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Abstract 

Background:  Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences 
indicating that miRNA could be associated with various human complex diseases development and progression. 
Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miR‑
NAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases. Especially, construct‑
ing computational methods to predict potential miRNA–disease associations is worthy of more studies because of 
the feasibility and effectivity.

Methods:  In this work, we developed a novel computational model of multiple kernels learning-based Kronecker 
regularized least squares for MiRNA–disease association prediction (MKRMDA), which could reveal potential miRNA–
disease associations by automatically optimizing the combination of multiple kernels for disease and miRNA.

Results:  MKRMDA obtained AUCs of 0.9040 and 0.8446 in global and local leave-one-out cross validation, respec‑
tively. Meanwhile, MKRMDA achieved average AUCs of 0.8894 ± 0.0015 in fivefold cross validation. Furthermore, we 
conducted three different kinds of case studies on some important human cancers for further performance evalu‑
ation. In the case studies of colonic cancer, esophageal cancer and lymphoma based on known miRNA–disease 
associations in HMDDv2.0 database, 76, 94 and 88% of the corresponding top 50 predicted miRNAs were confirmed 
by experimental reports, respectively. In another two kinds of case studies for new diseases without any known asso‑
ciated miRNAs and diseases only with known associations in HMDDv1.0 database, the verified ratios of two different 
cancers were 88 and 94%, respectively.

Conclusions:  All the results mentioned above adequately showed the reliable prediction ability of MKRMDA. We 
anticipated that MKRMDA could serve to facilitate further developments in the field and the follow-up investigations 
by biomedical researchers.
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Background
MicroRNAs (miRNAs) are a class of endogenous and 
small noncoding RNAs, which function in RNA silencing 
and post-transcriptional regulation of gene expression 

via base-pairing with complementary sequences within 
mRNA molecules [1–6]. However, some researches have 
shown that in some cases miRNAs could also function 
as positive regulators [7, 8]. Since the first discovery of 
miRNAs (C. elegans lin-4) in the early 1990s, thousands 
of currently annotated miRNAs have been identified 
from a wide variety of species, ranging from nematodes 
to humans (for example, more than 1800 homo sapiens 
miRNAs according to miRBase21) [9–13]. In addition, 
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plenty of evidences have shown that miRNAs play impor-
tant roles in many fundamental and critical biological 
processes, such as cell growth, proliferation, differentia-
tion, development, apoptosis, metabolism, aging, signal 
transduction, viral infection and so on [14–19]. Thus, 
it is not surprising that more and more miRNAs have 
been reported to be associated with various complex 
human diseases [20–22]. For example, compared with 
normal tissue controls as measured by microarray, miR-
129, miR-142, and miR-25 were differentially expressed 
in every pediatric brain tumor type [23]. Furthermore, 
according to hepatitis C virus (HCV) case report, the 
miR-122 expression level could be down-regulated by 
HCV core protein in a time- and dose-dependent man-
ner [24]. Moreover, compared with the healthy gingiva, in 
periodontitis cases, six miRNAs (let-7a, let-7c, miR-130a, 
miR-301a, miR-520d and miR-548a) were up-regulated 
more than eightfold [25]. Additionally, miR-372 and miR-
373 were highly up-regulated in the cerebellar tumors 
compared with normal cerebellum or whole brain [26]. 
Therefore, identifying potential disease-related miRNAs 
could not only significantly contribute to comprehend-
ing the diseases mechanisms, but also be beneficial to the 
prognosis, diagnosis, treatment and prevention of human 
complex diseases [27–30]. However, as is known, tradi-
tional experimental methods are usually expensive and 
time-consuming. Fortunately, as the accumulated results 
of vast biology experiments, some reliable miRNA-
related datasets have been constructed and updated. So 
it is necessary and viable to develop more efficient and 
feasible computational approaches to predict underlying 
diseases associated miRNAs based on available biologi-
cal datasets. In addition, the promising predicted results 
obtained by computational methods could be used as 
guidance for further experimental validation [31, 32].

In fact, based on the hypothesis that functionally 
similar miRNAs are often associated with phenotypi-
cally similar diseases and vice versa [12, 33–37], many 
computational models have been proposed for predict-
ing disease-associated miRNAs during the last years. 
For example, Jiang et al. [27] presented a network-based 
approach, which scored each miRNA in the miRNA 
network through the cumulative hypergeometric dis-
tribution to predict potential miRNA–disease associa-
tions. Considering the functional connections between 
miRNA targets and disease genes in protein–protein 
interaction (PPI) networks, Shi et  al. [38] developed a 
computational method to identify miRNA–disease asso-
ciations by performing random walk. Their model took 
advantage of human PPIs, the miRNA–target interac-
tions and disease–gene associations to predict potential 
associations between the miRNAs and diseases based on 
the assumption that miRNAs could tend to be associated 

with diseases which have more correlated associations 
with the miRNA targets. By integrating protein–disease 
associations and miRNA–protein interactions, Mork 
et al. [39] presented a miRPD (miRNA–protein–disease) 
approach to predict novel miRNA–disease associations. 
In their model, they inferred disease–miRNA associa-
tions and ranked them according to a scoring scheme 
that combined the miRNA–protein association scores 
and protein–disease association scores. However, all the 
above three models strongly depended on the miRNA–
target interactions with high rate of false-positive and 
high false-negative results. Chen et al. [40] presented the 
Random Walk with Restart for MiRNA–disease associa-
tion (RWRMDA) model. In their method, they mapped 
all the miRNAs (containing seed miRNAs and candidate 
miRNAs) to miRNA functional similarity network. Then, 
they implemented random walk with restart until they 
got stable probability. Finally, they ranked all the candi-
date miRNAs based on the stable probability to select 
potential disease-related miRNAs for experimental vali-
dation. Meanwhile, that approach was the first global 
network-based method and it did not rely on predicted 
miRNA–target interactions. Xuan et al. [41] developed a 
HDMP method based on weighted k nearest neighbors. 
They calculated the miRNAs functional similarity matrix 
by incorporating the semantic similarity and the pheno-
type similarity between diseases. Then they adopted a 
unique weight assignment of miRNAs based on miRNA 
family or cluster. Finally, the relevance score of unlabeled 
miRNA with investigated disease was calculated by con-
sidering the functional similarities of its weighted k most 
similar neighbors and the distribution information of the 
labeled miRNAs in these neighbors. Considering that the 
simple similarity-based ranking of k-nearest-neighbors 
was not reliable for further prediction, Chen et  al. [42] 
proposed a computational method of ranking-based 
KNN for miRNA–disease association prediction (RKN-
NMDA) to predict potential related miRNAs by rerank-
ing these previously similarity-based sorted neighbors for 
better prediction results. Li et al. [43] developed a matrix 
completion for MiRNA–disease association prediction 
(MCMDA) using matrix completion algorithm based on 
the known miRNA–disease associations to predict the 
potential miRNA–disease associations. Although the 
prediction performances of these mentioned approaches 
were pretty good, they could not be implemented for 
the diseases without known related miRNAs. Further-
more, HDMP strongly relied on the selection of the num-
ber of nearest neighbors considered in the model and it 
failed to set different values of this parameter when dif-
ferent diseases were investigated. Recently, Chen et  al. 
[44] proposed the model of within and between score 
for MiRNA–disease association prediction (WBSMDA). 
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WBSMDA integrated miRNA functional similarity, dis-
ease semantic similarity, known miRNA–disease associa-
tions, and Gaussian interaction profile kernel similarity 
for diseases and miRNAs into an integrated similarity for 
diseases and miRNAs respectively, then the model com-
bined within-score and between-score from the view of 
miRNAs and diseases to calculate the association prob-
ability for miRNA–disease pairs. WBSMDA could be 
implemented for the diseases without known associated 
miRNAs. Then, Chen et  al. [45] developed the compu-
tational model of Heterogeneous Graph Inference for 
MiRNA–disease association prediction (HGIMDA) by 
integrating known verified miRNA–disease associations, 
miRNA functional similarity, disease semantic similarity, 
Gaussian interaction profile kernel similarity into a het-
erogeneous graph. Then they could infer potential asso-
ciation between disease and miRNA by summarizing all 
paths with the length equal to three in the graph. Com-
pared with previous computational models, HGIMDA 
model got a better prediction performance and could 
be effectively applied to new diseases and new miRNAs 
without any known associations, which overcame the 
important limitations of many previous computational 
models.

Additionally, some studies developed machine learn-
ing-based computational models to predict potential dis-
ease–miRNA associations. For example, according to the 
assumption that miRNAs associated with specific tumor 
phenotype would show aberrant regulation of their target 
genes, Xu et  al. [5] proposed an approach based on the 
miRNA target-dysregulated network (MTDN) to prior-
itize potential diseases associated miRNAs. Based on the 
network topology information, some feature measures 
were extracted for miRNAs in MTDN. Then the authors 
used support vector machine (SVM) to construct classi-
fier for distinguishing positive miRNA–disease associa-
tions from negative associations. Nowadays, by utilizing 
the network information flow model, Yu et al. [46] devel-
oped a combinatorial prioritization algorithm of maxi-
mizing network information flow (MaxFlow) to predict 
microRNA–disease associations based on the microR-
NAome-phenome network. To overcome the negative 
influence on model prediction performance that resulted 
from the selection bias of negative samples, Chen et  al. 
[47] developed a computational model of regularized 
least squares for MiRNA–disease association (RLSMDA). 
RLSMDA model was implemented in the framework of 
a semi-supervised learning, which meant that it needed 
no negative samples. Recently, considering that no pre-
vious computational methods could predict the types 
of disease–miRNA associations, Chen et  al. [48] devel-
oped the model of Restricted Boltzmann machine for 
multiple types of miRNA–disease association prediction 

(RBMMMDA). RBMMMDA model could obtain not 
only new miRNA–disease associations, but also the cor-
responding association types by employing Restricted 
Boltzmann machine (RBM). Predicting the different 
types of disease–miRNA associations could be beneficial 
for our understanding about the molecular basis of dis-
eases in the level of miRNAs. RBMMMDA model is the 
first model that could infer association types of miRNA–
disease pairs on a large scale.

Before presenting our model, we briefly introduced 
some information about kernel-based methods. Given 
a known disease–miRNA association network, ker-
nel based methods could be implemented to predict 
unknown miRNA–disease interactions, where a kernel 
could be seen as a similarity matrix of miRNAs or dis-
eases. Kernel based approaches used some base kernels, 
such as disease semantic similarity or miRNA functional 
similarity, to measure the similarity between diseases or 
miRNAs. Then, a pairwise kernel function, which meas-
ured the similarity between disease–miRNA pairs, could 
be calculated by combining a miRNA base kernel and a 
disease base kernel via kernel product. Multiple kernel 
learning (MKL) was a machine learning method focus-
ing on the search for an optimal combination of base ker-
nels [49]. However, since traditional MKL methods were 
based on SVM [49, 50], they were subject to memory 
limitations imposed by the pairwise kernel function and 
the difficulty of obtaining negative samples in supervised 
learning. Kronecker regularized least squares approach 
(KronRLS) [51] abandoned SVM and took advantage of 
the algebraic properties of Kronecker product to imple-
ment predictions without the explicit calculation of pair-
wise kernels function. However, KronRLS method could 
not be conducted to solve multiple kernels situations 
because it was initially developed to handle single kernel 
situation.

In this work, we proposed a computational approach 
named Multiple kernel learning-based Kronecker Regu-
larized least squares for MiRNA–disease association 
prediction (MKRMDA). To this end, we extended the 
KronRLS method to a MKL scenario. Our method used 
L2 regularization to produce a finally optimized non-
sparse combination of multiple base kernels, which was 
then used for the prediction process. Additionally, the 
proposed method could cope with large disease and 
miRNA association matrices. Furthermore, we imple-
mented Leave-one-out cross validation (LOOCV) for 
MKRMDA. As a result, MKRMDA obtained a global 
AUC value of 0.9040 and a local AUC value of 0.8446, 
performing better than some previous models mentioned 
above, such as WBSMDA [44], HDMP [41], RLSMDA 
[47], HGIMDA [45], MCMDA [43], RKNNMDA [42] and 
MaxFlow [46]. Moreover, we carried out three different 
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patterns of case studies in this work (more details in part 
3.2). As mentioned in abstract, there were high ratios 
of the predicted miRNAs confirmed in all three ways of 
case studies by corresponding databases. Therefore, it 
showed the effectivity of MKRMDA in predicting poten-
tial miRNA–disease associations for various categories of 
diseases.

Methods
Human miRNA–disease associations
Human miRNA–disease associations dataset employed 
in this work were obtained from the HMDDv2.0 database 
[52], consisting of 5430 experimentally confirmed human 
miRNA–diseases associations about 495 miRNAs and 
383 human diseases. We adopted the adjacency matrix 
A to clearly describe the known miRNAs–disease asso-
ciations. Specifically, if miRNA m(i) was confirmed to 
be related to disease d(j), the entity A(i,j) was assigned 1, 
otherwise 0.

MiRNA functional similarity
MiRNA functional similarity has been worked out previ-
ously by Wang et al. [35]. In this study, benefitting from 
their relevant researches, we downloaded the relevant 
miRNA functional similarity measures information from 
http://www.cuilab.cn/files/images/cuilab/misim.zip and 
constructed the corresponding miRNA functional simi-
larity matrix FS, where FS(i,j) was denoted as the func-
tional similarity score between miRNA m(i) and m(j). We 
got the known miRNA functional similarity about 271 
miRNAs in this way. For the rest 224 miRNAs without 
known functional similarity, we calculated the Gauss-
ian interaction profile kernel similarity, which would 
be introduced in part 2.5. By integrating the known 271 
miRNA similarity entries and the 224 newly calculated 
Gaussian similarity entries, the miRNA similarity matrix 
had exact 495 entries for prediction work.

Disease semantic similarity model 1
Based on the disease MeSH descriptor downloaded from 
the National Library of Medicine (http://www.nlm.nih.
gov/), the relationship between different diseases could 
be represented by a structure of directed acyclic graph 
(DAG). For an arbitrary disease D, DAG(D) =  (D, T(D), 
E(D)) can be defined to represent the disease D, where 
T(D) is a node set, consisting of D itself and all its ances-
tor nodes, E(D) is the corresponding edge set, consist-
ing of the directed edges pointing from parent nodes to 
child nodes [35]. The semantic value of disease D could 
be defined as follows:

(1)DV1(D) =
∑

d∈T (D)

D1D(d)

where � is the semantic contribution factor. It is obvious 
that for a given disease D, as the distance between D and 
another disease, d, increases, the contribution score of d 
for disease D decreases. In this method, diseases located 
in the same layer would contribute the same score to the 
semantic value of disease D. Finally, the semantic similar-
ity between disease d(i) and d(j) can be calculated based 
on the observation that two diseases with larger common 
part of their DAGs will have larger similarity score:

where SS1 represents the disease semantic similarity 
matrix in this model.

Disease semantic similarity model 2
In this calculation method of disease semantic similarity, 
different from the above method, we assign different con-
tribution value to the diseases in the same layer of DAG(D) 
out of the consideration that disease which appears in less 
DAGs contributes to the semantic similarity of disease D at 
a higher contribution level. So the contribution of disease 
d in DAG(D) to the semantic value of disease D is defined 
as follows when nd represent the number of all diseases 
and DAGt represents the number of DAGs including t:

Then, the semantic similarity of disease d(i) and d(j) 
can be calculated as follows:

where SS2 represents the disease semantic similarity 
matrix in this model.

Gaussian interaction profile kernel similarity
Gaussian kernel function is a kind of widely used radial 
basis function (RBS), based on which the Gaussian inter-
action profile kernel similarity could be calculated by 
taking advantaging of the known miRNA–disease asso-
ciation information. Specifically, by observing whether a 
disease d(i) is associated with each miRNA or not, binary 
vector IP(d(i)), the ith column of the adjacency matrix A, 
could be obtained and denoted as the interaction profiles 
of disease d(i). Then, Gaussian kernel similarity between 
disease d(i) and d(j) can be calculated as follows:

(2)











D1D(d) = 1 if d = D

D1D(d) = max
�

�∗D1D
�

d′
�

|d′ ∈ child of d
�

if d �= D

(3)SS1
(

d(i), d
(

j
))

=

∑

t∈T (d(i))∩T (d(j))(D1d(i)(t)+ D1d(j)(t))

DV 1(d(i))+ DV 1(d(j))

(4)D2D(d) = − log

(

DAGt

nd

)

(5)SS2
(

d(i), d(j)
)

=

∑

t∈T (d(i))∩T (d(j))(D2d(i)(t)+ D2d(j)(t))

DV 2(d(i))+ DV 2(d(j))

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.nlm.nih.gov/
http://www.nlm.nih.gov/
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where rd is adopted to control the kernel bandwidth, GD 
represent Gaussian interaction profile kernel similarity of 
diseases. In addition, rd can be obtained by normalizing 
a new bandwidth parameter r′d by the average number of 
known associations with miRNAs per disease as follows:

where nd is denoted as the number of all the diseases 
investigated. In principle, the new bandwidth parameter 
r′d could be set with cross-validation, but in this article, r′d 
was set 1 based on previous studies [53, 54].

Additionally, the construction method of miRNA 
Gaussian interaction profile kernel similarity matrix, GM, 
is similar to the calculation of disease Gaussian interac-
tion profile kernel similarity:

where nm is denoted as the number of all the miRNAs 
investigated.

MKRMDA
With the advance of sequencing technology and biology, 
more and more reliable biological data about disease and 
miRNA had been released, including various similarity 
information about disease and miRNA. If we could effi-
ciently take advantage of the multi-source similarity data 
as more as possible, we could obtain more precise infor-
mation about disease–miRNA associations. Hence, in 
this work, we proposed the MKRMDA to predict poten-
tial disease associated miRNAs in the situation where 
multiple kernels were involved, meaning that much more 
similarity information could be integrated. To this end, 
at first we briefly introduced the relevant classification 
algorithm, which could be used in single kernel prob-
lem. Given a set of diseases D =

{

d(1), d(2) . . . , d(nd)
}

 , 
a set of miRNAs M = {m(1),m(2) . . . ,m(nm)} , 
we could obtain a set of training samples 
S =

{(

x1, y1
)

,
(

x2, y2
)

. . .
(

xn, yn
)}

, xi represented a dis-
ease–miRNA pair, and yi represented the corresponding 
binary labels, where 1 stood for a known association and 
0 otherwise with 1 < i ≤ n, n = nd × nm, which meant 
the number of all disease–miRNA pairs. In our model, 
if a miRNA–disease pair xi was a known miRNA–dis-
ease association recorded in HMDDv2.0 database, the 

(6)GD
(

d(i), d
(

j
))

= exp
(

−γd � IP(d(i))− IP(d
(

j
)

) �2
)

(7)rd = r′d

/(

1

nd

nd
∑

i=1

� IP(d(i)) �2

)

(8)
GM

(

m(i),m
(

j
))

= exp
(

−γm � IP(m(i))− IP(m(j)) �2
)

(9)γm =
γ ′

m
(

1
nm

∑nm
i=1 � IP(m(i)) �2

)

corresponding yi was set 1, otherwise 0. Denoting the 
training set as S, our goal was to learn a function f that 
could generalize well on new samples, namely new dis-
ease–miRNA pairs. Then this problem could be solved 
based on the closely related (via Lagrange multipliers) 
Tikhonov minimization problem as follows [55]:

where V was a smooth loss function, ||f ||K  was the norm 
of the prediction function f associated to the kernel K, 
and λ  >  0 was a regularization parameter balancing the 
prediction error and the complexity of the model. Then 
considering that we aimed to obtain a function f, which 
could assign close value for every disease–miRNA pairs 
compared with their initial values in S, we could use the 
following simple square-loss function:

Based on the Representer Theorem [56], the solution of 
Eq. 9 could be written in the following form:

Furthermore, with the fact that ||f ||2K = αTKα [57] we 
could obtain the classification function for single kernel 
problem:

Hence if α could be calculated, the prediction score for 
all the disease–miRNA pairs in S could be obtained.

In fact, according to previous study [55],α could be 
obtained by solving a single of system linear equations:

In single kernel situation, we could construct such 
pairwise kernel K as the Kronecker product of the two 
base kernels [58]: K = KD ⊗ KM. Unfortunately, the 
Kronecker product kernel directly would involve calcu-
lating the inverse of an (nd × nm) × (nd × nm) matrix, 
which would take O((nd ×  nm)3) operations. Thus, the 
size of the base kernel matrix made the model training 
computationally unfeasible even for moderate number 
of diseases and miRNAs. Hence, in order to make train-
ing process more efficient, we could further take advan-
tage of two specific algebraic properties of the Kronecker 
product [59] and use the eigendecomposition of the Kro-
necker product [60] to calculate α.

(10)min
f ∈H

1

n

n
∑

i=1

V
(

yi, f (xi)
)

+ � ||f ||2K

(11)V
(

yi, f (xi)
)

= (yi − f (xi))
2

(12)f (xi) =

n
∑

i=1

αiK (x, xi)

(13)

minF(α) = min
α∈Rn

1

2n

n
∑

i=1

(y − Kα)T (y − Kα)+
�

2
αTKα

(14)(K + �I)α = y
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Let KD = QDΛDQ
T
D and KM = QMΛMQT

M be the 
eigendecomposition of the kernel matrices KD and KM . 
Since the eigenvalues (vectors) of a Kronecker product 
are the Kronecker product of eigenvalues (vectors), for 
Eq.  13, the solution α can be calculated by Kronecker-
RLS method as follows [60]:

where vec(·) stacked the columns of a matrix 
into a vector, and C was a matrix defined as: 
vec(C) = (ΛD ⊗ΛM)(ΛD ⊗ΛM + �I)−1vec

(

QT
MYTQD

)

.
So far, the single kernel problem had been introduced, 

and the solution, α, could be calculated successfully and 
efficiently.

Next, we would introduce how MKRMDA could be 
designed for multiple kernels problem, which meant 
that MKRMDA could integrate more similarity infor-
mation about disease and miRNA. It was natural 
that if we could combine different kernels by an opti-
mized and reasonable way, we could make the best 
of relevant data information. We considered vari-
ous base kernels for diseases and miRNAs as KD =
(

K
1
D
,K 2

D
, . . . ,K

PD

D

)

and KM =

(

K
1
M
,K 2

M
, . . . ,K

PM

M

)

,PD 
and PM were the number of base kernels investigated for 
diseases and miRNAs, respectively. In MKRMDA, dif-
ferent base kernels could be finally combined by a linear 
function, such as K ∗

D and K ∗
M:

where βD =

{

β1
D,β

2
D, . . . β

PD
D

}

 and βM =

{

β1
M
,

β2
M
, . . . β

PM

M

}

 corresponded to the weights of disease and 

miRNA kernels, respectively. Then K ∗
D and K ∗

M could 
be used as single base kernel for disease and miRNA, 
which suited for single kernel problem. To obtain opti-
mal βD and βM, we used a two-step optimization process 
[49], in which the optimization of the vector a was inter-
leaved with the optimization of the kernel weights. Step 
1 was that given two initial weight vectors, β0

D and β0
M, 

an optimal value for the vector a could be calculated by 
Eq. 14. Step 2 was that using the optimized a, we could 
proceed to find optimal βD and βM. These two steps 
were repeated until convergence, resulting in the finally 
optimal K ∗

D and K ∗
M for disease and miRNA, respectively 

(due to limited space, for further information, see Addi-
tional file 1).

As mentioned before, after this two-step optimiza-
tion process reached the convergence, we obtained the 

(15)α = vec
(

QMCQT
D

)

(16)K ∗
D =

PD
∑

i=1

β i
DK

i
D,K

∗
M =

PM
∑

j=1

β
j
MK

j
M

optimized single kernel both for disease and miRNA, 
K ∗
D and K ∗

M, then we could make use of these two kernels 
in single kernel situation introduced before, finally the 
prediction scores for all disease–miRNAs pairs were gen-
erated by MKRMDA (see Fig. 1).

Additionally, in our model, we set the mean of all 
the base kernels of miRNA and disease as the initial 
value for the two-step optimization iterative process, 
which was employed to further calculate the optimal 
kernel weights for multiple kernels involved as men-
tioned above. The mean disease kernel was computed 
as K ∗

D = 1/PD
∑PD

i=1 K
i
D, and the same could be done for 

miRNAs, analogously. In addition, the λ parameter was 
evaluated in the interval 

{

2−15, 2−10, . . . , 230
}

. The σ reg-
ularization coefficient was also optimized in the interval 
{0, 0.25, 0.5, 0.75, 1}.

Results
Cross validation
LOOCV was often implemented to evaluate the perfor-
mance of prediction model. In this work, we conducted 
LOOCV in two different ways: global and local LOOCV. 
Like the meaning of ‘local’, local LOOCV was imple-
mented as follows: firstly, we chose a disease, then each 
known miRNA associated with this chosen disease was 
left out in turn as test sample and the other associated 
miRNAs were used as seed samples, thirdly each time 
we ranked the predicted association probability of cur-
rent test sample with the candidate samples, which were 
the miRNAs without known association with the cho-
sen disease. If the rank of the test miRNA exceeded the 
given threshold, the model was considered to successfully 
predict this miRNA–disease association. While, global 
LOOCV was implemented in a different way: firstly, we 
considered all the diseases simultaneously, which meant 
that each time the known disease–miRNA associations 
in HMDD v2.0 was left out in turn as test sample. Then 
all the other associations were set as seed samples and all 
the unknown associations were considered as candidate 
samples. Thirdly, same as local method, if the rank of test 
association exceeded the given threshold, the model was 
considered to successfully predict this association.

Furthermore, receiver-operating characteristics (ROC) 
curve was drawn by plotting true positive rate (TPR, sen-
sitivity) against false positive rate (FPR, 1-specificity) at 
different thresholds. Specifically, sensitivity was denoted 
as the percentage of the correctly identified positive sam-
ples among all the positives. Meanwhile, specificity was 
denoted as the percentage of negative miRNA–disease 
pairs ranked below the threshold among all negatives. 
Furthermore, the predictive performance of MKRMDA 
could be evaluated by calculating the area under ROC 
curve (AUC). Specifically, AUC =  1 meant the perfect 
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predictive performance of the model, and AUC  =  0.5 
indicated a random performance.

Figure  2 showed the performance comparisons of 
the global and local LOOCV results between sev-
eral computational models. As shown in the figure, 
MKRMDA, HGIMDA, RLSMDA, HDMP, WBSMDA, 
MCMDA, RKNNMDA obtained AUCs of 0.9040, 
0.8781, 0.8426, 0.8366, 0.8030, 0.8749 and 0.7159 in 
the global LOOCV, respectively. For the local LOOCV, 
MKRMDA, HGIMDA, RLSMDA, HDMP, WBSMDA, 
RWRMDA, MCMDA and RKNNMDA obtained AUCs 
of 0.8446, 0.8077, 0.6953, 0.7702, 0.8031, 0.7891, 0.7718 
and 0.8221, respectively. The MaxFlow model obtained 
AUC of 0.8693 according to their paper, was also a lit-
tle lower than MKRMDA’s. RWRMDA model could not 
implement global LOOCV because this model could 
not be implemented for all the diseases simultaneously. 
Additionally, RBMMMDA [48] was not included in 
the comparison with MKRMDA because the result of 
RBMMMDA were the corresponding association types 
between miRNAs and diseases, which were different 
from the input and output of our algorithm. As a result, 
MKRMDA had shown excellent and reliable prediction 
performance. We thought that MKRMDA may provide 

potential reference value for miRNA–disease association 
predictive experiments.

In addition, we also adopted fivefold cross validation 
for prediction evaluation, which was conducted in this 
way: all the known miRNA–disease associations were 
randomly divided into 5 groups with equal sizes, then 
each of the 5 groups was set as test samples and the other 
groups as training samples. Hence, when a group test 
samples was chosen, MKRMDA would be implemented 
and the prediction scores of every test sample in this 
group would be compared with the scores of candidate 
miRNAs. To reduce the possible impact caused by ran-
dom divisions in the process of obtaining test samples, 
fivefold cross validation was conducted 100 times. Finally, 
MKRMDA achieved reliable performance with AUC of 
0.8894 ±  0.0015, higher than those generated by other 
models, such as RLSMDA: 0.8569  ±  0.0020; HDMP: 
0.8342 ± 0.0010; WBSMDA: 0.8185 ± 0.0009 MCMDA: 
0.8767 ± 0.0011; RKNNMDA: 0.6723 ± 0.0027.

Case studies
MKRMDA had been applied to predict potential 
miRNA–disease associations for all the diseases inves-
tigated in this paper. To further demonstrate the 

Fig. 1  Flowchart of MKRMDA model to predict potential miRNA–disease associations based on multiple kernels of miRNA and disease and known 
miRNA–disease associations in HMDDv2.0 database
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prediction ability of MKRMDA, as mentioned before, 
three ways of case studies were carried out. Case stud-
ies on colonic cancer, esophageal cancer and lymphoma 
were implemented in the first way of case study, in which 
the disease–miRNA associations recorded in HMDDv2.0 
[52] were used as training samples and miRNAs without 
known associations with currently considered diseases 
were regarded as test samples. After MKRMDA was 
implemented, we verified the top 50 miRNAs predicted 
to be associated with corresponding disease based on the 
experimental associations recorded in miR2Disease [61] 
and dbDEMC database [62].

Colonic cancer is a complex disease in which cancer 
cells form in the tissues of the colon, and colonic cancer 
is reported to the second leading cause of cancer death 
in the United States with the 5 year survival rates of 65% 
in the United States [63]. As many colonic cancers arise 
from adenomatous polyps without obvious symptoms, 
screening test for this cancer is effective not only for early 
detection but also for prevention. Additionally, with the 
rapid development of high-throughput sequencing tech-
nologies, researchers have identified many miRNAs asso-
ciated with colonic cancer. For example, miR-141 and 
miR-200b were confirmed to be highly overexpressed in 
colonic cancer [64]. In the case study for colonic cancer, 

candidate miRNAs were prioritized according to the 
scores obtained from MKRMDA, as a result, 38 out of 
top 50 were confirmed by recent experimental results in 
miR2Disease and dbDEMC (see Table  1). For example, 
miR-183, highly ranked and confirmed by miR2Disease 
and dbDEMC databases simultaneously, was significantly 
deregulated in colorectal cancer cells [65].

Esophageal cancer is the eighth common cancer world-
wide and is one of the deadliest cancers worldwide 
because of its extremely aggressive nature and poor sur-
vival rate [66]. The overall 5-year survival of esophageal 
cancer ranges from 15 to 25% [67, 68]. There is research 
suggesting that the survival rate could increase to 90% 
if the tumors could be diagnosed at an early stage [69]. 
Therefore, the early detection is vital for timely treat-
ment of esophageal cancers [70]. Many miRNAs have 
been reported to be related with esophageal cancers. For 
example, by post-transcriptionally regulating enhancer 
of zestehomolog 2, miR-214 and miR-98 could suppress 
migration and invasion in human esophageal squamous 
cell carcinoma [71]. As mentioned before, in the first way 
of case study for esophageal cancer, 47 out of top 50 pre-
dicted miRNAs for esophageal cancer were confirmed by 
at least one of miR2Disease and dbDEMC databases (see 
Table 2).

Fig. 2  Performance comparisons between MKRMDA and some state-of-the-art disease–miRNA association prediction models (HGIMDA, RLSMDA, 
HDMP, sWBSMDA, MCMDA and RKNNMDA) in terms of ROC curve and AUC based on local and global LOOCV, respectively. As a result, MKRMDA 
achieved AUCs of 0.9040 and 0.8446 in the global and local LOOCV, which represents more outstanding prediction performance than all the previ‑
ous classical models
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Lymphoma is a group of blood cell tumors that develop 
from lymphocytes and lymphoma most often spreads to 
the lungs, liver, and brain. The two main types of lym-
phoma are Hodgkin lymphoma and non-Hodgkin lym-
phoma (NHL) [72]. Meanwhile, lymphomas, including 
HL and NHL, are reported as the seventh-most lethality 
cancers worldwide and lymphomas are also the third-
most common cancer in children [72]. However, lym-
phomas may be curable if detected in early stages with 
modern treatment. Recent experimental research found 

that miR-17-5p showed an increased expression level 
compared with normal canine peripheral blood mono-
nuclear cells and normal lymph nodes (LN). In the case 
study on lymphoma, for the top 50 predicted lymphoma-
associated miRNAs ranked by MKRMDA, we had 44 
associations confirmed by experimental literature evi-
dences (see Table 3).

These 3 cancers were chosen mainly because these 3 
cancers (included some other cancers) were very impor-
tant and these cancers were often taken as case studies in 
many computational models such as HGIMDA (colonic 
cancer, esophageal cancer), RKNNMDA (colonic can-
cer, esophageal cancer), MCMDA (colonic cancer, lym-
phoma) and so on. What’s more, we also compared the 
confirmed case studies results of HGIMDA and RKNN-
MDA on previously mentioned three cancers for the top 
50 predicted miRNAs (see Additional file  1). We chose 
these two models because they were ranked first in the 
models whose performance were compared with our 

Table 1  We implemented MKRMDA on  colonic cancer 
for  potential disease–related miRNA prediction and  con-
ducted the first pattern of  case study, in  which the dis-
ease–miRNA associations recorded in  HMDDv2.0 were 
used as  training samples and  miRNAs without  known 
associations with  currently considered diseases were 
regarded as test samples

According to the prediction results, among the top 10 and 50 potential colonic 
cancer related miRNAs, 6 and 38 were confirmed by miR2Disease and dbDEMC 
databases

miRNA Evidence miRNA Evidence

hsa-mir-222 dbdemc hsa-mir-199b dbdemc

hsa-mir-150 Unconfirmed hsa-mir-30d dbdemc

hsa-mir-146b Unconfirmed hsa-mir-130a Unconfirmed

hsa-mir-200a Unconfirmed hsa-mir-375 Unconfirmed

hsa-mir-199a Unconfirmed hsa-mir-194 dbdemc, 
miR2Disease

hsa-mir-183 dbdemc; miR2Disease hsa-mir-18b Unconfirmed

hsa-mir-196a dbdemc; miR2Disease hsa-mir-27a miR2Disease

hsa-mir-203 dbdemc; miR2Disease hsa-mir-93 dbdemc; 
miR2Disease

hsa-mir-181b dbdemc; miR2Disease hsa-mir-7 dbdemc; 
miR2Disease

hsa-mir-210 dbdemc hsa-mir-373 dbdemc

hsa-mir-135b dbdemc; miR2Disease hsa-mir-98 Unconfirmed

hsa-mir-34c miR2Disease hsa-mir-124 dbdemc

hsa-mir-135a dbdemc hsa-mir-30b dbdemc

hsa-mir-148a dbdemc hsa-mir-339 dbdemc; 
miR2Disease

hsa-mir-29c dbdemc hsa-mir-95 dbdemc; 
miR2Disease

hsa-mir-195 dbdemc; miR2Disease hsa-mir-30e Unconfirmed

hsa-mir-34b dbdemc; miR2Disease hsa-mir-302c Unconfirmed

hsa-mir-92b Unconfirmed hsa-mir-27b dbdemc; 
miR2Disease

hsa-mir-181a dbdemc; miR2Disease hsa-mir-206 dbdemc

hsa-mir-133a dbdemc; miR2Disease hsa-mir-99a dbdemc

hsa-mir-25 dbdemc; miR2Disease hsa-mir-451 miR2Disease

hsa-mir-26a dbdemc; miR2Disease hsa-mir-182 dbdemc; 
miR2Disease

hsa-mir-214 dbdemc hsa-mir-224 dbdemc; 
miR2Disease

hsa-mir-15b miR2Disease hsa-mir-20b Unconfirmed

hsa-mir-429 dbdemc hsa-mir-219 dbdemc

Table 2  We implemented MKRMDA on esophageal cancer 
for  potential disease–related miRNA prediction and  con-
ducted the first pattern of case study according to the pre-
diction results

As a result, among the top 10 and 50 potential esophageal cancer related 
miRNAs, 10 and 47 were confirmed by miR2Disease and dbDEMC databases

miRNA Evidence miRNA Evidence

hsa-mir-200b dbdemc hsa-mir-18b dbdemc

hsa-mir-1 dbdemc hsa-mir-29a Unconfirmed

hsa-mir-125b dbdemc hsa-let-7f dbdemc

hsa-mir-142 dbdemc hsa-mir-146b dbdemc

hsa-mir-18a dbdemc hsa-mir-7 dbdemc

hsa-mir-16 dbdemc hsa-mir-497 dbdemc

hsa-mir-17 dbdemc hsa-mir-191 dbdemc

hsa-let-7e dbdemc hsa-mir-106a dbdemc

hsa-mir-429 dbdemc hsa-mir-132 dbdemc

hsa-mir-222 dbdemc hsa-let-7g dbdemc

hsa-mir-218 Unconfirmed hsa-mir-9 dbdemc

hsa-mir-221 dbdemc hsa-mir-182 dbdemc

hsa-mir-199b dbdemc hsa-mir-122 Unconfirmed

hsa-mir-133b dbdemc hsa-mir-424 dbdemc

hsa-mir-125a dbdemc hsa-mir-24 dbdemc

hsa-mir-19b dbdemc hsa-mir-181a dbdemc

hsa-mir-195 dbdemc hsa-mir-224 dbdemc

hsa-let-7i dbdemc hsa-mir-335 dbdemc

hsa-mir-107 dbdemc; miR2Disease hsa-mir-181b dbdemc

hsa-mir-194 dbdemc; miR2Disease hsa-mir-302b dbdemc

hsa-mir-30a dbdemc hsa-mir-151 dbdemc

hsa-let-7d dbdemc hsa-mir-302c dbdemc

hsa-mir-30c dbdemc hsa-mir-372 dbdemc

hsa-mir-127 dbdemc hsa-mir-491 dbdemc

hsa-mir-10b dbdemc hsa-mir-32 dbdemc
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computational model in the global LOOCV and local 
LOOCV, respectively.

In addition, we conducted case study of hepatocel-
lular carcinoma (HCC) in the second way, in which we 
removed all the related miRNAs information of HCC to 
model the situation where a new disease without known 
miRNA associations was investigated. Then we verified 
the prediction results of HCC with HMDD v2.0 data-
base, miR2Disease, and dbDEMC database. Hepatocel-
lular carcinoma is the most common type of liver cancer. 
Meanwhile, HCC is the sixth most prevalent cancer and 
the third most frequent cause of cancer-related death [73]. 
More than 30 miRNAs have been validated to be related 
to the development of HCC in the gold standard dataset. 
For example, the expression of miR-125a and miR-99b 
were quite lower in HCC compared to normal liver [74]. 

MiR-122a was a liver-specific miRNA and it was fre-
quently downregulated in HCC [75]. Among the top 50 
predicted potential HCC-related miRNAs, there were 44 
miRNAs confirmed by aforementioned various databases, 
i.e. HMDDv2.0, miR2Disease and dbDEMC database (see 
Table  4). For example, miR-21, which was ranked first 
in the top 50 predicted miRNAs, had been reported to 
be up-regulated in patients with HCC and it had strong 
potential to serve as novel biomarker for liver injury [76].

Furthermore, to test the robustness of MKRMDA, we 
presented case study for breast cancer in the third way, 
in which we only used the known disease–miRNA asso-
ciations in HMDDv1.0 database as training samples and 
used associations in HMDD v2.0 database, miR2Disease, 
and dbDEMC database as test datasets. Breast cancer 
is currently reported as the deadliest cancer in women, 
accounting for 25% of all cancer caused death cases [72]. 
Specifically, breast cancer is more common in developed 

Table 3  We also implemented MKRMDA for potential lym-
phoma-related miRNA prediction and  conducted the first 
pattern of case study based on the prediction results

As a result, among the top 10 and 50 potential lymphoma-related miRNAs, 9 and 
44 were confirmed by miR2Disease and dbDEMC databases

miRNA Evidence miRNA Evidence

hsa-mir-125b Unconfirmed hsa-mir-22 dbdemc

hsa-mir-223 dbdemc hsa-let-7b dbdemc

hsa-mir-34a dbdemc hsa-mir-199b dbdemc

hsa-mir-9 dbdemc hsa-mir-494 dbdemc

hsa-mir-221 dbdemc, miR2Dis‑
ease

hsa-mir-10a dbdemc; 
miR2Disease

hsa-mir-195 dbdemc hsa-mir-26b dbdemc

hsa-mir-145 dbdemc, miR2Dis‑
ease

hsa-mir-100 dbdemc

hsa-let-7a dbdemc hsa-mir-27a dbdemc

hsa-mir-224 dbdemc hsa-mir-30e dbdemc

hsa-mir-183 dbdemc hsa-mir-127 dbdemc; 
miR2Disease

hsa-mir-142 Unconfirmed hsa-mir-137 dbdemc

hsa-mir-29a dbdemc hsa-mir-1 dbdemc

hsa-mir-31 dbdemc hsa-mir-34c Unconfirmed

hsa-mir-106a dbdemc; miR2Dis‑
ease

hsa-mir-34b dbdemc

hsa-mir-181b dbdemc hsa-mir-192 dbdemc

hsa-mir-143 dbdemc; miR2Dis‑
ease

hsa-mir-196b Unconfirmed

hsa-mir-205 dbdemc hsa-mir-199a dbdemc

hsa-mir-182 dbdemc hsa-mir-129 dbdemc

hsa-mir-29b dbdemc hsa-mir-99b dbdemc

hsa-mir-222 dbdemc hsa-mir-30a dbdemc

hsa-mir-96 dbdemc hsa-let-7d dbdemc

hsa-mir-10b dbdemc hsa-mir-23b dbdemc

hsa-mir-106b dbdemc hsa-mir-148a dbdemc

hsa-mir-542 Unconfirmed hsa-mir-429 Unconfirmed

hsa-mir-141 dbdemc hsa-mir-27b dbdemc

Table 4  We conducted case study of  hepatocellular car-
cinoma in  the second way, in  which we removed all the 
hepatocellular carcinoma related miRNAs information 
to simulate a new disease without any known associations

Then we verified the prediction results based on HMDD v2.0 database, 
miR2Disease, and dbDEMC database. As a result, among the top 10 and 50 
potential miRNAs, 10 and 44 were confirmed

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDDv2 hsa-mir-571 Unconfirmed

hsa-mir-122 dbdemc; HMDDv2 hsa-mir-133b HMDDv2

hsa-mir-375 HMDDv2 hsa-mir-34a dbdemc; HMDDv2

hsa-mir-145 dbdemc; HMDDv2 hsa-let-7b HMDDv2

hsa-mir-200c HMDDv2 hsa-mir-138 HMDDv2

hsa-mir-200b HMDDv2 hsa-mir-100 dbdemc; HMDDv2

hsa-mir-200a dbdemc; HMDDv2 hsa-mir-148a dbdemc; HMDDv2

hsa-mir-451a HMDDv2 hsa-mir-26b dbDEMC

hsa-mir-124 HMDDv2 hsa-mir-214 dbdemc; HMDDv2

hsa-mir-486 HMDDv2 hsa-mir-199a dbdemc; HMDDv2

hsa-mir-210 dbdemc; HMDDv2 hsa-mir-625 Unconfirmed

hsa-mir-16 dbdemc; HMDDv2 hsa-mir-370 HMDDv2

hsa-mir-10b HMDDv2 hsa-mir-23a dbdemc; HMDDv2

hsa-mir-629 HMDDv2 hsa-mir-708 Unconfirmed

hsa-mir-126 dbdemc; HMDDv2 hsa-mir-499a HMDDv2

hsa-mir-196a HMDDv2 hsa-mir-184 Unconfirmed

hsa-mir-31 HMDDv2 hsa-mir-378a HMDDv2

hsa-mir-425 HMDDv2 hsa-mir-141 HMDDv2

hsa-mir-143 dbdemc hsa-mir-548d Unconfirmed

hsa-mir-182 HMDDv2 hsa-mir-25 dbdemc; HMDDv2

hsa-let-7i dbdemc; HMDDv2 hsa-mir-34c HMDDv2

hsa-mir-222 dbdemc; HMDDv2 hsa-mir-1290 HMDDv2

hsa-mir-26a dbdemc; HMDDv2 hsa-mir-494 Unconfirmed

hsa-mir-155 dbdemc; HMDDv2 hsa-mir-320b HMDDv2

hsa-let-7a dbdemc; HMDDv2 hsa-mir-105 HMDDv2
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countries and is about 100 times more common in 
women than in men. The majority deaths of the breast 
cancer come from the developing countries, where most 
of the women are diagnosed in late stages [77]. There are 
about 176 miRNAs known to be related to the breast 
cancer in the golden standard dataset. For example, miR-
122 was down-regulated in breast cancer cells, while, the 
expression levels of miR-10b and miR-21 were reported 
significantly increased in the CSF (cerebrospinal fluid) 
of patients with breast cancer, compared with patients 
in nonneoplastic conditions [78, 79]. We implemented 
MKRMDA to prioritize candidate miRNAs without the 
known associations with breast cancer in HMDDv1.0. 
As a result, among the top 50 potential breast cancer-
related miRNAs, there were 47 associations which have 
been verified by known miRNA–disease associations in 
at least one of HMDD v2.0 database, miR2Disease, and 
dbDEMC database (see Table 5).

In conclusion, the promising results obtained from 
LOOCV, fivefold cross validation and case studies in 

three different ways had demonstrated the reliable pre-
diction performance of MKRMDA. Therefore, we further 
prioritized all the candidate miRNAs for all the diseases 
recorded in HMDD v2.0 database. The predicted ranks 
of miRNAs for each disease were publicly released for 
further experimental validation (see Additional file 2). A 
higher prediction score meant a higher association prob-
ability of the corresponding disease and miRNA. While, 
we had to point out that the negative scores did not mean 
that the relevant miRNA and disease were negatively 
correlated. Our case studies focus on the top prediction 
scores, which generally were all positive. The potential 
disease–miRNA associations with relatively high ranks 
were expected to be confirmed by biological experiments 
and clinical observation in the future.

Discussion
The excellent and reliable prediction performance of 
MKRMDA could largely be owed to the following sev-
eral factors. Firstly, the known experimentally confirmed 

Table 5  We presented a case study for  breast cancer in  the third way of  case study, in  which we only used known dis-
ease–miRNA association based on  HMDDv1.0 database as  test samples to  assess the robustness of  the prediction 
model, and then we verified the prediction results according to the experimental confirmed disease–miRNA associations 
recorded in HMDD v2.0 database, miR2Disease, and dbDEMC database

As a result, among the top 10 and 50 potential breast cancer related miRNAs, 10 and 47 were confirmed

miRNA Evidence miRNA Evidence

hsa-let-7b dbdemc; HMDDv2 hsa-mir-130b dbdemc

hsa-let-7e dbdemc; HMDDv2 hsa-mir-363 dbdemc

hsa-mir-223 dbdemc; HMDDv2 hsa-mir-27a dbdemc; miR2Disease; HMDDv2

hsa-mir-191 dbdemc; miR2Disease; HMDDv2 hsa-mir-198 dbDEMC

hsa-let-7i dbdemc; miR2Disease; HMDDv2 hsa-mir-520c miR2Disease; HMDDv2

hsa-mir-101 dbdemc; miR2Disease; HMDDv2 hsa-mir-521 dbdemc

hsa-mir-92a HMDDv2 hsa-mir-520b dbdemc; HMDDv2

hsa-let-7g dbdemc; HMDDv2 hsa-mir-95 dbdemc

hsa-let-7c dbdemc; HMDDv2 hsa-mir-128b miR2Disease

hsa-mir-92b dbdemc hsa-mir-142 Unconfirmed

hsa-mir-16 dbdemc; HMDDv2 hsa-mir-15b dbdemc

hsa-mir-106a dbdemc hsa-mir-100 dbdemc; HMDDv2

hsa-mir-32 dbdemc hsa-mir-30e Unconfirmed

hsa-mir-203 dbdemc; miR2Disease; HMDDv2 hsa-mir-491 dbdemc

hsa-mir-126 dbdemc; miR2Disease; HMDDv2 hsa-mir-182 dbdemc; miR2Disease; HMDDv2

hsa-mir-373 dbdemc; miR2Disease; HMDDv2 hsa-mir-130a dbDEMC

hsa-mir-99a dbDEMC hsa-mir-199b dbdemc; miR2Disease; HMDDv2

hsa-mir-532 dbDEMC hsa-mir-184 dbdemc

hsa-mir-18b dbdemc; HMDDv2 hsa-mir-455 dbdemc

hsa-mir-335 dbdemc; miR2Disease; HMDDv2 hsa-mir-139 dbdemc; HMDDv2

hsa-mir-24 dbdemc; HMDDv2 hsa-mir-107 dbdemc; HMDDv2

hsa-mir-181a dbdemc; miR2Disease; HMDDv2 hsa-mir-186 dbdemc

hsa-mir-124 dbdemc; HMDDv2 hsa-mir-99b dbdemc

hsa-mir-30a miR2Disease; HMDDv2 hsa-mir-29c dbdemc; miR2Disease; HMDDv2

hsa-mir-196b dbdemc hsa-mir-542 Unconfirmed
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disease–miRNA associations in HMDDv2.0, which we 
used as training samples in the prediction process, were 
abundant and reliable. Secondly, MKRMDA fully took 
advantage of heterogeneous datasets (known disease–
miRNA associations, miRNA functional similarity, dis-
ease semantic similarity, Gaussian interaction profile 
kernel similarity for miRNAs and diseases) to predict the 
potential associations. Thirdly, MKRMDA used a two-
step optimization process to automatically optimize the 
combination of the involved multiple kernels in the pre-
diction progress, which significantly improved the pre-
diction performance. Additionally, MKRMDA conquered 
the memory limitation difficulty by using some algebraic 
properties of Kronecker product. All in all, MKRMDA 
could handle data from different resources by two-step 
optimal decision for automatically combining them to 
fully take use of them for biology research or multisource 
data fusion research.

Of course, MKRMDA also needs to be improved in 
the future for the reasons as follows: first, MKRMDA 
was developed mainly based on the assumption that 
functionally similar miRNAs were more likely to have 
associations with phenotypically similar diseases, which 
might cause bias to miRNAs with more known associ-
ated diseases. Furthermore, how to appropriately choose 
proper values for the parameters involved in the model 
of MKRMDA from the alternative values need to be fur-
ther solved. In addition, in the optimization iterative pro-
cedure, the method used to set initial values might also 
be opportunely improved to get more reliable prediction 
result.

Conclusion
Identifying novel miRNA–disease associations is a 
vitally important goal of biological development, and it 
also plays a critical role in the understanding of disease 
pathogenesis at the miRNA level. In this paper, we pro-
posed the computational method, MKRMDA, to predict 
potential diseases related miRNAs. The performance 
of MKRMDA was evaluated by implementing LOOCV 
and fivefold cross validation based on the known experi-
mentally verified miRNA–disease associations. The AUC 
scores, 0.9040 in global LOOCV and 0.8446 in local 
LOOCV, demonstrated the reliable and effective perfor-
mance of MKRMDA. Moreover, we implemented three 
different kinds of case studies for further evaluations. 
As mentioned before, in the first case study, 38, 47, and 
44 out of top 50 predicted miRNAs for colonic can-
cer, esophageal cancer, and lymphoma were verified by 
recent experimental reports, respectively. In the second 
and third way of case study for hepatocellular carcinoma 
and breast cancer, 44 and 47 out of top 50 predicted miR-
NAs were verified by recent experimental researches, 

respectively. All of these showed the reliable perfor-
mance of MKRMDA. It was anticipated that MKRMDA 
could be an important and valuable computational tool 
for miRNA–disease association prediction and miRNA 
biomarker identification for human disease diagno-
sis, treatment, prognosis and prevention. In addition, 
MKRMDA was well suited for research situations where 
abundant kernel-related data from different resources 
was provided, especially when researchers expected to 
find an appropriate and optimal method to combine the 
different types of relevant data for the best use of them. 
All the above-mentioned results sufficiently showed the 
reliability of MKRMDA in predicting potential disease–
miRNA associations. MKRMDA was hoped to be helpful 
for miRNA–disease association prediction and relevant 
miRNA research from the perspective of computational 
biology.
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