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with carotid artery calcification in ischemic 
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Abstract 

Background:  Cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) near chromosome 9p21 have been associated 
with both atherosclerosis and artery calcification, but the underlying mechanisms remained largely unknown. Consid-
ering that CDKN2A/2B is a frequently reported site for DNA methylation, this study aimed to evaluate whether carotid 
artery calcification (CarAC) is related to methylation levels of CDKN2A/2B in patients with ischemic stroke.

Methods:  DNA methylation levels of CDKN2A/2B were measured in 322 ischemic stroke patients using peripheral 
blood leukocytes. Methylation levels of 36 CpG sites around promoter regions of CDKN2A/2B were examined with 
BiSulfite Amplicon Sequencing. CarAC was quantified with Agatston score based on results of computed tomogra-
phy angiography. Generalized liner model was performed to explore the association between methylation levels and 
CarAC.

Results:  Of the 322 analyzed patients, 187 (58.1%) were classified as with and 135 (41.9%) without evident CarAC. The 
average methylation levels of CDKN2B were higher in patents with CarAC than those without (5.7 vs 5.4, p = 0.001). 
After adjustment for potential confounders, methylation levels of CDKN2B were positively correlated with cube root 
transformed calcification scores (β = 0.591 ± 0.172, p = 0.001) in generalized liner model. A positive correlation 
was also detected between average methylation levels of CDKN2B and cube root transformed calcium volumes 
(β = 0.533 ± 0.160, p = 0.001).

Conclusions:  DNA methylation of CDKN2B may play a potential role in artery calcification.
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Background
As a surrogate measure of atherosclerosis, calcification 
may contribute to plaque vulnerability and, therefore, 
risk of vascular events [1]. Because carotid bifurcation 
and adjacent segments are the predilection sites of ath-
erosclerosis, calcification in these location can reflect 
the overall burden of vascular calcification [2], and may 

predict risk of stroke, myocardial infarction and the over-
all vascular events [3, 4].

Genetic factors have long been proposed with an 
important role in the initiation and development of arte-
rial calcification [5, 6]. After the landmark genome-wide 
association studies identified human chromosome 9p21 
(Chr9p21) as a potential genetic origin both for athero-
sclerosis and artery calcification [7–9], determining gene 
variants responsible for artery calcification has become 
a focus of many studies. Intriguingly, Chr9p21 region 
is actually a “gene desert” devoid of annotated protein-
coding genes. Only the antisense noncoding RNA in 
the INK4 locus (ANRIL) is transcribed in this region. 
The closest protein-coding genes to Chr9p21 locus are 
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two cyclin-dependent kinase inhibitors, CDKN2A and 
CDKN2B, both of which involve in cell cycle regulation 
(Fig. 1). This locational neighborhood between Chr9p21 
and CDKN2A/2B may suggest their functional associa-
tions, which have been evidenced by results from recent 
studies [10, 11]. For example, Motterle et al. showed that 
Chr9p21 variation can change the level of ANRIL tran-
scription, which in turn alter expression of CDKN2A/2B 
and enhance proliferation of vascular smooth muscle 
cells (VSMCs), and subsequently promote atherosclerosis 
[11].

Both functional [12] and genetic studies [13, 14] sug-
gested that CDKN2A/2B may promote atherosclero-
sis by facilitating the process of calcification. But the 
mechanisms remain largely unknown. Considering that 
CDKN2A/2B is a frequently reported site of action for 
DNA methylation [15, 16], we hypothesized that DNA 
methylation in CDKN2A/2B may increase the suscepti-
bility of artery calcification. In this study, we tested this 
hypothesis by evaluating the degree of DNA methylation 
in CDKN2A/2B and the carotid calcification load in a 
cohort of patients with ischemic stroke.

Methods
Study population
This study was approved by the Ethical Review Board of 
Jinling Hospital. Written informed consent was obtained 
from all enrolled patients. Consecutive patients with 
ischemic stroke were screened from Nanjing Stroke Reg-
istry Program [17] between July 2012 and September 

2013. Patients were included if they: (1) were diagnosed 
with first-ever ischemic stroke within 7  days of onset; 
(2) aged 18  years or older; (3) completed a neck com-
puted tomography angiography (CTA). Ischemic stroke 
was diagnosed if there were new focal neurological defi-
cits explained by relevant lesions detected on diffusion-
weighted imaging or computed tomography. Patients 
with malignant neoplasm, severe liver or kidney dys-
function, autoimmune diseases, parathyroid gland dis-
eases, or calcium-phosphorus metabolic disorders were 
excluded. Since the stents may influence the accuracy of 
calcification assessment, patients with history of carotid 
artery stenting were also excluded. A total of 391 patients 
were screened and 324 patients were finally enrolled.

Artery calcification measurement
Each enrolled patient underwent a neck computed 
tomography angiography for CarAC evaluation. CTA 
was performed by a dual-source 64 slice CT system (Sie-
mens, Forchheim, Germany) to quantify CarAC. Imaging 
was acquired by scanning from 4  cm below aortic arch 
to the superior border of orbit in craniocaudal direction. 
Details on CTA scan have been provided elsewhere [18].

Calcification scores in carotid artery were measured 
with Syngo Calcium Scoring system (Siemens, Forch-
heim, Germany). A focus of ≥4 contiguous pixels accom-
panied by a CT density ≥130 Hounsfield units (HU) 
was defined as calcification according to the method of 
Agatston score [19]. Area of calcification (mm2) was mul-
tiplied by a weighted value assigned to its highest HU 

Fig. 1  Illustration of genomic organization of the 9p21 locus. Blue lines with arrows represent the approximate locations and transcribe directions 
of CDKN2A, CDKN2B and ANRIL. Blue boxes indicate exons. ANRIL is transcribed in opposite direction of CDKN2A/2B genes. Cen indicates centromere, 
and tel indicates telomere
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(130–199HU  =  1; 200–299HU  =  2; 300–399HU  =  3; 
and >400HU  =  4). Carotid calcification was measured 
at both sides within 3 cm proximal and distal segments 
of the bifurcation including four artery segments: com-
mon, bulb, internal, and external. The software used for 
calculating Agatston score also provided an isotropically 
interpolated calcium volume (mm3), by calculating the 
numbers of voxels with attenuation ≥130HU and sum-
ming the total voxel volumes. Calcification scores and 
calcium volume were assessed by two raters indepen-
dently. The raters were blinded to other clinical data.

DNA isolation and epi‑genotyping
Venous blood samples were drawn in the morning after 
an overnight fasting for biochemical marker assaying 
and methylation analyzing. Genomic DNA was extracted 
from whole blood with commercially available kits 
(TIANGEN Biotech, Beijing, China). DNA was quan-
tified and then diluted to a working concentration of 
10 ng/μL for genotyping.

CpG islands located in the proximal promoter of 
CDKN2A/2B were selected for measurement accord-
ing to the following criteria: (1) 200 bp minimum length; 
(2) 50% or higher GC content; (3) 0.60 or higher ratio of 
observed/expected dinucleotides CpG. Six regions from 
CpG islands of CDKN2A and three from that of CDKN2B 
were selected and sequenced (Fig. 2). BiSulfite Amplicon 

Sequencing (BSAS) was used for quantitative methylation 
analysis [20]. Bisulfite conversion of 1 μg genomic DNA 
was performed with the EZ DNA Methylation™-GOLD 
Kit (ZYMO RESEARCH, CA, USA) according to the 
manufacturer’s protocol. Sodium bisulfite preferentially 
deaminates unmethylated cytosine residues to thymines, 
whereas methyl-cytosines remain unmodified. After PCR 
amplification (HotStarTaq polymerase kit, TAKARA, 
Tokyo, Japan) of target CpG regions and library construc-
tion, the products were sequenced on Illumina MiSeq 
Benchtop Sequencer (CA, USA). Primer sequences used 
for PCR were shown in Additional file  1: Table S1. All 
samples achieved a mean coverage of >600X. Each tested 
CpG site was named as its relative distance (in bp) to 
transcriptional start site (TSS). Methylation level at each 
CpG site was calculated as the percentage of the methyl-
ated cytosines over the total tested cytosines. The average 
methylation level was calculated using methylation levels 
of all measured CpG sites within the gene.

Statistical analysis
Normality of parameters was assessed by Shapiro–Wilk 
test. As all continuous data in this study did not meet the 
normality assumption, they were described as median 
(interquartile range) and compared with Mann–Whitney 
U test. The non-parameters were compared with Fisher’s 
exact test. Patients were classified as without (Agatston 

Fig. 2  CpG regions sequenced around promoter of CDKN2A/2B. Blue lines with arrows indicate selected CpG regions analyzed in this study, all of 
which locate in CpG islands around gene promoters. Range of each region is indicated by its relative distance (in bp) to TSS
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score = 0), with mild (0 < Agatston score ≤ 100) and with 
severe (Agatston score > 100) CarAC. Methylation levels 
of CDKN2A/2B were compared between patients with 
and without CarAC using Mann–Whitney U test. Meth-
ylation levels of CDKN2A/2B were also compared among 
patients with mild, severe and without CarAC using 
Kruskal–Wallis test.

Spearman correlations were used to evaluate pairwise 
correlations of methylation levels between different CpG 
sites in the same gene. Given the heavily skewed distri-
bution of calcification scores and calcium volume, cube 
root transformation was performed before comparison, 
as suggested in the previous studies [21, 22]. Generalized 
linear model was used to explore the association between 
methylation levels and cube root transformed calcifica-
tion scores/calcium volumes after adjusting for age, sex, 
body mass index (BMI), diabetes mellitus (DM), hyper-
tension (HTN) and smoking. These variables were chose 
for adjustment because they were identified as confound-
ers that affected artery calcification. Bonferroni correc-
tion was used for multiple testing.

The data were analyzed by IBM SPSS Statistics Version 
22.0 (Armonk, NY: IBM Corp.). A two-tailed value of 
p < 0.05 was considered statistically significant.

Results
Of the 324 enrolled patients, 2 (0.6%) failed in epi-gen-
otyping. Finally, 322 (99.4%) patients were included for 
data analysis. Demographic characteristics and major 
risk factors for cardiovascular diseases were listed in 
Table  1. The median age of the 322 analyzed patients 

was 62.0 (55.0–70.0) years, and 229 (71.1%) of them were 
male. There were 250 (77.6%) patients with HTN and 110 
(34.2%) with DM.

Based on Agatston score, 187 (58.1%) patients were 
grouped as with and 135 (41.9%) without CarAC. CarAC 
scores presented an extremely left-skewed distribution 
with a median (interquartile range) of 9.0 (0–111.1). The 
mean calcium volume (mm3) was 11.0 (0–98.0). Com-
pared with patients without CarAC, those with CarAC 
were older (66.0 vs 57.0 years, p < 0.001), and had higher 
prevalences of HTN (82.9 vs 70.4%, p = 0.010) and DM 
(39.6 vs 26.7%, p  =  0.017). Patients with CarAC had 
lower BMI (24.5 vs 24.9, p  =  0.032), lower TC (4.17 
vs 4.28  mmol/L, p  =  0.029) and lower TG (1.36 vs 
1.54 mmol/L, p = 0.016) levels (Table 1).

According to the results measured from target regions, 
there were 36 CpG sites (24 in CDKN2A and 12 in 
CDKN2B) identified as methylated sites (detailed infor-
mation of each site was shown in Additional file 1: Table 
S2). The distribution of methylation levels of the 36 CpGs 
were listed in Additional file 1: Table S3. Methylation lev-
els of CpG sites measured within CDKN2A were not sig-
nificantly correlated, while those within CDKN2B were 
significantly correlated (Additional file  1: Table S4 and 
S5).

The methylation levels of each CpG site and average 
percent methylation of CDKN2A/2B were compared 
between patients with and without CarAC (Table  2). 
Higher methylation levels of CDKN2B were observed 
in patients with CarAC (5.7 vs 5.4, p  =  0.001) com-
pared to those without CarAC. When patients were 

Table 1  Comparison of demographic characteristics between patients with and without CarAC

Statistically signficant values are in italics

Data are presented as number of patients (%) or median (interquartile range)

CarAC carotid artery calcification; BMI body mass index; HTN hypertension; DM diabetes mellitus; CAD coronary artery disease; TC total cholesterol; TG triglyceride; HDL 
high-density lipoprotein; LDL low-density lipoprotein

Characteristics All (n = 322) CarAC p value

With (n = 187) Without (n = 135)

Age, years 62.0 (55.0–70.0) 66.0 (58.0–73.0) 57.0 (47.0–64.0) <0.001

Male, n (%) 229 (71.1) 132 (70.6) 97 (71.9) 0.901

BMI, kg/m2 24.7 (22.9–26.1) 24.5 (22.6–26.0) 24.9 (23.7–26.4) 0.032

HTN, n (%) 250 (77.6) 155 (82.9) 95 (70.4) 0.010

DM, n (%) 110 (34.2) 74 (39.6) 36 (26.7) 0.017

CAD, n (%) 24 (7.5) 16 (8.6) 8 (5.9) 0.400

TC, mmol/L 4.21 (3.58–5.00) 4.17 (3.40–4.93) 4.28 (3.83–5.12) 0.029

TG, mmol/L 1.40 (1.09–1.88) 1.36 (1.03–1.75) 1.54 (1.17–2.02) 0.016

HDL, mmol/L 0.98 (0.82–1.15) 0.98 (0.81–1.15) 0.99 (0.84–1.16) 0.363

LDL, mmol/L 2.61 (1.93–3.18) 2.57 (1.79–3.18) 2.68 (2.20–3.19) 0.180

Glucose, mmol/L 5.3 (4.6–6.6) 5.3 (4.7–6.8) 5.2 (4.6–6.2) 0.260

Smoking, n (%) 132 (41.0) 81 (43.3) 51 (37.8) 0.359

Drinking, n (%) 96 (29.8) 58 (31.0) 38 (28.1) 0.622
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grouped as with no, mild or severe CarAC, patients with 
severe CarAC had highest levels of CDKN2B (5.4 vs 
5.6 vs 5.9, p < 0.001) as shown in Table 3. After adjust-
ing for age, sex, BMI, DM, HTN and smoking, general-
ized liner model detected a positive correlation between 

average methylation levels of CDKN2B and cube root 
transformed calcification scores (β  =  0.591  ±  0.172, 
p =  0.001, Table  4). And average methylation levels of 
CDKN2B were also associated with (cube root) calcium 
volumes (β = 0.533 ± 0.160, p = 0.001) after the adjust-
ment. When further corrected for multiple comparison, 
CDKN2B methylation levels were still associated with 
cube root transformed calcification scores (corrected 
p = 0.002) and calcium volumes (corrected p = 0.002).

Discussion
In this study, we observed a positive correlation between 
CDKN2B methylation and CarAC, which was quantified 
by Agatston score and calcium volume. These results ver-
ified our hypothesis that DNA methylation in CDKN2B 
may increase the susceptibility of artery calcification.

The relationship between Chr9p21 variants and artery 
calcification has been established previously [9, 23, 24]. 
Chr9p21 variants may up-regulate the expression of 
ANRIL, which was negatively correlated with the expres-
sion of CDKN2B [25]. ANRIL can recruit and bind epi-
genetic modifiers such as polycomb repressor complex 
to promoter regions of adjacent genes [12, 15, 26]. These 
epigenetic regulations may eventually influence DNA 
methylation of CDKN2B. Methylation occurred in CpG 
islands around promoter regions generally inhibits gene 
expression [27]. CDKN2B, known as a tumor suppressor, 
participates in cell cycle regulation via retinoblastoma 
(Rb) pathway [28]. The protein p15INK4b, encoded by 
CDKN2B, can specifically bind to CDKN4 and CDKN6, 
resulting in G1 phase arrest and blockage of cell prolifer-
ation [8]. The viewpoint that CDKN2B methylation may 
lead to unlimited cell proliferation has been verified in a 
spectrum of cancers [29, 30].

Chronic vascular inflammation arising from athero-
sclerosis contributes to calcification [6]. Repression of 
CDKN2B may result in losing control of Rb proteins, which 
may subsequently enhance the proliferation of macrophage 
[12]. In the condition of imbalance between promotion and 
inhibition of calcification, a proportion of VSMCs tend to 
differentiate into an osteoblastic and proliferative pheno-
type [31–33]. These processes play a role in the progression 
of arterial calcification. Therefore, methylation at CDKN2B 
may be a substantial contributor to artery calcification. And 

Table 2  Differences of  methylation levels (%) 
between patients with and without CarAC

Statistically signficant values are in italics

For each CpG site, p < 0.05/36 after Bonferroni correction, and p < 0.025 for 
average levels

Gene Position CarAC p value

With Without

CDKN2A 1 4.4 (3.0–6.0) 4.1 (2.7–5.9) 0.480

2 7.1 (5.3–8.9) 6.7 (5.4–8.5) 0.520

3 8.2 (6.8–10.7) 8.0 (6.3–9.6) 0.130

4 5.8 (4.2–8.0) 5.8 (4.3–7.7) 0.896

5 4.8 (4.0–5.5) 5.1 (4.1–5.5) 0.181

6 2.7 (2.3–3.4) 2.7 (2.3–3.2) 0.592

7 2.3 (1.9–2.8) 2.2 (1.7–2.8) 0.062

8 4.3 (3.8–5.0) 4.4 (3.6–5.2) 0.598

9 4.4 (2.4–8.2) 4.4 (2.5–7.7) 0.845

10 2.1 (1.0–3.2) 1.8 (0.9–3.0) 0.377

11 3.7 (2.5–4.9) 3.5 (2.3–5.0) 0.679

12 0.9 (0.5–1.3) 0.9 (0.6–1.4) 0.745

13 1.2 (0.9–1.5) 1.3 (1.0–1.5) 0.325

14 1.2 (1.0–1.5) 1.2 (0.9–1.4) 0.468

15 2.1 (1.7–2.3) 2.0 (1.6–2.5) 0.482

16 1.3 (1.0–1.7) 1.3 (1.0–1.7) 0.800

17 3.3 (2.7–4.2) 3.1 (2.6–3.5) 0.001

18 2.2 (1.7–2.6) 2.2 (1.8–2.6) 0.937

19 2.5 (2.0–3.0) 2.5 (2.0–2.9) 0.806

20 2.7 (2.1–3.3) 2.7 (2.3–3.2) 0.615

21 15.6 (13.6–17.8) 15.3 (13.9–16.8) 0.511

22 2.5 (2.0–3.1) 2.6 (2.1–3.2) 0.425

23 4.3 (3.5–5.1) 4.3 (3.5–5.0) 0.983

24 1.7 (1.2–2.5) 1.8 (1.3–2.5) 0.449

Average 4.0 (3.6–4.3) 3.9 (3.6–4.2) 0.277

CDKN2B 1 5.5 (4.5–6.4) 5.2 (4.2–6.1) 0.046

2 4.4 (3.4–5.3) 4.3 (3.3–5.2) 0.395

3 3.8 (3.1–4.9) 4.0 (3.1–4.6) 0.890

4 4.2 (3.4–5.1) 4.1 (3.3–4.8) 0.233

5 7.6 (6.6–8.9) 7.2 (6.3–8.1) 0.002

6 6.9 (5.7–8.2) 6.5 (5.3–7.4) 0.009

7 8.3 (7.1–9.6) 7.5 (6.7–8.2) <0.001

8 3.5 (2.9–4.2) 3.3 (2.9–3.7) 0.039

9 4.0 (3.3–4.5) 3.6 (3.0–4.1) <0.001

10 6.1 (5.2–7.1) 5.6 (4.6–6.3) <0.001

11 7.5 (6.3–8.7) 6.8 (6.0–7.8) 0.007

12 5.7 (4.9–6.7) 5.4 (4.6–6.0) 0.009

Average 5.7 (5.0–6.4) 5.4 (4.7–5.9) 0.001

Table 3  Methylation levels of  CDKN2A/2B according 
to severity of CarAC

Statistically signficant values are in italics

Gene Without 
(n = 135)

Mild (n = 103) Sever (n = 84) p value

CDKN2A 3.9 (3.6–4.2) 4.0 (3.6–4.4) 4.0 (3.6–4.2) 0.189

CDKN2B 5.4 (4.7–5.9) 5.6 (4.8–6.2) 5.9 (5.2–6.6) <0.001
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the possible association of CDKN2B methylation and ath-
erosclerosis can be further extrapolated to patients with 
CAD or other cardiovascular diseases.

Our study has several strengths. To the best of our 
knowledge, this study was the first to report the associa-
tion between CDKN2B methylation status and CarAC. 
CarAC was quantified by both Agatston method and cal-
cium volume. Considering its less invasiveness and sim-
plicity, methylation tests may be used in clinical settings 
for predicting the artery calcification. There are potential 
treatment implications. CpG island hypermethylation 
has been targeted in cancer treatment, with pharmaco-
logical agents modifying the epigenetic mechanisms been 
studied intensively [30]. Similarly, agents which can spe-
cifically regulate CDKN2B methylation may be used for 
preventing artery calcification in future.

There are several limitations in our study. Firstly, the 
nature of the cross-sectional study limited us to reach a 
causal relationship. Secondly, the CDKN2A/2B expres-
sion was not evaluated in this study due to lack of fresh 
leukocytes. Further functional studies are warranted to 
clarify the underlying mechanisms that correlate CDKN2B 
methylation with artery calcification. Third, given the 
varied predisposition of DNA methylation in differ-
ent tissues, methylation measured from leukocytes may 
not represent that of arterial wall. But considering that 
monocyte-derived macrophages, lymphocytes and plate-
lets from peripheral blood are involved in atherogenesis 

[34], and harvesting vascular tissue from human body is 
largely impractical, the research strategy used in this study 
is logical and rational. Fourth, the present study was con-
ducted in patients with ischemic stroke, which may gen-
erate selection bias. Not all potential confounders can be 
collected and analyzed due to the limited sample size and 
study resource. Moreover, patients with history of carotid 
artery stenting were excluded for accurate calcification 
assessment, which may lead to selection bias.

Conclusions
In summary, CDKN2B methylation is associated with 
CarAC independent of major cardiovascular risk factors. 
Our findings may enrich the body of knowledge on epi-
genetic pathology and provide some new implications for 
prevention and treatment of atherosclerotic diseases.

Additional file

Additional file 1: Table S1. Primer sequences for CDKN2A/2B genes 
(start and end site were named as its relative distance to transcriptional 
start site). Table S2. Methylated CpG sites identified in this study. Table 
S3. Distribution of methylation levels (%) of 36 CpG sites in CDKN2A/2B 
genes. Table S4. Spearman pairwise correlations for CpG sites of CDKN2A. 
Table S5. Spearman pairwise correlations for CpG sites of CDKN2B.
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ANRIL: antisense noncoding RNA in the INK4 locus; BMI: body mass index; 
BSAS: BiSulfite Amplicon Sequencing; CarAC: carotid artery calcification; CAD: 

Table 4  Association between methylation levels of CDKN2A/2B and  cube root transformed calcification scores/calcium 
volumes

Statistically signficant values are in italics

Generalized liner model was adjusted for age, sex, BMI, HTN, DM and smoking

Agatston score Calcium volume

β SE p value β SE p value

Model 1

CDKN2A 0.013 0.325 0.968 0.032 0.302 0.915

Age 0.108 0.016 <0.001 0.101 0.015 <0.001

Sex 0.566 0.461 0.219 0.556 0.429 0.194

BMI −0.136 0.064 0.034 −0.130 0.059 0.029

HTN 1.173 0.429 0.006 1.084 0.399 0.007

DM 0.844 0.377 0.025 0.792 0.351 0.024

Smoking 0.654 0.404 0.105 0.599 0.375 0.111

Model 2

CDKN2B 0.591 0.172 0.001 0.533 0.160 0.001

Age 0.078 0.018 <0.001 0.074 0.017 <0.001

Sex 0.433 0.451 0.338 0.437 0.420 0.299

BMI −0.127 0.062 0.042 −0.122 0.058 0.036

HTN 1.348 0.420 0.001 1.240 0.392 0.002

DM 0.750 0.367 0.041 0.704 0.342 0.039

Smoking 0.746 0.392 0.057 0.678 0.365 0.063
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coronary artery disease; CDKN2A/2B: cyclin-dependent kinase inhibitor 2A/2B; 
Chr9p21: chromosome 9p21; CTA: computed tomography angiography; 
DM: diabetes mellitus; HDL: high-density lipoprotein; HTN: hypertension; 
HU: Hounsfield units; LDL: low-density lipoprotein; Rb: retinoblastoma; TC: 
total cholesterol; TG: triglyceride; TSS: transcriptional start site; VSMC: vascular 
smooth muscle cell.
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