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Abstract 

Background:  Sepsis delays wound re-epithelialization. In this study we explored the effect of human sepsis sera 
as well as the effects of cytokines, growth factors and exosomes of sepsis sera treated normal fibroblasts (NF) on 
keratinocyte migration and proliferation in vitro.

Methods:  Serum samples were taken on days 1, 4, and 9 from 44 patients diagnosed with severe sepsis, and from 14 
matching healthy controls. We evaluated the effects of sepsis serum with or without TNF-α, EGF, EGF receptor inhibi‑
tor or exosomes of sepsis sera treated NF on human keratinocyte (HaCaT) proliferation (BrdU assay), viability (MTT 
assay), and migration (horizontal wound healing model). Cytokine levels of sepsis and healthy sera were measured 
by multiplex assay. Comparisons between groups were carried out using SPSS statistics and P < 0.05 was considered 
significant.

Results:  Severe-sepsis sera collected on days 1, 4, and 9 reduced keratinocyte proliferation by 6% (P = 0.005), 20% 
(P = 0.001), and 18% (P = 0.002), respectively, compared to control sera. Cell viability in cultures exposed to sep‑
sis sera from days 4 and 9 was reduced by 38% (P = 0.01) and 58% (P < 0.001), respectively. Open-surface wounds 
exposed to sepsis sera from days 1 and 4 were larger than those exposed to sera from healthy controls (60 vs. 31%, 
P = 0.034 and 66 vs. 31%, P = 0.023, respectively). Exosomes of sepsis or healthy sera treated NF inhibited keratino‑
cyte migration. We detected higher serum levels of cytokines TNF-α (5.7 vs. 0.7 pg/ml, P < 0.001), IL-6 (24.8 vs. 3.8 pg/
ml, P < 0.001), IL-10 (30.0 vs. 11.9 pg/ml, P = 0.040), and VEGF (177.9 vs. 48.1 pg/ml, P = 0.018) in sepsis sera. Levels of 
EGF were significantly lower in sepsis sera than in that of healthy controls (6.5 vs. 115.6 pg/ml, P < 0.001). Sepsis serum 
supplemented with EGF 5 ng/ml and TNF-α in all concentrations improved keratinocyte migration.

Conclusions:  Keratinocyte viability, proliferation and migration were reduced in severe sepsis in vitro. Exosomes from 
NF added in healthy or sepsis serum media inhibited keratinocyte migration. Decreased levels of EGF in sepsis sera 
may partially explain the delay of wound healing with severe-sepsis patients. Increased levels of TNF-α in sepsis sera 
do not explain diminished keratinocyte migration.
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Background
Sepsis is defined as a dysregulated host response to outer 
pathogens leading to acute organ dysfunction [1, 2]. Skin 
is the main defensive barrier against outer pathogens. 
Disorders in skin function and wound healing during sep-
sis may lead to blistering and pressure ulcers that, in addi-
tion to surgery and invasive cannulations, compromise 
this defensive barrier [3]. Septic patients are prone to 
wound healing complications such as infections, delayed 
wound healing, fascial dehiscence and anastomotic leaks 
[4–9]. Septic patients’ predisposition to get spontaneous 
and iatrogenic wounds combined with impaired wound 
healing can lead to substantial functional and aesthetic, 
even life threatening problems. In our previous studies, 
skin collagen synthesis is proven to be diminished [10], 
the restoration of the epidermal barrier function to be 
delayed and wound blood flow increased in severe sep-
sis [8]. Wound re-epithelialization is delayed during sep-
sis, as demonstrated in rodent models [5, 7, 9] and in a 
human blister wound model [8]. Re-epithelialization is 
achieved via the migration and proliferation of keratino-
cytes from the edges of the wound. Cell migration is the 
rate-limiting event in the healing of skin wounds [11–13]. 
After injury the wound repair process is initiated imme-
diately by the release of growth factors and cytokines 
from the serum, which bind to receptors expressed by 
their target cells, and co-ordinate the re-epithelialization 
[3, 11, 13–16]. However, knowledge about cell migra-
tion and proliferation in human systemic sepsis is cur-
rently limited; sepsis wound-healing studies have been 
conducted only in animals [5, 7, 9]. The role of cytokines 
involved in wound healing in sepsis is somewhat unclear. 
Exosomes are secreted membrane enclosed vesicles con-
taining proteins like Epithelial Growth Factor Receptor 
(EGFR) and nucleic acids [17–20]. Previously, exosomes 
were thought to only eliminate waste proteins from the 
cell, but now they are known to participate in intercellu-
lar communication and the transfer of functional genetic 
information thereby influencing the immune system 
[21, 22]. The role of exosomes in disease pathogenesis is 
under investigation. There have been some studies about 
exosomes in sepsis or in wound healing [23–29]. How-
ever, the effect of exosomes in migrating septic wounds 
is unknown.

Here we hypothesized that sera from septic patients 
could reduce the viability, proliferation, and in  vitro 
wound healing (horizontal migration) of human skin 
keratinocytes. In order to elucidate a possible mechanism 
related to delayed wound healing, we measured cytokine 
levels and analyzed the distinctions between sera col-
lected from septic patients and from healthy controls. In 
addition, different concentrations of selected cytokines 
and exosomes of sepsis and healthy sera treated gingival 

fibroblasts were added to in  vitro keratinocyte wounds 
in order to explore their influence on cell migration. We 
expected to see some differences between exosomes from 
sepsis and healthy sera treated fibroblasts in keratinocyte 
migration.

Methods
Patients
This prospective observational case–control study of 
wound healing in severe sepsis was conducted in a 12-bed 
mixed-type intensive care unit (ICU) in Oulu University 
Hospital, Finland. This investigation is a substudy of an 
earlier work that examined serum markers of colla-
gen synthesis and degradation in severe sepsis [30]. The 
inclusion criterion was diagnosis of severe sepsis accord-
ing to the American College of Chest Physicians/Society 
of Critical Care Medicine [1]. The exclusion criteria were: 
age under 18  years, malignancy, surgery not related to 
sepsis, surgery during the preceding 6 months, bleeding 
disorder, chronic hepatic or renal failure, and immuno-
suppressive or cortisone treatment not related to sepsis. 
Patients entered the study when the diagnosis of severe 
sepsis was met and within 48 h of the first identification 
of organ dysfunction. Patients were treated according to 
normal ICU protocol and current severe sepsis guidelines 
[31]. The study protocol was approved by The Regional 
Ethics Committee of the Northern Ostrobothnia Hospi-
tal District and written informed consent was obtained 
from each patient or their next of kin. The following 
information was collected from all patients: age, gender, 
type of ICU admission (medical or surgical), prevalence 
of septic shock, severity of underlying diseases on admis-
sion as assessed with the Acute Physiology and Chronic 
Health Evaluation II (APACHE II), and development of 
daily organ dysfunctions assessed with the daily Sequen-
tial Organ Failure Assessment (SOFA). Length of stay 
in the ICU and 30-day mortalities were recorded. Four-
teen healthy sex- and age-matched volunteers served as 
controls.

Blood samples
Serum samples were collected after the first identifica-
tion of sepsis-induced organ dysfunction. Samples were 
taken on days 1, 4, and 9 or until the patient was trans-
ferred to another unit/hospital or died. Serum samples 
from healthy controls were obtained once. The serum 
samples were immediately frozen and stored at −70  °C. 
In the cell-migration and proliferation experiments, indi-
vidual serum samples were filtered and pooled using 
serum from each patient for final serum concentrations 
of 1% (in migration tests) or 10% (in proliferation tests) 
in serum free cell-culture medium. This strategy resulted 
in serum pools of 44 sepsis-serum samples on study day 
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1, 36 samples on day 4, 22 samples on day 9, and a single 
pool of 14 healthy control serum samples. As an experi-
mental control, we used 1 or 10% fetal bovine serum 
(FBS; Invitrogen, Carlsbad, CA, USA). Cytokine analysis 
employed undiluted, individual serum samples.

Cell lines
Human adult low-calcium high-temperature (HaCaT) 
cells are a spontaneously transformed human epithelial 
cell line from adult skin and maintain full epidermal dif-
ferentiation capacity. These keratinocytes are immortal-
ized and have unlimited growth potential, but still they 
are non-tumorigenic [32]. In our study, HaCaT cells 
were maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% heat-inactivated FBS, 100  U/ml peni-
cillin, 100  μg/ml streptomycin, 50  μg/ml ascorbic acid, 
250  ng/ml fungizone, and 1  mM sodium pyruvate (all 
from Sigma-Aldrich). Cells were derived from the freeze-
down batch, which was thawed and grown to confluence 
in a 175-cm2 flask. The cells were incubated at 37 °C, in 
5% CO2, and 95% humidity. The number of passages in all 
cell lines was less than 23.

Assay of keratinocyte (HaCaT) proliferation
To evaluate cell proliferation, HaCaT cells (105 cells per 
well) were seeded, and cultured 24 h on 96-well plates. In 
each well, 100 µL of 10% test serum cocktail were pipet-
ted onto HaCaT cells. After 24 h of incubation, cell pro-
liferation was quantified via a colorimetric immunoassay 
of the incorporation of the thymidine analog 5-bromo-
2′-deoxyuridine (BrdU) during DNA synthesis according 
to the manufacturer’s instructions (Roche Diagnostics, 
Basel, Switzerland). Absorbance values were measured 
with a Victor3  V 1420 Multilabel Plate Counter (Perki-
nElmer, Waltham, MA, USA) at a wavelength of 355 nm. 
Assays were performed in triplicate and mean values 
were recorded.

Assay of keratinocyte (HaCaT) viability
HaCaT cells (105 cells per well) were seeded and cul-
tured 24 h on 96-well plates. In each well, 100 µL of 10% 
test serum cocktail were pipetted onto the cells, which 
were then incubated for 48 h. Cell viability was assayed 
with 3-[4,5-dimethylthiazol-2-yl]-2-5-diphenyl tetrazo-
lium bromide (MTT) according to the manufacturer’s 
instructions (Sigma-Aldrich). The number of living cells, 
evaluated via mitochondrial dehydrogenase activity, was 
measured with a Victor3 V 1420 Multilabel Plate Coun-
ter (PerkinElmer) at a wavelength of 544 nm. Assays were 
performed in triplicate and mean values were recorded.

Horizontal wound healing assay
Epithelial wound healing was investigated in vitro using 
an assay in which the wounds were made by plating the 
counted cells into commercial inserts (Ibidi GmbH, 
Munich, Germany) instead of scratching. In the migra-
tion tests, 1 × 105 or 2 × 105 cells per well were seeded 
and cultured on a 24-well plate in culture inserts. The 
silicone insert was removed after 24  h of incubation so 
that the resulting cell patch was split into two parts sep-
arated by a 500  µm cell-free zone. Cell-culture medium 
was replaced with serum free medium supplemented 
with 1% test serum samples. After 0, 12, 24, 36, and 48 h 
of incubation, cell migration (reduction in wound surface 
area) was recorded with a digital inverted microscope 
(Evos fl AMF-4302, AMG Life Technologies, Carlsbad, 
CA, USA) and an in vivo microscope camera (ICX285AL 
monochrome CCD, Sony, Tokyo, Japan). The plates were 
incubated at 37 °C between measurements. Open-wound 
areas on the digital images were measured using ImageJ 
[33]. There were 4–8 wounds in each group. We calcu-
lated the mean value of the remaining cell-free area at 
each time point in every group as well as the percent-
age by which the initial gap width decreased at each time 
point.

Exosome isolation and horizontal wound healing assay 
with exosomes
Human normal gingival fibroblasts (NF) [34] were used 
to isolate exosomes. Cells were maintained in DMEM 
supplemented with 10% heat-inactivated FBS, 1  mM 
sodium-pyruvate, 100  U/ml penicillin, 100  µg/ml strep-
tomycin, 50  µg/ml ascorbic acid and 250  ng/ml fungi-
zone (all from Sigma-Aldrich) and incubated at 37 °C in 
5% CO2. For exosome isolation 500,000 cells were seeded 
in 175  cm2 flasks and cultured 24  h in normal culture 
medium. The cells were washed once with phosphate 
buffered saline. Serum free medium supplemented with 
a 1% test serum pool of healthy or day one sepsis sera was 
added. Media was collected after 48  h, and centrifuged 
at 300×g for 2  min to remove dead cells. The superna-
tant was collected and stored at −70  °C until exosome 
isolation. Conditioned medium was thawed and ultra-
centrifuged at 10,000×g for 90 min at +4 °C in a swing-
ing bucket TH-641 rotor (Thermo Fisher Scientific Inc., 
Waltham, MA, USA). The supernatant was removed to 
a fresh tube leaving 500  µl in the bottom of the previ-
ous tube. The supernatant was ultracentrifuged again at 
100,000×g for 90 min to pellet exosomes. The superna-
tant was removed except for 200 µl and the pellet was re-
suspended into this remaining supernatant. The protein 
concentration was measured with a DC Protein assay 
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(Bio-Rad). In the horizontal wound-healing assay 20 and 
50  µg/ml of exosomes in serum free media were used 
both in healthy and sepsis groups. As controls we used 
1% healthy and day one sepsis sera in serum free media 
and the horizontal wound healing assays were performed 
as described above. There were seven to eight wounds in 
each group.

Assays of cytokines and growth factors
The levels of serum cytokines and growth factors were 
measured by multiplex assay [35, 36] with a Milliplex 
Human Cytokine/Chemokine Magnetic Bead Panel (Mil-
lipore Corporation, Billerica, MA, USA) and a Bio-Plex 
200 System (Bio-Rad Laboratories Pty Ltd, Hercules, CA, 
USA). Assays were performed according to the manufac-
turer’s instructions, as described previously [37]. Assay 
conditions were pre-optimized, standardized, and con-
trolled to ensure optimal reproducibility. Results were 
calculated with BioPlex Manager Software 6.0 (Bio-Rad 
Laboratories). Serum levels of interleukin (IL)-4, IL-6, 
IL-10, tumor necrosis factor α (TNF-α), basic fibroblast 
growth factor (bFGF), vascular endothelial growth factor 
(VEGF), and epithelial growth factor (EGF) were com-
pared between samples from sepsis patients and healthy 
controls. The levels of cytokines and growth factors on 
day four were evaluated; at day four, the difference in 
keratinocyte migration and proliferation was most strik-
ing between model wounds exposed to sepsis sera or to 
healthy sera.

Horizontal wound healing assay with EGF, TNF‑α and EGFR 
inhibitor
To explore keratinocyte migration, the horizontal wound 
healing assay was used in which 1% healthy or sepsis 
serum pools were supplemented with 5, 10 or 50 ng/ml 
of EGF or TNF-α (both from ProSpec, East Brunswick, 
NJ, USA) as well as 1, 10 or 50 µg/ml of EGFR inhibitor 
(Erbitux (cetuximab) 5 mg/ml, Merck, Germany). In this 
experiment, 1% healthy and sepsis serum samples with-
out supplements served as controls. The migration test 
was performed three times and the number of wounds 
was between 4 and 8 in each group.

Statistical analysis
Data were entered into an SPSS database for analysis 
(SPSS version 21, IBM SPSS Statistics, Chicago, IL, USA). 
Summary measurements for variables were expressed as 
the median with 25th–75th percentiles or as the mean 
with standard deviation (SD). Comparisons between 
groups were performed using the independent-samples t 
test and the Mann–Whitney U test. Two-tailed P values 
were reported when possible. Differences were consid-
ered significant at P < 0.05.

Results
Patients
Between May 2005 and December 2006, 1361 patients 
were admitted to the ICU at Oulu University Hospital. 
Of these patients, 238 had severe sepsis and 66 met the 
inclusion criteria for this study. Written informed consent 
was obtained from 44 patients or their next of kin. Patient 
demographics have been presented previously [30]. Most 
of the 44 patients were male (66%) and there were 33 sur-
vivors (75%) on day 30 (Table 1). The control group con-
sisted of 14 healthy age- and sex-matched volunteers, 
eight of them men (57%). The median age of the control 
group was 61 years (25th–75th percentile, 56–69 years).

Keratinocyte proliferation and viability is diminished 
with sepsis sera
In order to measure whether sepsis serum contains sub-
stances that affect cell proliferation and viability, HaCaT 
cells were incubated in the presence of healthy and sep-
sis serum. In the BrdU proliferation assay, the prolif-
eration of cells exposed to day one sepsis serum was 6% 
lower (P = 0.005) compared with cells exposed to healthy 
serum, 20% lower (P =  0.001) in day 4 serum, and 18% 
lower (P = 0.002) in day 9 serum (Fig. 1). The MTT cell 
viability assay indicated that cells incubated with days 
4 and 9 sepsis serum were significantly less viable than 
cells treated with healthy serum (38%, P = 0.01 and 58%, 
P  <  0.001, respectively) (Fig.  2). Day-one viability was 
slightly increased by 13%; but this difference was not sta-
tistically significant (P = 0.115) (Fig. 2).

Sepsis delays keratinocyte migration in the early days 
of the disease
Effect of the sepsis serum on cell migration was tested 
using a wound-healing assay (Fig.  3a). The open wound 

Table 1  Summary demographics of  the 44 study patients 
with severe sepsis

Variables are presented as frequencies with percentages or as medians with 
25th to 75th percentiles

Apache II acute physiology and chronic health evaluation II score

Sofa sequential organ failure assessment

Severe sepsis (n = 44)

Male sex, n (%) 29 (66%)

Age, years 63 (56–71)

Surgical admission, n (%) 25 (57%)

Septic shock, n (%) 40 (91%)

APACHE II score on admission, points 26 (22–31)

SOFA score on admission, points 8 (6–12)

Length of stay in the ICU, days 7 (4–12)

30-day mortality, n (%) 11 (25%)
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surface area in models exposed to healthy sera was 31% 
of the original wound gap (SD 27%) at 24 h and 22% (SD 
27%) at 48  h. Wounds cultured with sepsis sera from 
days 1 and 4 had significantly larger wound surface areas 
(60%, SD 16%, P =  0.034 and 66%, SD 17%, P =  0.023, 
respectively) at 24 h, than wounds cultured with healthy 
sera (Fig. 3b). Wounds treated with sepsis sera from day 
nine did not significantly differ from those treated with 
healthy sera at 24 h (50%, SD 29%, P = 0.297). However, 
because the culture media was not changed, the cells 
started to starve. So, most likely, although the tendency 
remained the same, no statistically significant differences 

between healthy and sepsis sera samples were seen after 
48  h incubation (day 1: 53%, SD 21%, P =  0.053; day 4: 
46%, SD 34%, P = 0.263; day 9: 43%, SD 30%, P = 0.273) 
(Fig. 3b).

Exosomes derived from healthy or sepsis sera treated 
fibroblasts reduce keratinocyte migration
In the horizontal wound healing assay, we used 20 
and 50  µg/ml of both healthy and sepsis exosomes in 
serum-free media. As controls, we used 1% healthy or 
sepsis sera. Keratinocytes in controls migrated as in 
previous experiments (Fig.  4). Migration in exosome 
treated wounds was significantly reduced compared to 
control wounds. Wounds with 20 or 50 µg/ml exosomes 
from healthy serum migrated significantly less than 
wounds with healthy control serum at 24  h (P =  0.018 
and P  =  0.015, respectively) and at 48  h (P  =  0.025 
and P =  0.021, respectively). Also wounds with 50  µg/
ml exosomes from sepsis day 1 serum had a significant 
reduction in migration compared to sepsis control serum 
at 24 and 48 h (P =  0.027 and P =  0.037, respectively). 
Wounds with 20  µg/ml exosomes from sepsis day one 
serum migrated less compared to control serum either at 
24 or 48 h, but the difference was not statistically signifi-
cant (P = 0.083 and P = 0.132, respectively).

Cytokine level differences between healthy and sepsis sera
At day 4 the difference in keratinocyte proliferation and 
migration was most notable between model wounds 
exposed to sepsis and healthy sera. To search for possi-
ble factors in sera that could explain this difference, we 
analyzed the levels of cytokines and growth factors in 
day four serum by multiplex assay. Sera collected on day 
four from patients with severe sepsis harbored signifi-
cantly higher concentrations of TNF-α (5.7 vs. 0.7 pg/ml, 
P < 0.001), IL-6 (24.8 vs. 3.8 pg/ml, P < 0.001), and IL-10 
(30.0 vs. 11.9 pg/ml, P = 0.040) than sera collected from 
healthy controls (Table 2). Of the growth factors, VEGF 
levels were higher (177.9 vs. 48.1 pg/ml, P = 0.018) and 
EGF levels were lower (6.5 vs. 115.6  pg/ml, P  <  0.001) 
in severe sepsis serum than in healthy serum (Table  2). 
There were no significant differences in the levels of IL-4 
(5.2 vs. 13.7 pg/ml) or basic fibroblast growth factor (32.2 
vs. 21.9 pg/ml) between sepsis and control sera (Table 2).

Sepsis serum supplemented with TNF‑α and EGF enhance 
keratinocyte migration
We conducted a wound-healing assay with healthy and 
sepsis sera containing different concentrations of TNF-α 
or EGF or EGF receptor inhibitor cetuximab. All concen-
trations of TNF-α improved cell migration in wounds, 
both those cultured in healthy and sepsis sera (P < 0.01 
in all concentrations) (Fig. 5a). Furthermore, 5 or 10 ng/
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and sepsis sera (BrdU assay). Statistically significant differences in 
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values between cells treated with sepsis sera and cells treated with 
healthy sera are marked with asterisks (*P = 0.01, **P < 0.001)
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ml of EGF in healthy serum significantly enhanced 
keratinocyte migration (P =  0.001), but the addition of 
50  ng/ml EGF did not (P =  0.768) have a similar effect 

(Fig.  5b). Sepsis serum with 5  ng/ml EGF significantly 
(P =  0.001) improved cell migration. Higher concentra-
tions (10 and 50 ng/ml) of EGF in sepsis serum did not 
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Fig. 3  Keratinocyte migration after exposure to healthy and sepsis sera (horizontal wound-healing assay). a An example of the wound surface area 
calculation from the microscopy images of cell migration in wounds after 0, 24 and 48 h exposure to healthy or sepsis sera. White dotted lines mark 
the open wound area. The open surface area was measured using ImageJ. b Closure of open wound areas of keratinocytes at 0, 24 and 48 h (% of 
0 h area). The data present means with standard deviations from eight scratch wounds incubated with day 1, 4, and 9 sepsis sera and means with 
standard deviations from four healthy sera control wounds
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have a significant impact on migration. All concentra-
tions of the EGFR inhibitor cetuximab both in healthy or 
sepsis sera, significantly impaired keratinocyte migration 
compared to control serum (Fig. 5c). P values are repre-
sented in Table 3.

Discussion
In this study, we explored the growth of human keratino-
cytes (HaCaT) in  vitro using sera from severe sepsis 
patients and healthy controls. We observed that sepsis 
serum reduced keratinocyte viability, proliferation and 
migration. Additionally, exosomes excreted from normal 
fibroblasts treated with sepsis or healthy sera decreased 
keratinocyte migration. Furthermore, sepsis sera com-
pared to healthy sera contained higher levels of TNF-α, 
IL-6, IL-10 and VEGF but a lower concentration of EGF. 

There were no significant differences in levels of bFGF or 
IL-4 between sepsis and control sera. All concentrations 
of TNF-α improved cell migration both in healthy sera 
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TNF-α 5.7 (4.9) 0.7 (0.2) <0.001

IL-6 24.8 (20.6) 3.8 (5.4) <0.001

VEGF 177.9 (185.7) 48.1 (32.2) 0.018

IL-10 30.0 (49.7) 11.9 (16.3) 0.040

IL-4 5.2 (9.7) 13.7 (24.9) 0.352

bFGF 32.2 (37.7) 21.9 (13.6) 0.810
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Fig. 5  Keratinocyte migration after exposure to healthy and sepsis 
sera supplemented with cytokines and EGFR inhibitor. Migration was 
studied using a horizontal wound-healing assay and the open wound 
area (%) was measured by ImageJ every 12 h until 48 h. The data pre‑
sent means from four to eight wounds in every group. Graphs show 
results from control and test serums containing a 5–50 ng/ml TNF-α 
b 5–50 ng/ml EGF c 1–50 µg/ml EGFR inhibitor (cetuximab)
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and sepsis sera wounds. Low concentrations of EGF in 
healthy or sepsis sera significantly promoted keratinocyte 
migration, but migration was suppressed by blockade of 
the EGF receptor by cetuximab.

Considering the prevalence and economical effects 
of wound problems in septic patients, wound healing 
in sepsis is a poorly studied subject. To our knowledge, 
this is the first report presenting in vitro observations of 
the retarding effect of human sepsis serum on keratino-
cyte viability, migration, and proliferation. There are a 
few animal studies suggesting wound healing is impaired 
in sepsis [5, 7, 9]. This study is also a continuation to 
our previous research of human abdominal skin blister 
wounds, in which we showed that the restoration of epi-
dermal barrier function was lower in patients with severe 
sepsis than in healthy controls [8].

The role of exosomes in intercellular signaling of skin 
tissue has recently been analyzed in animal models. 
Human fibroblast derived exosomes promoted keratino-
cyte proliferation, migration and wound closure in 
diabetic mice [38]. Similarly, rat burn wounds treated 
with mesenchymal stem cell (MSC) derived exosomes 
enhanced proliferation of skin cells and wound re-epi-
thelialization [29]. We expected to see differences in 
keratinocyte migration between wounds incubated with 
exosomes from NF cultured in sepsis or healthy sera 
media. However, exosomes from NF cultured under both 

conditions clearly prevented the migration of keratino-
cytes. One explanation could be the resting state of these 
locally established NFs. Other studies have shown that 
with the help of exosomes, transplanted stem and pro-
genitor cells use paracrine signaling to modify recipient 
cell protein production and gene expression in response 
to local environmental factors thus accelerating wound 
healing [20, 29, 39–43]. Thus exploring the contents of 
exosomes and using exosomes from more dynamic cells, 
such as MSCs, in both 2D and 3D cultures might give a 
broader perspective of their role in keratinocyte migra-
tion during the wound healing process.

Our results show that the lower amount of EGF is 
associated with the reduced cell proliferation, viability 
and migration of keratinocytes incubated with sepsis 
serum compared to healthy serum. Members of the EGF 
and FGF families as well as hepatocyte and insulin-like 
growth factors play a leading role in skin epithelialization 
during wound healing [13, 44]. Independent of the stimu-
lant, keratinocyte migration seems to be universally con-
veyed through the EGF receptor; signaling through EGFR 
promotes keratinocyte migration in vitro [45]. Heparin-
binding EGF-like growth factor (HB-EGF) accelerated 
keratinocyte migration, rather than proliferation in skin 
wound healing in a mouse model and seemed to be the 
predominant growth factor in epithelialization [46]. Sim-
ilarly, the expression of HB-EGF in human keratinocytes 

Table 3  Serum supplemented with TNF-α/EGF/EGFR inhibitor, open wound surface area (%) of the original at 48 h

Healthy serum samples are compared to healthy control serum and sepsis serum samples to sepsis control serum. Significant P values are in italic

Serum Cytokine Amount of cytokine Number of wounds Mean  % (SD) P value

Healthy (control) − − 8 61 (15)

Sepsis (control) − − 8 75 (20)

Healthy TNF-α 5 ng/ml 8 14 (15) <0.001

Sepsis TNF-α 5 ng/ml 7 44 (19) 0.009

Healthy TNF-α 10 ng/ml 7 13 (15) <0.001

Sepsis TNF-α 10 ng/ml 5 30 (20) 0.002

Healthy TNF-α 50 ng/ml 6 7 (16) 0.002

Sepsis TNF-α 50 ng/ml 5 16 (18) 0.005

Healthy EGF 5 ng/ml 6 0 (0) 0.001

Sepsis EGF 5 ng/ml 8 2 (5) 0.001

Healthy EGF 10 ng/ml 8 9 (17) 0.001

Sepsis EGF 10 ng/ml 6 72 (57) 0.301

Healthy EGF 50 ng/ml 4 51 (59) 0.768

Sepsis EGF 50 ng/ml 6 77 (39) 0.887

Healthy EGFr inhibitor 1 µg/ml 7 84 (24) 0.037

Sepsis EGFr inhibitor 1 µg/ml 7 96 (7) 0.008

Healthy EGFr inhibitor 10 µg/ml 5 95 (11) 0.001

Sepsis EGFr inhibitor 10 µg/ml 6 106 (10) 0.005

Healthy EGFr inhibitor 50 µg/ml 7 95 (4) 0.001

Sepsis EGFr inhibitor 50 µg/ml 7 99 (2) 0.001



Page 9 of 11Jaurila et al. J Transl Med  (2017) 15:11 

triggered a migratory phenotype in partial-thickness 
wounding of human skin [47]. Application of EGF on 
wounds in vitro and in vivo had beneficial effects on skin 
wound healing [48, 49].

Sepsis sera contained higher levels of TNF-α, IL-6, 
IL-10 and VEGF compared to controls. TNF-α and IL-6 
can indirectly induce keratinocyte migration via stimu-
lating production of pro-mitogenic FGF-7, also known 
as keratinocyte growth factor, from fibroblasts [50]. 
However, according to our experiments the higher level 
of TNF-α in sepsis serum is not the reason for impaired 
keratinocyte migration and wound healing, in contrast to 
previous studies [51, 52]. Our research supports the sug-
gestion of Sommer et al. [9] that normal TNF-α concen-
tration locally enhances wound repair in sepsis. TNF-α is 
the primary inflammatory mediator in sepsis as it regu-
lates other downstream cytokines such as IL-6 and IL-10 
[53]. IL-6 participates only indirectly in keratinocyte 
migration: it mainly promotes collagen deposition and 
angiogenesis in cutaneous wound healing [54–57]. VEGF 
and its receptor primarily induce angiogenesis but have 
some influence on keratinocyte migration and prolifera-
tion as well [13, 16]. IL-10 has positive effects on wound 
closure, granulation tissue formation and neovascu-
larization mainly because it improves VEGF expression 
[58]. Fibroblast growth factor levels are elevated in acute 
wound fluid and especially bFGF increases keratinocyte 
motility in re-epithelialization [16]. In our study we could 
not detect any significant difference in serum concen-
trations of bFGF between sepsis patients and controls, 
which suggests that bFGF has a minor role in keratino-
cyte migration in sepsis. IL-4 participates in normal 
wound healing by stimulating extracellular matrix syn-
thesis [59] but does not seem to be involved in keratino-
cyte migration.

As stated earlier, epithelial wound healing in sepsis is 
affected by a complex mixture of various interacting sign-
aling molecules. To better understand the mechanisms 
behind impaired wound healing in sepsis, further exten-
sive studies are needed.

Conclusions
In this study we show that human keratinocyte migra-
tion, proliferation, and viability were decreased in cul-
tures treated with serum from patients with severe 
sepsis. Exosomes derived either from healthy or sepsis 
sera treated fibroblasts inhibited keratinocyte migra-
tion. Sepsis sera supplemented with EGF improved and 
EGF receptor inhibition significantly reduced keratino-
cyte migration both in healthy and sepsis wounds. 
Taken together, the net effect of serum on keratino-
cytes depends on the balance and interplay of various 
mediators.
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