchmark with
which we can compare the predictive power of our sets
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of antibodies. Ultimately, validation of these predictive
biomarkers could enable clinicians to optimize the risk—
benefit assessment for individual patients to maximize
therapeutic benefit while minimizing possible severe tox-
icities from ICI. Patients who are likely to develop severe
irAEs could undergo treatment modification, closer clini-
cal monitoring, earlier prophylactic use of therapies (e.g.
corticosteroids, anti-TNF«), or could avoid combination
ICI to mitigate severe irAEs. As checkpoint inhibitors are
increasingly used in a range of other cancer types, includ-
ing bladder, lung, head and neck, renal, and microsatellite
instability (MSI) high GI cancers [35, 36], the absolute
number of patients exposed to ICI toxicity will increase,
and it will be interesting to determine whether there is a
common signature of toxicity associated antibodies for a
given ICI regimen across different cancer types. Further-
more, as ICI enter the adjuvant treatment setting for mel-
anoma [6, 7] there is a crucial need to predict and limit
the exposure of patients to severe toxicity. In conclusion,
our results provide an important foundation to develop
robust pre-treatment biomarkers to predict irAE devel-
opment in metastatic melanoma patients treated with
ICI, which would ultimately improve personalized immu-
notherapy and management of irAEs.

Conclusions

Currently, there is no predictive biomarker to identify
patients who are likely to develop severe irAEs that can
necessitate systemic immunosuppression or treatment
termination. In this study we showed that a subset of
metastatic melanoma patients, display a specific serum
autoantibody profile, which predisposes them to devel-
oping severe irAEs following ICI therapy. We used an
unbiased proteomic microarray approach to compare
global antibody levels in pre-treatment sera from mela-
noma patients treated with anti-CTLA-4, anti-PD-1, or
the combination, and identified sets of toxicity-associ-
ated antibodies for each of the three treatment cohorts.
We found that the antigen targets for toxicity associated
autoantibodies were significantly enriched for proteins
that are highly expressed in organs affected by irAEs, and/
or involved in cellular pathways that have been associated
with immune pathology. Finally, we generated SVM clas-
sifier models to identify sets of features (antibodies) that
could be used to predict toxicity from baseline sera with
excellent accuracy, sensitivity and specificity. As the use
of immunotherapies is expanded to other cancers and the
adjuvant setting there is a growing need for predictive tox-
icity biomarkers that could help clinicians to determine
the risk—benefit ratio for individual patients to maximize
therapeutic benefit while minimizing severe toxicities.
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Additional files

Additional file 1: Table S1. Detectable fold-changes (FC) at 80% power
between toxicity groups for the three treatments. Power calculations for
comparison of antibody levels between no/mild versus severe toxicity for
the three ICl treatments.

Additional file 2: Table S2. Patient characteristics for reproducibility
cohort (n=10). Summary of clinical features from independent group of
10 melanoma patients treated with anti-CTLA-4 (n=3), anti-PD-1 (n=13),
or combined anti-CTLA-4/anti-PD-1 (n =4), and from whom serum sam-
ples were used to assess assay reproducibility. LDH, lactate dehydroge-
nase; POD, progression of disease; SD, stable disease; PR, partial response;
CR, complete response; UNC, unclassified.

Additional file 3: Figure S1. Pre- vs. post-anti-CTLA-4 treatment
reproducibility (n=39). (A) Correlation plot of global antibody profiles
(array probe intensities) for pre- and postCTLA-4 treatment samples from
patient 09-035. (B) Summary of correlation (r)) values for antibody profiles,
including mean and standard deviation, between pre- and postanti-
CTLA-4 treatment samples (n = 39 pairs).

Additional file 4: Table S3. Sample details. Severity and site of toxicity
(gastrointestinal (GI), endocrine, skin and/or other) and treatment termina-
tion status for baseline sera samples from anti-CTLA-4 (n = 39), anti-PD-1
(n=28), and combination (n=11) melanoma patients. Two anti-CTLA-4
patients were sampled twice (11-311,in 2011 and 2013; and 12-071, in
2012 and 2013), and one anti-PD-1 patient was sampled twice (13-185, in
2015 and 2016).

Additional file 5: Table S4. Summary of toxicity- and termination-
associated antibodies. Numbers of differentially expressed (DE), strongly
differentially expressed (strong DE), filtered and curated antibodies are
shown for comparisons of none/mild vs. severe toxicity, across three dif-
ferent treatment groups (anti-CTLA-4, anti-PD-1, and combination).

Additional file 6: Table S5. Toxicity- and termination-associated anti-
bodies. Lists of differentially expressed, strongly differentially expressed,
filtered and curated antibodies associated with severe toxicity for anti-
CTLA-4, anti-PD-1, or the combination.

Additional file 7: Table S6. Pathway analysis of protein targets of
toxicity-associated antibodies. Lists of functional pathways (derived from
WikiPathways; http://www.wikipathways.org/) enriched for protein targets
of filtered toxicity-associated antibodies from anti-CTLA-4, anti-PD-1, or
combination treatment groups.

Additional file 8: Table S7. Functions of protein targets of treatment
termination-associated antibodies. Functional analysis of protein targets
for top 15 DE toxicity-associated antibodies for each of the anti-CTLA-4,
anti-PD-1, and combination treatment groups. Associations of each anti-
body target with immune toxicity are given, based on literature findings.
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