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Identification of potential transcriptomic 
markers in developing pediatric sepsis: a 
weighted gene co‑expression network analysis 
and a case–control validation study
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Abstract 

Background:  Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality 
rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-
expression module analysis of the transcriptomic dataset.

Methods:  Using the R software and Bioconductor packages, we performed a weighted gene co-expression network 
analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation 
(gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of 
the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramod-
ular analysis was further performed and “hub genes” were identified and validated by quantitative real-time PCR 
(qPCR) in this study.

Results:  15 co-expression modules in total were detected, and four modules (“midnight blue”, “cyan”, “brown”, and 
“tan”) were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. 
Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune 
response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false 
discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub 
genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains 
A4A) were further validated to be differentially expressed between septic children and controls by qPCR.

Conclusions:  Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results sug-
gest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results 
provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.
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Background
Sepsis represents a complex disease with the dysregu-
lated inflammatory response and high mortality rate. It is 
the world’s leading killer of children [1]. However, current 

knowledge of the pathogenesis of sepsis is limited [2, 3].
In the past decade, several studies have reported the 

transcriptional profiling of sepsis using microarrays to 
identify candidate genes involved in sepsis development 
[4–7]. Co-expression module analysis of transcriptomic 
dataset has the likelihood of discovering robust candi-
dates for diagnosis and treatment. Therefore, we investi-
gated gene expression patterns between pediatric sepsis 
patients and healthy controls in this study based on pub-
lic microarray dataset. Network construction and module 
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detection were performed. The importance of candidate 
modules identified in this study were evaluated, and 
modules most significantly associated with sepsis were 
further interpreted by enrichment analysis, intramodular 
analysis and quantitative real-time PCR (qPCR).

To carry out these analyses, we used the R software 
(v3.3.2) [8] and Bioconductor packages [9] for data 
pre-procession and weighted gene co-expression net-
work analysis. Functional interpretation and network 
construction of co-expression modules were also per-
formed using DAVID [10, 11] and Cytoscape [12] soft-
ware, respectively. Enrichment analysis of the candidate 
module genes with known transcription factors and 
microRNAs was also performed using WebGestalt [13]. 
Validation of gene expression patterns was performed by 
qPCR in this study.

Methods
Microarray datasets search and selection
In this study, we searched public microarray datasets till 
Jul 12, 2016, according to the keywords “sepsis” in Gene 
Expression Omnibus (GEO) database [14]. The datasets 
obtained were further selected for subsequent analysis, 

and our selection criteria were: (a) case–control data-
set; (b) dataset using whole blood from children for gene 
expression analysis; (c) dataset providing detailed gene 
expression data; (d) dataset with sample size (septic chil-
dren and controls in total) larger than 100. Animal stud-
ies and studies of adults were excluded.

Pre‑procession of microarray gene expression dataset
One dataset fulfilled the selection criteria and was used 
for further analysis. This eligible dataset (GSE13904) was 
generated using the Affymetrix Human Genome U133 
Plus 2.0 Array from 99 pediatric sepsis patients (32 sep-
sis and 67 septic shock patients) and 18 normal controls 
[7]. Raw data saved in.CEL files of the eligible dataset was 
downloaded from GEO database, and then pre-processed 
(background correction, quantile normalization, log2 
transformed) using the Robust Multichip Average (RMA) 
method of the R package “affy” [15]. Next, the hybridiza-
tion probes were mapped to genes (Entrez IDs) according 
to the platform table. Probes mapping to multiple genes 
and probes not mapping to genes were excluded. When 
multiple probes mapped to the same gene, arithmetic 

Fig. 1  Hierarchical clustering dendrogram used for module identification
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mean of probe values were calculated to represent gene 
expression.

Weighted gene co‑expression network analysis
Weighted gene co-expression network analysis was car-
ried out using the R package “WGCNA” [16] in this study. 
Pre-processed gene expression data were first checked 
for missing values and outliers. The genes and samples 
which passed the test were collected for network analysis. 
One-step network construction and module detection 
were then performed, with the soft-thresholding power β 
set to 14 according to the criterion of approximate scale-
free topology (Additional file  1), the minimum module 
size set to 30, and the threshold for merging of modules 
set to 0.25. Modules significantly associated with sepsis 
were identified based on the correlation between mod-
ule eigengenes and sample types (sepsis patients versus 
healthy controls). Gene relationships to sepsis and mod-
ules were then evaluated by gene significance (GS, cor-
relation of individual gene expression with sepsis) and 

module membership (MM, correlation of individual gene 
expression with module eigengene). Network construc-
tion of co-expression modules was also performed using 
Cytoscape 3.4.0 [12] software.

Enrichment analysis
Functional interpretation [gene ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis] of the co-expression genes in sepsis-
associated modules was further performed using DAVID 
6.8 [10, 11]. In GO analysis, a P value threshold of 0.05 
was used to identify significantly enriched GO terms [17]. 
In pathway analysis, enrichment analysis was carried out 
using the hypergeometric test with a P value threshold 
of 0.05 based on the KEGG database [18]. Enrichment 
analysis of the candidate module genes with known tran-
scription factors and microRNAs was also performed 
using WebGestalt [13], according to the criteria: (a) false 
discovery rate (FDR)-adjusted P value < 0.05; (b) a mini-
mum number of genes in a category: two.

Table 1  Top 4 sepsis-associated co-expression modules

a  Student asymptotic P value for correlation

Module Correlation coefficient with pediatric sepsis Pa Number of genes

Midnight blue − 0.67 2 × 10−16 39

Cyan 0.65 2 × 10−15 39

Brown 0.54 4 × 10−10 1382

Tan − 0.53 1 × 10−9 80

Fig. 2  Co-expression networks of the top 2 sepsis-associated modules. a Network of module “midnight blue”. b Network of module “cyan”. Edge 
widths are proportional to the correlation coefficients
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Intramodular analysis and quantitative real‑time PCR
For modules significantly associated with sepsis, the 
intramodular analysis was performed and “hub genes” 
were identified according to the criteria: (a) LOG10 (P 
value of GS) ≥ 10; (b) MM ≥ 0.8.

Validation of hub gene expression patterns was per-
formed by qPCR in this study. 45 pediatric sepsis 
patients were included. 16 children who were sched-
uled for minor elective surgery such as circumcision 
or inguinal hernia repair were also included as the 
control group. All heparinized blood samples were 
obtained from Children’s Hospital of Soochow Univer-
sity. Informed consent was obtained from each partici-
pating individual’s guardian. The study procedure was 
approved by the ethics committee of Children’s Hospital 
of Soochow University.

Mononuclear cells (MNCs) were isolated, and then 
stored at − 80 °C before RNA extraction. Total RNA was 

extracted using RNAiso (TaKaRa, Dalian, China). The 
RNA was reverse-transcribed using oligo-dT, and mouse 
mammary tumor virus reverse transcriptase. qPCR 
was performed with SYBR Green master mix. Primers 
designed were shown in Additional file  2. Gene expres-
sion was normalized to β-actin mRNA. The relative 
expression of gene transcript was calculated using the 
2−ΔΔCt method. Comparison of clinical characteristics 
between study groups was performed using the Mann–
Whitney U test for continuous variables and the Fisher’s 
exact test for categorical variables. Mann–Whitney U 
test was also performed to determine the expression dif-
ference between septic children and the control group. 
Statistical analyses were performed with GraphPad Prism 
software (GraphPad Software Inc.). All P values are two-
sided. P < 0.05 was considered as statistically significant.

In addition, the diagnostic performance of hub genes 
were also evaluated in the validation group (45 septic chil-
dren and 16 controls) by receiver operating characteristic 
(ROC) curve plotting and area under the curve (AUC) 
values calculation using the R package “pROC” [19].

Results
Co‑expression modules in pediatric sepsis development
Original search identified one eligible microarray dataset 
(GSE13904) [7]. Pre-processing of this dataset resulted 
in expression data of 20,464 genes in 99 pediatric sep-
sis samples and 18 normal controls. According to the 
parameters (soft-thresholding power β =  14, minimum 

Table 3  Summary of the transcription factor enrichment analysis results of the four sepsis-associated modules

FDR false discovery rate
a  No significantly enriched transcription factor was identified in module “cyan”
b  Transcription factors with FDR-adjusted P value < 0.01 were listed for module “brown” for the sake of brevity

Modulea Transcription factor Official full name FDR-adjusted P value

Midnight blue ETS2 ETS proto-oncogene 2, transcription factor 1.64 × 10−2

Brownb ETS2 ETS proto-oncogene 2, transcription factor 5.85 × 10−8

ELF1 E74 like ETS transcription factor 1 9.52 × 10−6

SPI1 Spi-1 proto-oncogene 4.37 × 10−5

ETV4 ETS variant 4 3.86 × 10−4

RUNX1 Runt related transcription factor 1 1.37 × 10−3

SRF Serum response factor 1.37 × 10−3

GABPA GA binding protein transcription factor alpha subunit 2.51 × 10−3

JUN Jun proto-oncogene, AP-1 transcription factor subunit 3.07 × 10−3

ETV7 ETS variant 7 3.07 × 10−3

IRF family Interferon regulatory transcription factor family 8.03 × 10−3

SREBF1 Sterol regulatory element binding transcription factor 1 9.52 × 10−3

Tan IRF1 Interferon regulatory factor 1 4.03 × 10−2

POU5F1 POU class 5 homeobox 1 4.03 × 10−2

POU2F1 POU class 2 homeobox 1 4.03 × 10−2

Fig. 3  Enriched transcription factors of particular interest. ETS2 and 
the IRF family were identified as regulators of multiple sepsis-associ-
ated co-expression modules
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module size = 30, and the threshold for merging of mod-
ules = 0.25) and the hierarchical clustering dendrogram 
(Fig.  1) used for the module identification in this study, 
15 modules in total were detected with sizes ranging 
from 8359 to 39 genes. Among the 15 candidate modules, 
four modules (module “midnight blue”, module “cyan”, 
module “brown”, and module “tan”) were most signifi-
cantly associated with sepsis and suggested as potential 
sepsis-associated modules (see Table  1). Co-expression 
networks of the top 2 sepsis-associated modules (module 
“midnight blue” and module “cyan”) are shown in Fig. 2.

Enrichment analysis results
Advanced analyses (GO analysis and pathway analy-
sis) were carried out for further functional investigation 
of the four sepsis-associated co-expression modules. 
Table  2 presented a summary of the GO and pathway 
analysis results. In the GO analysis, the top GO biologi-
cal process terms enriched are “cellular defense response” 

in module “midnight blue”, “innate immune response” 
in module “cyan”, “inflammatory response” in module 
“brown”, and “antigen processing and presentation of 
peptide or polysaccharide antigen via MHC class II” in 
module “tan”. In the pathway analysis, the most signifi-
cant pathways identified were natural killer cell-mediated 
cytotoxicity in module “midnight blue”, osteoclast differ-
entiation in module “brown”, and asthma in module “tan”, 
when we mapped the module genes to the KEGG data-
base. No significantly enriched pathway was identified in 
module “cyan”.

Enrichment analysis of genes in the four sepsis-asso-
ciated modules with known transcription factors and 
microRNAs was also performed using WebGestalt 
[13]. As presented in Table  3, three of the four sepsis-
associated modules were enriched with known tran-
scription factors (FDR-adjusted P value  <  0.05). Among 
them, transcription factors of particular interest are ETS 
proto-oncogene 2, transcription factor (ETS2) and the 

Fig. 4  Scatterplots of the intramodular analysis results and hub genes identified in the four sepsis-associated modules. a Scatterplot for module 
“midnight blue”. b Scatterplot for module “cyan”. c Scatterplot for module “brown”. d Scatterplot for module “tan”. GS gene significance, MM module 
membership
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their difference in expression between 45 septic children 
and 16 controls (Table 4) by qPCR. As presented in Fig. 6, 
the expression levels of MYBL1 and KLRG1 in the sep-
sis group were significantly lower than those of the con-
trol group (P < 0.001 respectively, see Fig. 6a, b). While 
STOM and MS4A4A were significantly overexpressed in 
sepsis samples, compared with controls (P  =  0.04 and 
P  <  0.001 respectively, see Fig.  6c, d). As for diagnostic 
prediction quality, the four hub genes showed good per-
formance as well according to the ROC analysis in the 
validation group (45 septic children and 16 controls) (see 
Fig. 7). Both the qPCR results and ROC analysis results 
suggest that the four hub genes (MYBL1, KLRG1, STOM 
and MS4A4A) could be novel diagnostic biomarkers for 
pediatric sepsis.

Discussion
Some genes have been reported to be up-regulated or 
down-regulated in pediatric sepsis patients [5, 7]. Iden-
tification of the most important candidate genes and 
pathways involved in sepsis pathogenesis is a challenge 
currently. Growing high-throughput transcriptomic data 

Fig. 5  Differences in expression of hub genes and other module genes between 99 pediatric sepsis samples and 18 normal controls from dataset 
GSE13904. a Differences in expression for module “midnight blue”. b Differences in expression for module “cyan”. c Differences in expression for 
module “brown”. d Differences in expression for module “tan”

interferon regulatory transcription factor (IRF) fam-
ily, as they function in the regulation of multiple sepsis-
associated co-expression modules (see Fig. 3). However, 
no significantly enriched microRNA was identified in this 
study.

Hub gene identification and validation
The intramodular analysis was performed in the four 
sepsis-associated co-expression modules, and hub genes 
were identified in each of the four modules. As shown 
in Fig.  4, 14, 9, 98, and two hub genes were identified 
within module “midnight blue”, “cyan”, “brown”, and “tan” 
respectively. Significant changes in expression of those 
hub genes were detected between 99 pediatric sepsis 
samples and 18 normal controls from dataset GSE13904 
[7] (Fig. 5). four of the identified hub genes [MYB proto-
oncogene like 1 (MYBL1) and killer cell lectin-like 
receptor G1 (KLRG1) form module “midnight blue”, sto-
matin (STOM) and membrane spanning 4-domains A4A 
(MS4A4A) from module “cyan”], predicted to be potential 
biomarkers for pediatric sepsis in intramodular analysis 
and with little known in sepsis, were further assessed for 
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enables weighted gene co-expression network analysis 
of microarray datasets which has the likelihood of dis-
covering robust candidates for diagnosis and treatment. 
Hence in this study, we performed a weighted gene co-
expression network analysis of public microarray dataset 

to identify potential transcriptomic markers in develop-
ing pediatric sepsis.

In this analysis, 15 co-expression modules were iden-
tified, among which four modules (module “midnight 
blue”, module “cyan”, module “brown”, module “tan”) 
were significantly associated with pediatric sepsis and 
were potential sepsis-associated modules. The enrich-
ment analysis indicated that transcription factors (ETS2 
and the IRF family) play roles in the regulation of mul-
tiple sepsis-associated modules. So far there is increas-
ing evidence that the IRF family plays a part in sepsis [20, 
21]. Whereas little is known about the impact of ETS2 on 
sepsis and further investigation is needed.

Through intramodular analysis, 123 hub genes in 
total were identified in the four sepsis-associated co-
expression modules, including hub genes known to 
play roles in sepsis, and hub genes without previous 
studies in sepsis. Among those novel hub genes, we 
assessed the expression patterns of MYBL1, KLRG1, 
STOM and MS4A4A from the top 2 sepsis-associated 
modules (module “midnight blue” and module “cyan”) 
by qPCR. Significantly different expressions between 
pediatric sepsis patients and controls were detected 
for all four genes, validating the intramodular analy-
sis results. MYBL1 belongs to the MYB family and is 

Fig. 6  qPCR results of MYBL1, KLRG1, STOM and MS4A4A between 45 septic children and 16 controls. a MYBL1 relative expression comparison 
between pediatric sepsis patients and controls (Mann–Whitney U test, ***P < 0.001). b KLRG1 relative expression comparison between pediatric 
sepsis patients and controls (Mann–Whitney U test, ***P < 0.001). c STOM relative expression comparison between pediatric sepsis patients and 
controls (Mann–Whitney U test, *P = 0.04). d MS4A4A relative expression comparison between pediatric sepsis patients and controls (Mann–Whit-
ney U test, ***P < 0.001)

Table 4  Clinical characteristics of the validation group

a  P value of the Mann–Whitney U test
b  P value of the Fisher’s exact test

Characteristic Sepsis Control P

Number 45 16

Age, median years [range] 1.50 [0.08–13.42] 1.92 [0.08–10.50] 0.95a

Gender 0.22b

 Male 27 13

 Female 18 3

Infection site

 Lung (%) 15 (33.3) – –

 Brain (%) 11 (24.4) – –

 Others (%) 19 (42.2) – –

Septic shock (%) 17 (37.8) – –

ICU stay, median days 
[range]

5.38 [0.08, 30.00] – –

ICU mortality (%) 13(28.9) – –
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Fig. 7  Receiver operating characteristic (ROC) curves of the hub genes on diagnosis of pediatric sepsis. AUC: area under the ROC curve. a ROC 
curve of MYBL1. b ROC curve of KLRG1. c ROC curve of STOM. d ROC curve of MS4A4A

involved in adenoid cystic carcinoma and pediatric 
glioma [22, 23]. KLRG1 encodes a receptor on antigen-
experienced T cells and natural killer cells [24, 25]. It is 
suggested as a senescent marker of human T cells [26]. 
In tumor microenvironment, KLRG1 is significantly 
overexpressed in T cells [27]. STOM encodes a major 
lipid-raft protein stomatin, which locates at the plasma 
membrane of multiple cell types [28–30], and is asso-
ciated with non-small cell lung cancer [31] and erb-
b2 receptor tyrosine kinase 2-positive breast cancer 
[32]. MS4A4A, a member of the membrane-spanning 
4-domains subfamily A, is reported to be a cell-surface 
marker of plasma cells and M2 macrophages [33]. It 
is also up-regulated in the autopsied brain tissue of 
Alzheimer’s disease patients [34]. In this study, ROC 

analysis results further indicate that the four hub 
genes (MYBL1, KLRG1, STOM and MS4A4A) had 
good diagnostic performance in sepsis, close to that 
of genes previously reported [35]. Although the exact 
contributions of the four and other novel hub genes to 
sepsis are not clear yet, further research is necessary as 
those genes could be potential transcriptomic markers 
for sepsis.

Our analysis also has some limitations. The first limi-
tation is the insufficient sample size. A second limita-
tion is the lack of subgroup analyses based on potential 
influential factors, including age, sex, disease severity and 
platform usage, considering the reported impact of gen-
der and age on pediatric sepsis patients [36]. The third 
limitation is the incomplete biological knowledge base 
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and pathway information available at present. Hence, to 
achieve a more convincible conclusion, further analysis 
using larger sample size is required. Stratified analyses 
on different factors such as age, gender, disease severity, 
and platform usage are also needed. Functional studies 
should be performed as well to address the exact roles of 
the candidate hub genes in pediatric sepsis.

Conclusions
In conclusion, we identified four candidate co-expres-
sion modules that were differentially expressed between 
pediatric sepsis patients and normal controls. GO, and 
pathway analyses revealed that those candidate modules 
strongly associated with immune response. Transcrip-
tion factors associated with the modules were also iden-
tified through enrichment analysis in this study. qPCR 
results suggest hub genes (MYBL1, KLRG1, STOM and 
MS4A4A) in the candidate modules as promising poten-
tial transcriptomic markers for pediatric sepsis diagno-
sis. To the best of our knowledge, there is no reported 
weighted gene co-expression network analysis for sepsis 
so far. We hope this study can help in the diagnosis and 
treatment of pediatric sepsis.

Abbreviations
AUC: area under the curve; BP: biological process; CC: cellular component; 
ETS2: ETS proto-oncogene 2, transcription factor; FDR: false discovery rate; 
GEO: Gene Expression Omnibus; GO: gene ontology; GS: gene significance; 
ICU: Intensive Care Unit; IRF: interferon regulatory transcription factor; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; KLRG1: killer cell lectin-like 
receptor G1; MF: molecular function; MM: module membership; MNCs: 
mononuclear cells; MS4A4A: membrane spanning 4-domains A4A; MYBL1: 
MYB proto-oncogene like 1; NA: not available; qPCR: quantitative real-time 
PCR; RMA: Robust Multichip Average; ROC: receiver operating characteristic; 
STOM: stomatin.

Authors’ contributions
FF and WJ designed the study, analyzed the data and drafted the manuscript; 
LYP, LYH, and BZJ acquired patient data and performed laboratory experi-
ments; PJ contributed to the study design and writing of the manuscript. All 
authors read and approved the final manuscript.

Author details
1 Institute of Pediatric Research, Children’s Hospital of Soochow University, 
Suzhou, China. 2 Department of Nephrology, Children’s Hospital of Soochow 
University, Suzhou, China. 3 Pediatric Intensive Care Unit, Children’s Hospital 
of Soochow University, Suzhou, China. 

Acknowledgements
Not applicable.

Additional files

Additional file 1. Analysis of network topology for candidate soft-thresh-
olding powers (βs).

Additional file 2. Primers designed for validation of hub gene expression 
patterns by qPCR.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the conclusions of this article are within the article 
and its additional files.

Consent for publication
All authors approve the publication of this manuscript.

Ethics approval and consent to participate
The study procedure was approved by the ethics committee of Children’s 
Hospital of Soochow University, and informed consent was obtained from 
each participating individual’s guardian.

Funding
This work was supported by grants from National Natural Science Founda-
tion [Grant Number 81501840]; Jiangsu Provincial Medical Youth Talent [Grant 
Number QNRC2016768]; Suzhou science and technology development 
project [Grant Number SYSD2014102]; National Natural Science Foundation 
[Grant Numbers 81501700, 81571551, 81570125]; Jiangsu province’s science 
and technology support program (Social Development) [Grant Number 
BE2016675]; and Major International (Regional) Joint Research Project [Grant 
Number 81420108022]. None of the sponsors was involved in the design of 
the study, in the collection, analysis, and interpretation of data, or in writing 
the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 17 October 2017   Accepted: 8 December 2017

References
	1.	 Kissoon N, Carapetis J. Pediatric sepsis in the developing world. J Infect. 

2015;71(Suppl 1):S21–6.
	2.	 Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick 

DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.
	3.	 Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013;50(1):23–36.
	4.	 Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC. Gene-expression 

profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med. 
2009;37(3):882–8.

	5.	 Dickinson P, Smith CL, Forster T, Craigon M, Ross AJ, Khondoker MR, et al. 
Whole blood gene expression profiling of neonates with confirmed 
bacterial sepsis. Genom Data. 2014;3:41–8.

	6.	 Demaret J, Venet F, Friggeri A, Cazalis MA, Plassais J, Jallades L, et al. 
Marked alterations of neutrophil functions during sepsis-induced immu-
nosuppression. J Leukoc Biol. 2015;98(6):1081–90.

	7.	 Wong HR, Cvijanovich N, Allen GL, Lin R, Anas N, Meyer K, et al. Genomic 
expression profiling across the pediatric systemic inflammatory 
response syndrome, sepsis, and septic shock spectrum. Crit Care Med. 
2009;37(5):1558–66.

	8.	 R core team. A language and environment for statistical computing. 
http://www.r-project.org/. Accessed 26 June 2017.

	9.	 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. 
Bioconductor: open software development for computational biology 
and bioinformatics. Genome Biol. 2004;5(10):R80.

	10.	 da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analy-
sis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4(1):44–57.

	11.	 da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. 
Nucleic Acids Res. 2009;37(1):1–13.

	12.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13(11):2498–504.

https://doi.org/10.1186/s12967-017-1364-8
https://doi.org/10.1186/s12967-017-1364-8
http://www.r-project.org/


Page 11 of 11Li et al. J Transl Med  (2017) 15:254 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	13.	 Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for 
exploring gene sets in various biological contexts. Nucleic Acids Res. 
2005;33(Web Server issue):W741–8.

	14.	 Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/. Accessed 
26 June 2017.

	15.	 Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—analysis of Affymetrix 
GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

	16.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinform. 2008;9:559.

	17.	 Falcon S, Gentleman R. Using GOstats to test gene lists for GO term 
association. Bioinformatics. 2007;23(2):257–8.

	18.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

	19.	 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: 
an open-source package for R and S+ to analyze and compare ROC 
curves. BMC Bioinform. 2011;12:77.

	20.	 Joly S, Rhea L, Volk P, Moreland JG, Dunnwald M. Interferon regulatory 
factor 6 has a protective role in the host response to endotoxic shock. 
PLoS ONE. 2016;11(4):e0152385.

	21.	 Zhang L, Cardinal JS, Pan P, Rosborough BR, Chang Y, Yan W, et al. Spleno-
cyte apoptosis and autophagy is mediated by interferon regulatory factor 
1 during murine endotoxemia. Shock. 2012;37(5):511–7.

	22.	 Gonda TJ, Ramsay RG. Adenoid cystic carcinoma can be driven by MYB 
or MYBL1 rearrangements: new insights into MYB and tumor biology. 
Cancer Discov. 2016;6(2):125–7.

	23.	 Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schu-
macher SE, et al. Genomic analysis of diffuse pediatric low-grade gliomas 
identifies recurrent oncogenic truncating rearrangements in the tran-
scription factor MYBL1. Proc Natl Acad Sci USA. 2013;110(20):8188–93.

	24.	 Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP. Expression 
of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T 
lymphocytes during active, latent, and resolved infection and its relation 
with CD57. J Immunol. 2005;174(10):6088–94.

	25.	 Henson SM, Akbar AN. KLRG1–more than a marker for T cell senescence. 
Age. 2009;31(4):285–91.

	26.	 Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of 
human effector and memory T cells expressing killer cell lectinlike recep-
tor G1 (KLRG1). Blood. 2002;100(10):3698–702.

	27.	 Li L, Wan S, Tao K, Wang G, Zhao E. KLRG1 restricts memory T cell antitu-
mor immunity. Oncotarget. 2016;7(38):61670–8.

	28.	 Snyers L, Umlauf E, Prohaska R. Association of stomatin with lipid-protein 
complexes in the plasma membrane and the endocytic compartment. 
Eur J Cell Biol. 1999;78(11):802–12.

	29.	 Salzer U, Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral 
proteins of erythrocyte lipid rafts. Blood. 2001;97(4):1141–3.

	30.	 Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U. Stoma-
tin is a major lipid-raft component of platelet alpha granules. Blood. 
2002;100(3):897–904.

	31.	 Arkhipova KA, Sheyderman AN, Laktionov KK, Mochalnikova VV, Zborovs-
kaya IB. Simultaneous expression of flotillin-1, flotillin-2, stomatin and 
caveolin-1 in non-small cell lung cancer and soft tissue sarcomas. BMC 
Cancer. 2014;14:100.

	32.	 Chen CY, Yang CY, Chen YC, Shih CW, Lo SS, Lin CH. Decreased expression 
of stomatin predicts poor prognosis in HER2-positive breast cancer. BMC 
Cancer. 2016;16:697.

	33.	 Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L, et al. MS4A4A: a 
novel cell surface marker for M2 macrophages and plasma cells. Immunol 
Cell Biol. 2017. https://doi.org/10.1038/icb.2017.18.

	34.	 Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, et al. Novel 
late-onset Alzheimer disease loci variants associate with brain gene 
expression. Neurology. 2012;79(3):221–8.

	35.	 Sweeney TE, Shidham A, Wong HR, Khatri P. A comprehensive time-
course-based multicohort analysis of sepsis and sterile inflammation 
reveals a robust diagnostic gene set. Sci Transl Med. 2015;7(287):287ra71.

	36.	 Maat M, Buysse CM, Emonts M, Spanjaard L, Joosten KF, de Groot R, et al. 
Improved survival of children with sepsis and purpura: effects of age, 
gender, and era. Crit Care. 2007;11(5):R112.

http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1038/icb.2017.18

	Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case–control validation study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Microarray datasets search and selection
	Pre-procession of microarray gene expression dataset
	Weighted gene co-expression network analysis
	Enrichment analysis
	Intramodular analysis and quantitative real-time PCR

	Results
	Co-expression modules in pediatric sepsis development
	Enrichment analysis results
	Hub gene identification and validation

	Discussion
	Conclusions
	Authors’ contributions
	References




