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Myeloid‑derived suppressor cells 
in transplantation: the dawn of cell therapy
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Abstract 

Myeloid-derived suppressor cells (MDSCs) are a series of innate cells that play a significant role in inhibiting T cell-
related responses. This heterogeneous population of immature cells is involved in tumor immunity. Recently, the 
function and importance of MDSCs in transplantation have garnered the attention of scientists and have become 
an important focus of transplantation immunology research because MDSCs play a key role in establishing immune 
tolerance in transplantation. In this review, we summarize recent studies of MDSCs in different types of transplanta-
tion. We also focus on the influence of immunosuppressive drugs on MDSCs as well as future obstacles and research 
directions in this field.
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Introduction of MDSCs
Regulatory myeloid cells are emerging as novel targets for 
immunosuppressive agents and hold considerable prom-
ise as cellular therapeutic agents [1]. Although myeloid-
derived suppressor cells (MDSCs) were initially observed 
in tumor-bearing patients in the 1980s [2, 3], their exact 
biological role became appreciated in 2000 [4]. MDSCs 
develop and differentiate from a common myeloid pro-
genitor (CMP). MDSCs play a significant role in tumor 
growth and progression, metastasis and resistance to dif-
ferent therapies [5]. Under pathological conditions such 
as cancer [6–8], infection [9, 10] and transplantation [11, 
12], the pathway for CMP differentiation into granulo-
cytes, macrophages, and dendritic cells is inhibited, in 
which case some CMPs may differentiate into MDSCs.

MDSCs are not a terminally differentiated population 
of cells. In mice, MDSCs are defined as CD11b+Gr1+ 
cells. It is now accepted that MDSCs can be divided into 

two major groups of cells which can be identified by a 
combination of specific markers. Granulocytic MDSCs 
(G-MDSCs) are defined as CD11b+Ly6ClowLy6G+ cells 
and monocytic MDSCs (M-MDSCs) are defined as 
CD11b+Ly6ChighLy6G− cells [13–16]. G-MDSCs are the 
largest population of MDSCs in tumor-bearing mice, 
representing  >  80% of all MDSCs. However, there is no 
consensus on the definition of MDSC subsets in humans. 
Historically, human MDSCs were defined as lineage 
marker (CD3, CD14, CD19, and CD56)-negative, human 
leukocyte antigen (HLA)-DR-negative and CD33-posi-
tive cells purified from mononuclear cells using a Ficoll 
gradient [17]. More recently, the existence of two subsets 
of cells (similar to murine models) has been reported in 
cancer patients, and G-MDSCs are commonly character-
ized as CD11b+CD14− cells expressing a granulocytic 
marker, CD15 or CD66 [18]. M-MDSCs are defined by 
two combinations of markers: CD11b+CD14−CD15− (or 
CD66b−) or CD11b+CD14+HLA−DRlow (Fig. 1) [19].

Several types of induction can contribute to the 
accumulation of MDSCs, including induction by 
inflammatory cytokines and growth factors (such as 
granulocyte-macrophage colony stimulating factor (GM-
CSF) [20, 21] and interleukin (IL)-6 [22]) and tumor-
derived factors (such as vascular endothelial growth 
factor (VEGF) [23] and transforming growth factor 
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(TGF)-β1 [24]). Furthermore, the functions of MDSCs 
are highly dependent on the circumstances in which their 
expansion occurs. Significant cell-mediated immunosup-
pressive capacities were observed in infectious MDSCs 
(iMDSCs) and tumor-bearing MDSCs (tMDSCs) in vitro 
[25].

MDSCs were reported to be endowed with robust 
immunosuppressive activity in multiple pathophysiologi-
cal conditions [26, 27]. The crosstalk between MDSCs 
and immune cells has been illustrated in recent years, 
including the following aspects: (1) the suppression of T 
cell proliferation [28] and increased T cell apoptosis [29]; 
(2) the potential suppression of the B cell reaction via 
nitric oxide (NO) [30, 31]; (3) the inhibition of dendritic 
cell development [32, 33]; (4) the impairment of the effect 
of natural killer cells on alloantigens [34]; (5) promo-
tion expansion of protumorigenic T regulatory cells [35] 
and (6) the modulation of cytokine production of mac-
rophages [36].

Even though different types of immune cells activity 
can be suppressed by MDSCs, the primary ‘targets’ of 
MDSCs are T cells [37]. There are several mechanisms 
concerning MDSCs’ suppression of T cells: (1) MDSCs 
suppress T cell proliferation by depletion of l-arginine 
via high expression of arginase 1 (Arg1) and inducible 
nitric oxide synthase (iNOS) [38]. (2) MDSCs nitrate T 
cell receptors and then inhibit their interaction with cog-
nate antigen-MHC complexes by expressing high levels 
of reactive oxygen species (ROS) [39]. (3) Other factors 

such as IL-10, B7-H1 and MHC classII are also involved 
in the suppressive activity of MDSCs [40].

Considering their immunosuppressive function, many 
studies have reported the significance of MDSCs in trans-
plantation [1, 41, 42], from bench to bedside, in order to 
establish immune tolerance and to promote the long-
term survival of transplants. This review summarizes 
recent advances on the effect and application of MDSCs 
on transplantation.

Solid organ transplantation
Kidney transplantation
Kidney transplantation is the most mature and com-
mon type of solid organ transplantation worldwide. The 
first report of MDSCs in an experimental kidney trans-
plantation animal model was in 2008. A rat model of 
anti-CD28-induced kidney allograft tolerance showed 
an accumulation of plastic-adherent CD11b+ myeloid 
cells expressing CD80/86 that were defined as MDSCs. 
This study indicated that MDSCs had nonspecific immu-
nosuppressive activity in  vivo and in  vitro involving the 
action of inducible nitric oxide synthase (iNOS), which 
was upregulated after contact with activated effector T 
cells but not with regulatory T cells (Tregs) [28]. Dilek 
et al. analyzed gene expression in blood-derived MDSCs 
from rat recipients of kidney allografts using DNA micro-
array [43]. They found that CCL5 (Rantes), a chemokine 
for Tregs, was strongly downregulated after treatment 
with a tolerizing regimen. The results indicated the 

Fig. 1  MDSC development and cell subsets in mice and humans. IMCs are part of the normal process of myelopoiesis. IMCs can differentiate into 
granulocytes, macrophages, and dendritic cells. However, IMCs can also differentiate into MDSCs, especially in some pathological conditions. MDSCs 
have two major subsets. In mice, G-MDSCs are defined as CD11b+Ly6ClowLy6G+ cells, and M-MDSCs are defined as CD11b+Ly6ChighLy6G− cells. 
In humans, G-MDSCs are characterized as CD11b+CD14−CD15+/CD11b+CD14−CD66+ cells, and M-MDSCs are defined as CD11b+CD14−CD15−/
CD11b+CD14−CD66− or CD11b+CD14+HLA−DRlow cells
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contribution of MDSCs to the establishment of a graft-
to-periphery CCL5 gradient in tolerant kidney allograft 
recipients, which controlled the recruitment of Tregs to 
the graft where they likely contributed to maintaining 
tolerance [43].

In the clinic, Hock et  al. reported renal transplant 
recipients had elevated frequencies of circulating 
CD11b+CD33+HLA-DR− MDSCs (both M-MDSCs 
and G-MDSCs) [44]. They further traced the change in 
MDSCs for 1  year post-transplantation. These obser-
vational studies showed that MDSC numbers increased 
rapidly and peaked following commencement of immu-
nosuppression [45]. Luan et  al. also found an increase 
in CD11b+CD33+HLA-DR− MDSCs in renal transplant 
recipients [46]. It is well known that Tregs play a key role 
in immune tolerance induction and maintenance [47]. 
The authors found that MDSCs isolated from kidney 
transplant recipients were highly efficient in suppress-
ing the proliferation of CD4+ T cells in mixed leukocyte 
reactions. In addition, CD11b+CD33+HLA-DR− MDSCs 
were capable of expanding Tregs in  vitro, and their 
accumulation over time after transplantation was lin-
early correlated with an increase in Tregs in  vivo. This 
was the first study to link the presence of MDSCs with 
the emergence of Tregs in  vivo in transplant recipients, 
and to define the subpopulation of MDSCs derived from 
transplant recipients responsible for generation of Tregs 
[46]. The results of Meng et al. also supplement the pre-
vious findings of MDSCs in kidney transplantation [48]. 
In this study, 50 renal transplant recipients with acute T 
cell-mediated rejection were enrolled. The patients were 
divided into two groups according to the ratio of MDSCs 
in the peripheral blood mononuclear cell population 
tested by flow cytometry. As expected, the 1- and 5-year 
graft survival rates in the high-MDSC group were 93 
and 79%, respectively, but were only 68 and 36%, respec-
tively, in the low-MDSC group. As expected, interferon 
(IFN)-γ- and tumor necrosis factor (TNF)-α-related 
renal tissue injury was significantly alleviated in the high-
MDSC group compared with the low-MDSC group. Fur-
thermore, IL-17, a strong pro-inflammatory cytokine, 
was inhibited by Tregs expanded by MDSCs [48]. These 
results indicated that the number of MDSCs in the renal 
allograft recipients was associated with long-term graft 
survival and that MDSCs may regulate the imbalance 
between Tregs and Th17 cells.

Cardiac transplantation
In a prolonged murine cold ischemia time-mediated 
donor cardiac injury model [49], Gong et  al. detected 
three MDSC subsets, CD11b+Gr-1low, CD11b+Gr-1int 
and CD11b+Gr-1high. It should be noted that the defini-
tion of MDSC subsets was based on Gr-1, without Ly6C. 

The findings revealed that CD11b+Gr-1low MDSCs had 
strong suppressive activity. MDSC subsets from the 
tolerant mice exhibited higher suppressive capacities 
compared with subsets from naive (untreated) mice. 
Depletion of Tregs increased peripheral and intragraft 
CD11b+Gr-1low MDSC frequency. Intriguingly, boosting 
Tregs caused a remarkable increase in CD11b+Gr-1low 
MDSC frequency in the graft, peripheral blood and 
spleen. This study indicated for the first time the possible 
interaction between MDSCs and Tregs in cardiac trans-
plantation [49]. Furthermore, Nakamura et  al. demon-
strated that MDSCs induced by PD-L1 were capable of 
recruiting Foxp3+ Tregs [50].

In addition to focusing on the mechanism of MDSC 
induction, some studies have also examined the pos-
sibility of increasing the induction of MDSCs, which 
may indicate a possible direction for immune therapy 
in transplantation. Mammalian target of rapamycin 
(mTOR) inhibitors are the main immunosuppressive 
drugs for organ transplant recipients. Nevertheless, the 
mechanisms by which mTOR inhibitors induce immuno-
suppression are not fully understood. Interestingly, in a 
murine cardiac transplantation model, rapamycin treat-
ment led to the recruitment of MDSCs and increased 
their expression of iNOS [51]. Adoptive transcoronary 
arterial transfer of MDSCs from rapamycin-treated 
recipients prolonged allograft survival. Co-administra-
tion of rapamycin and the mitogen-activated protein 
kinase (MEK) inhibitor trametinib reversed rapamycin-
mediated MDSC recruitment. Thus, the author con-
cluded that the mTOR and Raf/MEK/extracellular signal 
regulated kinase (ERK) signaling pathways appeared to 
play an important role in MDSC expansion [51]. IL-33, 
which is thought to be able to facilitate Th2 responses, 
significantly increased CD11b+Gr1int M-MDSCs in a 
chronic cardiac rejection model, reduced antibody-medi-
ated rejection and ultimately prolonged allograft sur-
vival [52, 53]. These findings support IL-33-based MDSC 
therapy in cardiac transplantation. The induction of other 
molecules, such as IL-6 [54, 55] and IFN-γ [56], has also 
been tightly associated with MDSCs in cardiac transplant 
protection.

Skin transplantation
Skin transplantation is a convenient animal model for the 
study of rejection and tolerance. In 2008, a study con-
ducted by Zhang et  al. demonstrated the expansion of 
MDSCs by immunoglobulin-like transcript 2 receptor 
and its ligands [57]. Moreover, the immunosuppressive 
function of MDSCs was enhanced by this specific kind 
of receptor, which led to a better survival rate of alloskin 
grafts after transplantation. Other studies have illustrated 
that MDSCs induced by IL-2C or neupogen [58], IL-33 
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[59], Δ9-tetrahydrocannabinol (via the activation of 
cannabinoid receptor 1) [60] and TNF-α (via an iNOS-
dependent mechanism) [61] were able to suppress T cell 
proliferation, promote Tregs and induce immune toler-
ance. Considering the close relationship between MDSCs 
and Tregs, Adeegbe et  al. combined induced-MDSCs, 
which were shown to be superior to naïve MDSCs, with 
induced-Tregs to promote transplantation tolerance. The 
results showed that co-administration of these two regu-
latory cells had a much better effect on graft survival than 
administration of either one alone [58], which highlights 
the combination of MDSCs and Tregs as a potential cell 
therapy for tolerance induction. In another study, the 
adoptive transfer of MDSCs prolonged skin graft survival 
but failed to alter antigen-specific CD8+ T cell prolifera-
tion and cytotoxicity. The authors attributed this result to 
the over-activation of donor-specific T cells in the spleen 
[62]. Furthermore, in order to assess the effect of MDSCs 
in immunosuppressive treatments, Carretero-Iglesia 
et al. directly compared the function of three regulatory 
myeloid cell types in a skin transplant model, including 
autologous tolerogenic dendritic cells, suppressor mac-
rophages (suppMφs) and MDSCs [63]. They found that 
these three types of cells perform their roles in T cell 
inhibition in three different ways. autologous tolerogenic 
dendritic cells mainly regulate the activation, prolifera-
tion and reactivation process of T cells, while suppMφs 
are thought to be responsible for inducing and expanding 
Treg cells. However, MDSCs appear to exert their immu-
nosuppressive function through Treg expansion as well 
as induction of T cell death.

Bone marrow transplantation (BMT)
The discovery of MDSCs can be attributed to BMT. In 
1984, MDSCs were first reported in patients who received 
BMT [64]. At that time, these cells were called “natural 
suppressor cells”, and it was indicated in the study that 
MDSC expansion was actually induced by radiation. 
Because of the application of various pro-inflammatory 
cytokines, such as IFN-γ, granulocyte-colony stimulating 
factor (G-CSF), and IL-1β [65], some animal models have 
emerged in recent years in which MDSCs accumulate 
and are activated without radiation [66, 67].

The efficacy of BMT can be limited by graft-versus-
host disease (GVHD), and the first use of MDSCs in vitro 
to suppress major-mismatch driven GVHD was reported 
by Highfill et  al. in 2010. The suppression was attrib-
uted to l-arginine depletion by arginase-1 activity. More 
importantly, Highfill et al. found a new subset of MDSC 
which was produced by exogenous IL-13 (MDSC-IL-13). 
MDSC-IL-13 is more potently suppressive and results in 
arginase-1 up-regulation. Compared to MDSCs, MDSC-
IL-13 inhibits GVHD lethality with more efficacy. Indeed, 

MDSC-IL-13 express high levels of PDL1 which regulates 
tolerance by PD1-PDL1 interactions [68]. It is known 
that tumor relapse is a common but severe threat to 
BMT recipients. In a BMT model, Wang et  al. revealed 
that the additional accumulation of MDSCs (both in the 
spleen and in peripheral blood) after allogeneic BMT was 
stimulated by tumor relapse [69]. Thus, MDSCs may also 
serve as a predictor for tumor relapse after BMT. Con-
sistent with this finding, another clinical investigation 
observed that MDSC subsets in patients who received a 
hematopoietic stem cell transplant were positively corre-
lated with T, B, and double-negative T cell numbers after 
transplantation [70]. This study supports the previous 
findings in animal models and further analyzed the kinet-
ics of MDSC subsets in clinical work. Koehn et al. sum-
marized recent advances in investigation of MDSC and 
allogeneic hematopoietic cell transplantation [71].

Other transplantations
Corneal transplantation
Even though the acceptance rates of penetrating kerato-
plasty are relatively high [72, 73], either inflammation or 
neovascularization can induce corneal graft rejection and 
failure [74]. When retroorbitally injected into the recipi-
ents immediately after keratoplasty surgery, both iMD-
SCs and tMDSCs had a suppressive effect on CD4+ T cell 
proliferation, and they improved the histological condi-
tion and decreased neovascularization of corneal grafts. 
However, a supplementary injection of iMDSCs did not 
cause graft improvements at later stages [75]. This result 
was partly consistent with a study in which CD11b+ cells 
were induced by lipopolysaccharide (LPS) [76].

Islet transplantation
Type 1 diabetes accompanied by diabetic complications 
usually occurs when patients lose insulin-producing pan-
creatic β cells. The routine therapy for this disease is the 
administration of exogenous insulin. However, insulin 
may not fulfill the function of normal β cells. Pancreas 
transplantation has been considered to address this situa-
tion, but deleterious side effects are unavoidable [77–79]. 
In recent years, islet transplantation in optimal situations 
has appeared as an alternative to pancreas transplanta-
tion [80, 81]. As a type of cell transplant, islet grafts have 
promising prospects, and the induction of tolerance to 
remove the dependency on immunosuppressive drugs is 
challenging and necessary. Considering the significance 
of MDSCs in transplantation, Arakawa et  al. co-trans-
planted MDSCs (generated from bone marrow cells cul-
tured with hepatic stellate cells and GM-CSF with islet 
grafts in diabetic recipient mice [82]. The results showed 
that the co-transplantation of these two types of cells 
significantly promoted allograft survival. As expected, 
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MDSCs exerted their inhibitory function on T cells in an 
iNOS-dependent manner. MDSCs from inos-deficient 
mice failed to protect islet allografts [82], which indicated 
the key role of iNOS in MDSC-induced tolerance in islet 
transplantation. The conclusion agreed with a previous 
study in which MDSCs expressing a high level of argin-
ase-1 enhanced antigen-specific Tregs in the B7H1 path-
way [83].

What is the impact of immunosuppressive agents 
on MDSCs?
To date, complete tolerance induction has not been 
achieved in the clinic, so we must consider the influence 
of immunosuppressive agents on MDSCs. Several stud-
ies have recently reported on the influence of immu-
nosuppressants on myeloid cells in transplant models. 
Cyclosporine (CsA), a typical type of calcineurin inhibi-
tor, is extensively used to prevent anti-allograft rejection 
in clinical settings [84]. CsA was previously reported to 
stimulate the accumulation and suppressive function of 
MDSCs. In a skin transplantation study, CsA treatment 
upregulated the allograft infiltration of CD11b+Gr1+ 
cells [85]. However, the increase in CD11b+Gr1+ 
MDSCs was not attributed to their proliferation but 
rather to their migration induced by CsA. Moreover, 
it was CD11b+Gr1+ MDSCs that were critical for CsA 
prolongation of allograft survival. The authors demon-
strated that CsA-induced MDSCs exerted their function 
in ameliorating the allograft immune response through 
the calcineurin-NFAT-IDO signaling pathway, and these 
MDSCs were able to regulate T cell differentiation from 
Th1 to Th2 and also CD8+ T cell differentiation.

Rapamycin, as an mTOR inhibitor, is another immu-
nosuppressive agent. In a cardiac transplant model, 
rapamycin treatment at a dosage of 3 mg/kg at different 
times after transplantation promoted the recruitment 
of MDSCs and enhanced the activity of arginase-1 and 
iNOS in MDSCs [51]. The results also showed that the 
MEK inhibitor trametinib could reverse MDSC induc-
tion, which indicated that the ERK signaling pathway 
was important in the expansion of MDSCs. Our group 

further investigated whether the mTOR signaling path-
way regulates MDSC differentiation and immunosup-
pressive function [86]. We found that inhibiting mTOR 
signaling by rapamycin regulated the induction of MDSC 
towards the CD11b+Ly6G+Ly6Clow G-MDSC subset. 
The ability to suppress T-cell proliferation of both bone 
marrow-derived CD11b+Ly6G+Ly6Clow G-MDSCs and 
CD11b+Ly6G−Ly6Chigh M-MDSCs was enhanced by 
mTOR signal inhibition via upregulation of arginase-1 
and iNOS expression. However, the impact of rapamy-
cin on MDSCs is still controversial. In a skin transplant 
model, Wu et  al. reported that rapamycin significantly 
delayed alloskin graft rejection by decreasing the number 
of M-MDSCs and directly inhibited M-MDSC differen-
tiation in vitro [87]. The reason for these different results 
might be due to the use of different disease models and 
will require further investigation.

In addition to the previously referenced studies, glu-
cocorticoid (GC) was reported to expand MDSCs both 
in  vivo and in  vitro [88–90]. As a typical synthetic GC 
immunosuppressant, dexamethasone was chosen to 
explore the potential relationship between GC and 
MDSCs. In alloskin transplant recipient mice after dexa-
methasone treatment, MDSCs prolonged graft survival 
and acted as functional suppressive immune modulators 
that resulted in fewer IFN-γ-producing Th1 cells and a 
greater number of IL-4-producing Th2 cells. Dexametha-
sone-treated MDSCs promoted reciprocal differentiation 
between Th1 and Th2 in vivo in a GC receptor-depend-
ent manner [91]. In addition to transplantation, dexa-
methasone was demonstrated to regulate the suppressive 
function of MDSCs via hypoxia inducible factor (HIF)-1α 
as well as by GC receptor-HIF1α glycolysis in an immu-
nological hepatic injury model [91]. High-dosage dexa-
methasone rescued MDSC numbers and promoted the 
suppressive function of MDSCs via Ets1 in immune 
thrombocytopenia patients [92]. Table  1 summarizes 
recent studies of immunosuppressive agents and MDSCs. 
However, the effect of other immunosuppressive agents 
on MDSCs, such as tacrolimus and mycophenolate 
mofetil, is still unknown.

Table 1  The regulation of myeloid-derived suppressor cells (MDSCs) by immunosuppressive drugs

AKI acute kidney injury, IDO indoleamine 2, 3-dioxygenase, Arg-1 arginase-1

Immunosuppressive drug Year Disease model Induction of MDSCs Mechanism Ref.

Cyclosporine A 2014 Skin transplantation Yes Calcineurin-NFAT-IDO [85]

Rapamycin 2015 Cardiac transplantation Yes iNOS/Arg-1 [51]

Rapamycin 2017 AKI Yes iNOS/Arg-1 [86]

Rapamycin 2015 Skin transplantation No iNOS/Arg-1 [87]

Dexamethasone 2014 Skin transplantation Yes GC-GR-NO [91]

Dexamethasone 2017 Immunological hepatic injury Yes GC-GR-H1α [92]
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Can MDSCs promote or induce immune tolerance?
Currently, no standard tolerance induction protocol is 
available in routine clinical practice. However, harness-
ing the tolerogenic potential of immune cell therapy in 
transplantation, including MDSC-based cell therapy, 
may provide an opportunity to accomplish this goal. In 
2008, Dugast et al. reported an accumulation of MDSCs 
in the blood of a rat renal transplantation model [28]. 
These cells were able to inhibit proliferation but not 
activation of effector T cells and could induce apopto-
sis in a contact-dependent manner. However, adoptive 
transfer of MDSCs failed to induce allograft tolerance in 
recently transplanted recipients. Thus, researchers have 
focused on how to induce MDSCs that are able to induce 
immune tolerance. Zhao et  al. found that M-CSF- and 
TNF-α-induced M-MDSCs have powerful immunosup-
pressive activity in an iNOS-dependent pathway, and that 
M-CSF +  TNF-α-induced M-MDSCs were able to pro-
mote immune tolerance to donor antigens in a murine 
skin transplant model [61]. In addition to transplanta-
tion, autoimmune diseases also need antigen-specific 
immune supersession. In multiple sclerosis, G-MDSCs 
have been shown to participate in the process of toler-
ance induction. G-MDSCs were shown to adopt a more 
suppressive phenotype during peptide immunotherapy 
and to inhibit CD4+ T-cell proliferation in a cell-contact-
dependent manner [93].

Attempts of MDSC‑based cell therapy in transplantation
The therapeutic value of MDSCs has been recognized in 
patients with cancer [94, 95], inflammation [96, 97] and 
autoimmune disease [62, 98, 99]. In these conditions, 
MDSCs usually serve as biomarkers, and the program 
of therapy may focus on blockade of these cells. How-
ever, because of the immune suppressive function of this 
heterogeneous cell population, there has been grow-
ing interest in MDSC-based cell therapy in transplanta-
tion. Researchers have aimed to manipulate MDSCs to 
achieve immune tolerance in the context of transplanta-
tion. As mentioned previously, the adoptive transfer of 
MDSCs was first attempted in 2008, although it failed to 
induce kidney allograft tolerance [28]. Since then, several 
investigators have confirmed that repeated injection of 
MDSCs promotes allograft survival in skin [61], corneal 
[75] and skin-corneal combined transplantations [25]. 
There have thus far been no reports concerning MDSC 
infusion in human transplant recipients. In BMT models, 
transplantation of MDSCs generated from bone mar-
row cells by GM-CSF/G-CSF in  vitro inhibited GVHD-
induced death and attenuated histologic GVHD, whereas 
the antitumor cytotoxicity of alloantigen-specific T 
cells was maintained [100]. However, the stability of 
MDSC immune suppressive function requires a certain 

microenvironment. For example, Koehn et  al. reported 
that transferred MDSCs lost their suppressive function 
and their potential to inhibit GVHD lethality immedi-
ately upon entering a conditioning regimen that sub-
jected them to GVHD inflammatory settings [101]. This 
indicated that in the BMT setting, the use of MDSCs as 
a therapeutic approach for preventing GVHD and other 
systemic inflammatory conditions may be more effective 
when combined with approaches limiting in vivo MDSC 
inflammasome activation.

Conclusion and perspectives
MDSCs were once thought to play a significant role in 
the mechanism and therapeutic treatment of tumors. 
Their potential diagnostic value, combined with their 
therapeutic value in transplantation, has now become the 
focus of immunologists and clinicians because MDSCs 
can inhibit immunoreactions. Considering this func-
tion, MDSCs may be used to induce immune tolerance 
and prolong allograft survival in clinical applications of 
the future. However, until recently, the differentiation 
of MDSCs has not been efficient, which has made their 
application difficult [102]. In addition, it is still unknown 
whether G-MDSCs and M-MDSCs are terminally differ-
entiated subsets of MDSCs, or whether the phenotype 
and function of MDSCs subsets are stable. Macrophages, 
which are also differentiated from immature myeloid 
cells like MDSCs, consist of M1 and M2 subsets which 
can convert into each other in some immune micro-
environments [103, 104]. We therefore cannot exclude 
the possibility that G-MDSCs and M-MDSCs can simi-
larly convert into each other. As Scalea et al. pointed, it 
remains unknown if the type of organ transplanted (e.g. 
kidney versus liver) leads to MDSCs with different sup-
pressive capacities [42].

There are many ideas on how to manipulate the differ-
entiation and purification of MDSCs to make them more 
useful. In addition, the particular markers for MDSCs, 
the inductive pathways of MDSCs and the molecular 
mechanisms regulating MDSCs still need to be identi-
fied to evaluate the specific properties of MDSCs. Recent 
studies have been restricted to animal models or in vitro 
studies of the molecular mechanisms, but future investi-
gations are expected to be conducted in humans within 
a safe environment. Like Tregs [105], manipulation of 
MDSCs in vitro and infusion MDSCs into allograft recip-
ients as a form of cell therapy will require more animal 
studies before going to clinical trial (Fig. 2). The specific 
surface markers, stability, lifespan and molecular effec-
tor pathways/mechanisms of MDSCs need to be fully 
identified. Moreover, the efficiency, specificity and safety 
of MDSC-mediated treatment remain to be determined 
with experimental and preclinical studies. We believe 
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that by solving the above difficulties, the application of 
MDSCs in transplantation will be significantly advanced 
in the future.
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