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Abstract 

Background:  Asthma is a complex, heterogeneous disorder with similar presenting symptoms but with varying 
underlying pathologies. Exhaled breath condensate (EBC) is a relatively unexplored matrix which reflects the signa-
tures of respiratory epithelium, but is difficult to normalize for dilution.

Methods:  Here we explored whether internally normalized global NMR spectrum patterns, combined with machine 
learning, could be useful for diagnostics or endotype discovery. Nuclear magnetic resonance (NMR) spectroscopy 
of EBC was performed in 89 asthmatic subjects from a prospective cohort and 20 healthy controls. A random forest 
classifier was built to differentiate between asthmatics and healthy controls. Clustering of the spectra was done using 
k-means to identify potential endotypes.

Results:  NMR spectra of the EBC could differentiate between asthmatics and healthy controls with 80% sensitiv-
ity and 75% specificity. Unsupervised clustering within the asthma group resulted in three clusters (n = 41,11, and 
9). Cluster 1 patients had lower long-term exacerbation scores, when compared with other two clusters. Cluster 3 
patients had lower blood eosinophils and higher neutrophils, when compared with other two clusters with a strong 
family history of asthma.

Conclusion:  Asthma clusters derived from NMR spectra of EBC show important clinical and chemical differences, 
suggesting this as a useful tool in asthma endotype-discovery.
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Background
The simplest definition of a disease is based on symp-
toms and the best definition of a disease is based on 
cause. Asthma is variously defined as a disorder of 
recurrent breathlessness and wheezing [1] and as a com-
plex chronic inflammatory airway disease [2]. It is now 
mostly agreed upon that asthma is a heterogeneous clin-
ical syndrome, which lacks singular pathophysiological 
explanation. Discovery of asthma endotypes—specific 
disease phenotype clusters, with a specific biological 

mechanism [3]—is a critical step towards personalized 
therapy. The discovery of such endotypes may pro-
ceed top down, from clinical phenotype to molecular 
signatures, or bottom up—from molecular signatures 
to clinical phenotypes. Studies reflecting the airway 
milieu, such as exhaled breath condensate (EBC) com-
position, appear to be a good place to start for a bot-
tom up approach. A problem with EBC is that it is an 
unknown dilution of the airway lining fluid and while 
various suggestions have been made for normalization, 
none are reliable [4]. We previously reported the pres-
ence of a characteristic trident peak signature in nuclear 
magnetic resonance (NMR) of EBC found through 
visual inspection of the spectra. This peak signature 
at 7  parts per million (ppm), which was shown to be 
attributed to the concentration of ammonium ions in 
the airway milieu was absent in a majority of asthmatics 
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while being present in healthy controls [5]. Many other 
informative patterns may exist in the NMR spectra but 
these are not obvious to the naked eye. Here, we con-
sidered the possibility that NMR signatures of EBC, 
taken together as a whole, rather than broken down into 
individual metabolites, could serve as a fingerprint for 
endotypes of asthma. While there have been initial stud-
ies about the local metabolomic patterns in the airway 
that could reflect the disease pathogenesis, these have 
been focused on identifying metabolites and comparing 
them [6–8]. Given the difficulties in compensating for 
variable dilutions and the limitations in accurately iden-
tifying all metabolites from mixed spectral signatures, 
we considered the possibility of directly using the global 
spectral pattern. This has the advantage of internal rela-
tive referencing of all peaks within a single spectrum, 
minimizing the impact of dilution. However, this has 
the disadvantage of creating a high-dimension dataset 
with likely strong internal correlations, requiring newer 
forms of statistical and computational analyses. Here, 
we show for the first time how global spectral signatures 
can be used to yield not only classifiers between asthma 
and healthy subjects, but also to discover clinically rel-
evant metabolome clusters within asthma.

Methods
Study design
The study includes asthmatic children who were part of 
an ongoing prospective asthma cohort at All India Insti-
tute of Medical Sciences (AIIMS), New Delhi, India. The 
research proposal was approved by the Ethics Committee 
of the Institute. Informed consent was obtained from the 
patients of the asthmatic children and from the healthy 
subjects before recruiting them in the study.

Selection of subjects
Asthmatic and control subjects were recruited based on 
American Thoracic Society/European Respiratory Soci-
ety guidelines (ATS/ERS) [9] specifically using patient 
history, presenting symptoms and evaluation of spirom-
etry. Subjects were children less than 18  years of age 
(Table  2). Healthy adult subjects were recruited as con-
trols and were non-smokers; pregnant women were 
excluded.

Sample collection
Exhaled breath condensate was collected using RTubes 
(Respiratory Research, Austin, Texas). RTubes are ster-
ile tubes of plastic make with mouthpieces and caps and 
have a cold metal cylinder surrounding the tube. The sub-
ject is asked to rinse his/her mouth with water prior to 
the maneuver. Nostrils are clipped to avoid nasal contam-
ination. Subjects are asked to breathe tidally for 10 min 

without a break after which the caps are placed and the 
tube carefully tapped to collect the condensate without 
contamination. They were immediately stored at − 80 °C.

Sample preparation for NMR spectroscopy
To every 450 μL of EBC sample, 50 μL of D2O was added 
for proper locking of the samples (Cambridge Isotope 
Laboratories) in fine 6  mm bore NMR tubes (Wilmad, 
LabGlass, Wilmad, NJ). 4,4-dimethyl-4-silapentane-
1-sulfonic acid (DSS) was added in the sample as internal 
standard and D2O mixed to obtain the standard spectra 
against which all other spectra were compared to.

Acquisition of free induction decay signal
The tube containing the samples were used for obtain-
ing the one dimensional (1-D) FID signal using a nuclear 
spectrometer (Bruker, 600  MHz, Germany) equipped 
with a triple resonance (TCI, 1H, 13C, 15N) inverse cryo-
probe. Data were acquired at 256 scans per sample with 
a relaxation delay D1 of 2  s. 7.5  µs of 90° pulse width 
was used with each spectral width measuring from 1 to 
4.7 (parts per million), ppm thus generating 16,000 data 
points in each free induction delay signal files per sample. 
The temperature was fixed at 298 K for the sample runs. 
Water suppression in 1-D experiments was done using 
excitation sculpting with gradients (zgesgp pulse pro-
gram for 1D solvent suppression). 1H-NMR FID of D2O 
water well shaken in RTube© [http://respiratoryresearch.
com/rtube/] collection tubes was first obtained to define 
any signature eluting from the RTube itself. FID signals 
from the same subject recorded at multiple times were 
used to check for the reproducibility of the downstream 
spectra.

Statistical analysis
Fourier transformation and pre‑processing
FID signals were transformed using Fourier transfor-
mation to get the metabolomic spectra. Automated 
phasing and baseline correction were performed using 
iNMR software [http://www.inmr.net/index.html] for 
Macintosh.

Total intensity normalization
Since EBC is a matrix of unknown dilution of constitu-
ents, normalization of the spectra was performed for 
each sample using the total intensity normalization 
in which each spectrum is scaled to have a unit sum as 
described in [10].

Dynamic adaptive binning (DAB)
Dynamic adaptive binning [11] was performed to take 
care of the peak shifts in the data using the DAB toolbox 
in Matlab 2011b.

http://respiratoryresearch.com/rtube/
http://respiratoryresearch.com/rtube/
http://www.inmr.net/index.html
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Supervised classification using Random Forest algorithm
The parameters “mtry” (number of variables sampled at 
each node), “ntree” (number of classifying trees), “samp-
size” (number of samples sampled in each group), “node 
size” and “cutoff” were optimized individually by run-
ning five parallel Random Forest models with varying 
values for these parameters. The value of the parameter 
that gives least average out-of-box (OOB) error with 
five Random Forest runs is selected for the final model 
(Additional file 1: Figure S2). All models were built using 
randomForest and Boruta R packages. The algorithmic 
sequence of the tuning steps performed was explained in 
Additional methods (Additional file 1: Figure S2). Boruta 
and backward elimination were used for variable selec-
tion for the final model.

Unsupervised clustering using Random Forest algorithm
The NMR variables of breath metabolome after DAB 
were used for clustering. Distance matrix is calculated 
by Random Forest algorithm in an unsupervised man-
ner. Clustering was performed with partitioning around 
medoids (PAM) and k-means. An optimum number of 
clusters were determined as three, based on silhouette 
width [12]. The cluster memberships were found to be 
robust across the two methods. Further results are based 
on results obtained from the k-means algorithm.

Results
Data cleaning and preprocessing
To convert spectral peaks into a multidimensional data-
set suitable for machine learning, we used dynamic adap-
tive binning (DAB) to get an optimal one peak per bin 
(Additional file  1: Figure S1) segmentation of the spec-
trum. Each bin could then be considered a unidimen-
sional variable, with a value equal to the amplitude of the 
spectral peak, normalized internally to the cumulative 
amplitude of the binned spectrum.

Variable selection by machine learning reproduced the 
previously reported peak at 7 ppm amongst other novel 
variables for accurate classification
Figure 1a shows the list of most important variables in the 
order of their importance derived from the Boruta algo-
rithm. Boruta is a Random Forest based approach used 
for feature selection, the advantage of this being an addi-
tional filter by calculating the statistical significance of the 
variables that help distinguish between classes. Remark-
ably with both the techniques, the 7  ppm trident signa-
ture, which was earlier shown to be diminished in asthma, 
was found to be amongst the most important variables 
for the classification into asthmatic and healthy groups. 
Apart from this trident signature, several novel spectral 
peaks were identified to be distinguishing asthmatics 

from healthy controls (Fig. 1b). While some of these peaks 
corresponded to metabolites (Additional file 1: Table S1, 
Figure S3), we did not pursue chemical validations. In the 
internal validation stage, the Random Forest algorithm 
calculates the error associated with decisions on an auto-
matically held out set within the training samples (out-
of-box, OOB error). This helped the algorithm in tuning 
itself to achieve 84% sensitivity and 81% specificity during 
the internal validation. In the next step, this model was 
explicitly validated using an external validation on a ran-
domly chosen set of 45 asthmatics and four healthy con-
trols achieving 80% sensitivity and 75% specificity for this 
set (Table 1). Therefore both internal and external valida-
tion had high accuracy in predicting asthma from normal 
through features in the full NMR spectra. 

Clinically relevant metabolomic clusters were discovered 
through unsupervised analysis of breath metabolome
Metabolomic data from NMR was used to form clus-
ters using unsupervised clustering methods including 
k-means and PAM. There was an indication for the pres-
ence of three clusters within the childhood asthma based 
upon the average silhouette criteria. Cluster member-
ships from both k-means and PAM were similar indi-
cating the robustness of the clusters. There were 41, 
11 and nine patients respectively in three clusters. We 
compared these clusters for known asthma endotype 
features from available clinical information (aspirin sen-
sitivity, obesity, exhaled nitric oxide, blood eosinophilia, 
atopy, family history of asthma). Further, to understand 
the severity and response to standard asthma treatment, 
we looked at asthma severity and asthma control over 
20 follow-up visits (at 3  monthly intervals). Exacerba-
tion ratios were calculated as a total number of exacer-
bations divided by the number of follow-ups, in a given 
period. There were no obese or known aspirin-sensitive 
patients in this asthma cohort and age or gender distribu-
tions were similar across the clusters (Table 2). Cluster 3 
had significantly lower blood eosinophilia and increased 
neutrophilia when compared to clusters 1 and 2, which 
were similar (Fig.  2a, b). Exhaled nitric oxide showed 
high variability in our data, with the highest median 
value in cluster 2, but no significant differences were seen 
(Fig. 2c). Cluster 1 had lower asthma exacerbation rates 
than other clusters (Fig. 2d). A higher proportion of clus-
ter 3 patients also had both maternal and paternal family 
history of asthma (Table 2, p = 0.06). While we did not 
perform chemical validations of the EBC, characteristic 
peaks could be extrapolated, as shown in the Fig.  3. A 
8.3 ppm peak, corresponding to formic acid, was charac-
teristic of cluster 3. The previously reported 7 ppm triplet 
signature of ammonia, which was diminished in asthmat-
ics, was highest in cluster 1 and lowest in cluster 3.
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Fig. 1  Boruta algorithm identified 16 bins as important to differentiate asthmatics from healthy controls. a Variable importance (y-axis) of all 162 
bins (x-axis) was shown as box and whiskers plots. Confirmed, putative and rejected variables were shown in green, yellow and red respectively. 
Importance of randomized variables was shown in blue. b Important bins highlighted by a box in a were enlarged and shown. Previously reported 
peaks corresponding to ammonia were highlighted by a box
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Discussion
There is a well-recognized need in medicine to incorpo-
rate the methods of data-science into the standard ana-
lytical toolbox in addition to classical statistics. Such 
approaches being more agnostic to data-types and dis-
tribution can yield additional translational information 
and are projected to shape the next 100 years of medicine 
[13]. EBC [14] is a non-invasive and highly informative 
matrix reflecting various dimensions of lung and airway 
health [5]. It consists of a milieu of different metabolites 
from the lungs and airway surface lining thereby poten-
tially differing between healthy and diseased airways 
[15–18]. However, different samples may have differ-
ent dilution due to different water vapor condensation. 
Despite a variety of ratiometric indices, simple quan-
titative measurements have been poorly reproducible 
and thus of limited value [19]. Axiomatically, differences 

in water vapour condensation would equally dilute all 
metabolites within the EBC, making tests that use the 
total metabolome resistant to dilution induced artefacts. 
Consequently, a novel approach was undertaken in this 
study whereby the total NMR spectrum was internally 
normalized and provided to machine learning systems 
for classification (diagnosis) as well as separation (endo-
type discovery). The results are promising and despite 
limitations, as discussed later, represent a proof-of-con-
cept for such approaches.

The success of this approach critically determines 
on classifying the peaks into bins (binning) that then 
are used as independent variables for machine learn-
ing. While technical, this is a critical step that merits a 
little description, so that others may avoid some blind 
ends that we took. Binning the NMR spectra is usually 
done to reduce the dimensionality of the data as well as 

Table 1  Confusion matrices for  the optimized model with  both internal and  external cross-validation along  with class 
wise error rates

Original label Predicted label Class wise error (%)

Asthma Healthy control

Internal cross validation Asthma 36 8 18.1

Healthy control 3 13 18.7

External cross validation Asthma 37 8 17.8

Healthy control 1 3 25.0

Table 2  Comparison of the clinical features between the clusters derived from metabolic profiling of the EBC

Data are presented as mean ± SD or frequency (%)

BMI body mass index, FEV1 forced expiratory volume in 1 s, FeNO exhaled nitric oxide fraction, ESR erythrocyte sedimentation rate, TLC total leukocyte count, 
Polymorphs polymorphonuclear leukocyte

p values are obtained from either ANOVA, kruskal–Wallis or Chi squared test

* Skin prick test was possible only in some children

Variable Cluster 1 (n = 41) Cluster 2 (n = 11) Cluster 3 (n = 9) p value

Age (months) 113.98 ± 34.53 123.45 ± 39.61 123.44 ± 48.95 0.71

Male 9 (21.95%) 11 (100%) 4 (44.44%) 0.053

BMI 16.09 ± 3.22 15.08 ± 3.94 15.70 ± 1.91 0.66

Age of onset (months) 33.74 ± 33.84 51.09 ± 47.33 28.67 ± 22.97 0.41

Atopy present* 19 (57.57%) 6 (75%) 5 (62.5%) 0.66

Both maternal and paternal family history present 25 (60.09%) 8 (72.73%) 9 (100%) 0.06

FEV1% predicted 89.44 ± 17.13 81.36 ± 16.24 84.67 ± 15.12 0.34

TLC (× 103 cells/μL) 9.28 ± 3.33 8.79 ± 1.60 9.42 ± 2.24 0.70

% Eosinophils 3.69 ± 2.52 6.54 ± 12.45 2.56 ± 0.53 0.024

% Polymorphs 55.80 ± 13.4 54.64 ± 7.53 63.89 ± 6.15 0.01

ESR mm/h 20.07 ± 9.25 17.82 ± 4.04 21.22 ± 8.90 0.39

FeNO (ppb) 18.73 ± 12.23 23.36 ± 14.12 27.67 ± 29.16 0.47

Corticosteroid use 33 (80.49%) 7 (63.36%) 6 (66.67%) 0.41

Exacerbation ratio 0.15 ± 0.17 0.31 ± 0.24 0.27 ± 0.16 0.018
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to account for minor peak shifts. The ideal goal of bin-
ning is to achieve “one-peak-per-bin”, this being impor-
tant for automated high-throughput analysis intended 
to be used without human intervention. However Uni-
form binning failed to achieve this (Additional file 1: Fig-
ure S1). Therefore, we tested dynamic adaptive binning 
which performed satisfactorily (Additional file  1: Figure 
S1) and has also been shown to be most robust in litera-
ture using synthetic data sets [20]. This also reduced the 
dimensions of the data from > 1000 features to 162 bins. 
Yet, the bins had unknown dependency structure and 
the number was large enough to forbid a classical sta-
tistical modeling approach. Therefore, a Random Forest 
based approach, better suited for such data [21–23] was 
taken. It is noteworthy that the principle of NMR allows 

one compound to give multiple peaks, hence the correla-
tion structure as well as interaction structure is expected 
to be rich and difficult to solve with classical statistical 
methods. Further tuning of the algorithm for number of 
trees and depth of tree was found to be useful and merits 
a careful consideration in such studies. However, the trap 
of overfitting should be carefully avoided through exter-
nal validation, such as that performed in this study. In the 
external validation, NMR spectra of the EBC could dif-
ferentiate between asthmatics and healthy controls with 
80% sensitivity and 75% specificity.

To further dissect the mechanistic relevance of this 
model, the importance scores were used to select fea-
tures and metabolite annotation corresponding to these 
features was carried out. Majority of the compounds 

a

c

b

d

Fig. 2  Comparison of the clinical features between the three clusters, neutrophils (a), eosinophils (b), exhaled nitric oxide (c), exacerbation ratios 
(d). Data were presented as box and whiskers plots showing median and interquartile range. *p < 0.05
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identified have already been reported to be present in 
breath under various conditions, thus supporting the 
validity of EBC matrix (Additional file  1: Table S1). A 
recent report indicates the role of endogenous d-beta-
hydroxybutyrate (D-BHB) in mitigating hypersensitivity 
[24, 25]. Interestingly, Hydroxybutyrate was one of the 
important predictors in our study as well and in agree-
ment with [24] its levels were found to be higher in con-
trols as compared with asthmatics (Additional file  1: 
Figure S3) Similarly, formate has already been reported to 
be higher in the breath of asthmatics clearly substantiat-
ing our finding [26]. There is a large potential for explora-
tion of exhaled breath condensate through data-science 
driven approaches as a few compounds were detected 
that have either been shown to be of relevance in other 
respiratory ailments [27] or have not been reported ear-
lier at all. Importantly, the features map differently to 
the clusters such that ammonium, a previously reported 
marker of normal airway health [28], was highest in clus-
ter 1 i.e. closest to normal, and least in cluster 3 (Fig. 3). 
Correspondingly, formate, a marker of asthma severity, 
was highest in cluster 3 and lowest in cluster 1 (Fig.  3). 
Clinical data, as shown in Table  2, shows a relatively 
severe asthma profile for cluster 3 with stronger fam-
ily history, higher exacerbation rate and lower blood 

eosinophils. These findings fit well with the chemical data 
and the cluster is potentially useful for endotype discov-
ery. Therefore this study advocates the use of exhaled 
breath condensate spectral signatures aided by machine 
learning algorithms in order to find clinically relevant 
clusters of asthma and point out useful markers some of 
which are novel, that could differentiate a healthy from 
an asthmatic subject. The pipeline could also be adapted 
for other biological matrices as well.

Limitations of the study
Despite the good match between prior knowledge and 
our informatic inferences, it is important to reiterate that 
we did not actually measure any metabolites. Thus, while 
our model is robust from the point of NMR based bins, 
it is only hypothesis generating from a chemical stand-
point. Another limitation of our study is a relatively small 
sample size and the results would need to be replicated 
in other studies to have clinical utility. We do believe that 
the pipeline discussed in this manuscript is optimally 
suited for the discovery of novel respiratory signatures in 
the context of health and disease and for distinguishing 
different hitherto unknown sub types of the disease based 
on unique fingerprints of-omics based markers. Further 
validation on varied population subsets is an essential 

Methanol N−N− Dimethylglycine Urea

Formate Hydroxybutyrate Isopropanol Levulinate/Aminobutyrate
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Fig. 3  Boxplots of annotated bins which were statistically different (one way ANOVA p value < 0.05) between the three clusters
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next step, as true for any biomarker. Importantly, while 
the clinical utility of such classification is modest for 
the time being, the availability of precision therapies in 
the near future makes such investigations worthwhile. 
The findings of this study could well be extrapolated to 
other complex disease settings involving disorders of the 
respiratory system whereby exhaled breath condensate 
could serve as a potential matrix for discovery of disease 
signatures.

Conclusion
With the enhancing volume of biomedical data, it is 
increasingly important to make use of automated compu-
tational approaches for new discoveries. Machine learn-
ing analyses of EBC NMR data, using pipelines such as 
those described here, is a potentially useful method in 
diagnostics as well as a step towards realizing precision 
medicine.
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