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Abstract 

Background:  Activation of oncogenes downstream the EGFR gene contributes to colorectal tumorigenesis and 
determines the sensitivity to anti-EGFR treatments. The aim of this study was to evaluate the prognostic value of 
KRAS, BRAF, NRAS and PIK3CA mutations in a large collection of CRC patients from genetically-homogeneous Sardinian 
population.

Methods:  A total of 1284 Sardinian patients with histologically-proven diagnosis of colorectal carcinoma (CRC) and 
presenting with metastatic disease were included into the study. Genomic DNA was isolated from formalin-fixed, 
paraffin-embedded primary tumour tissue samples of CRC patients and screened for mutations in RAS and BRAF 
genes, using pyrosequencing assays, and in PIK3CA gene, using automated DNA sequencing assays.

Results:  Overall, mutation rates were 35.6 % for KRAS, 4.1 % for NRAS, and 2.1 % for BRAF. Among available DNA 
samples, 114/796 (14.3 %) primary CRCs were found to carry a mutation in the PIK3CA gene. In this subset of patients 
analysed in all four genes, a pathogenetic mutation of at least one gene was discovered in about half (378/796; 
47.5 %) of CRC cases. A mutated BRAF gene was found to steadily act as a negative prognostic factor for either time to 
progression as metastatic disease (from detection of primary CRC to diagnosis of first distant metastasis; p = 0.009) or 
partial survival (from diagnosis of advanced disease to the time of death or last control; p = 0.006) or overall survival 
(p < 0.001). No significant impact on prognosis was observed for mutated KRAS, NRAS, and PIK3CA genes or combined 
RAS mutations (all RAS).

Conclusions:  Our study defines both prevalence and prognostic role of main activated oncogenes in a population-
based large collection of CRC patients.
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Background
Colorectal cancer (CRC) is the third most incident 
malignancy in both sexes, after lung and prostate cancer 
in men and breast and cervix cancer in women; it also 
represents the fourth most frequent neoplastic cause 
of death after lung, stomach, and liver cancer [1]. The 
disease is more common in men than women. In 2015, 
132,700 new cases of colorectal cancer and 49,700 dis-
ease-related deaths were estimated in USA [2]. The per-
cent of colon and rectum cancer deaths is highest among 
people aged 75-84 [2].

From the pathogenetic point of view, CRC is a complex 
and heterogeneous neoplastic disease, exhibiting multi-
ple genetic and epigenetic alterations. The accumulation 
of acquired molecular aberrations is involved in colorec-
tal tumorigenesis, able to transform normal colonic epi-
thelieum into adenocarcinomas. Starting from the model 
proposed by Fearon and Vogelstein in 1990, not only 
tubular and tubulovillous adenoma may progress to inva-
sive adenocarcinoma, but it is now recognized that the 
serrated adenomas (SSA) and traditional serrated adeno-
mas (TSA), originally excluded, may also undergo malig-
nant transformation [3, 4].

At least four kinds of different pathogenic mechanisms 
have been proposed to be relevant in CRC classification: 
chromosomal instability (CIN), microsatellite instabil-
ity (MSI), CpG island methylator phenotype (CIMP) and 
global DNA hypomethylation. The CIN pathway is the 
most common feature, occurring in 85  % of colorectal 
cancers and showing numerical chromosome changes 
and/or multiple structural aberrations. Different stud-
ies suggest that CIN promotes cancer progression by 
increasing clonal diversity [5]. It involves mutations in 
the APC gene and/or the loss of chromosome 5q where 
it is located, mutations in the KRAS oncogene, the loss of 
chromosomal arm 18q, and deletion of chromosome 17p 
where is mapped the TP53 tumour suppressor gene [6]. 
The MSI phenotype is present in the remaining 15 % of 
CRCs. It is usually mutually exclusive with CIN aberra-
tions and involves the impairment of the DNA mismatch 
repair system. This damage causes replication errors at 
genomic level—detectable as numerical alterations in 
the repetitive units of DNA microsatellites—and inacti-
vating mutations in target tumour suppressor genes [7]. 
The CIMP feature is characterized by hypermethylation 
of genomic DNA located in CpG islands, specific regu-
latory sites enriched in CpG motifs and mapped in the 
promoter regions of tumour suppressor genes. Although 
the mechanism is still under investigation, different stud-
ies suggest a pathogenetic correlation between CIMP 
and occurrence of BRAF mutations in CRC [7, 8]. Finally, 
a reduction of DNA methylation rates has also been 
reported in majority of CIN-positive CRCs [9].

Altogether, the above-mentioned genetic and epige-
netic alterations have a powerful impact on different 
cellular functions: cell proliferation, apoptosis, differen-
tiation, angiogenesis, invasion and immortalization [10, 
11]. Among others, the EGFR-RAS-RAF-MEK-ERK and 
the PI3 K-AKT-mTOR signalling cascades play the main 
roles in CRC development and progression. In particular, 
activated RAS (mainly, KRAS and NRAS) proteins pro-
mote cell proliferation through constitutive stimulation 
of the downstream RAF-MEK-ERK effectors in the so-
called mitogen-activated protein-kinase (MAPK) path-
way [12].

In recent past years, the EGFR-depending pathway has 
been largely exploited for personalized therapies and, 
in particular, EGFR has become a key target of specific 
inhibitors to treat metastatic CRCs [13, 14]. Activating 
mutations in K-/N-RAS are recognized as a strong pre-
dictor of resistance to EGFR-targeted agents (monoclo-
nal antibodies, mAbs), since they cause a constitutive 
phosphorylation of the RAS proteins—independent on 
activation status of the upstream EGFR protein—which 
in turn permanently promote cell proliferation and dras-
tically reduce the effects of the EGFR inhibition [15–18].

The role of RAS mutations as prognostic factors in 
CRC patients remains uncertain and may be somehow 
dependent on populations’ origin [19–22]. Conversely, 
oncogenic BRAF mutations seem not to be predictive of 
insensitivity to the anti-EGFR therapy, but are recognized 
as predictors of poor survival [21, 23–27].

In Sardinia, whose population is genetically homoge-
neous due to its historical isolation and, thus, presents a 
high rate of inbreeding, colorectal cancer represents the 
second principal death-causing malignancy, with an inci-
dence quite comparable with that observed in Western 
countries (standardized rate, 117.4 per 100.000 inhabit-
ants per year; Sardinian population includes about one 
million and half inhabitants) [28, 29]. The contribution of 
KRAS, BRAF, and PIK3CA mutations to CRC pathogen-
esis was previously investigated by our group on a lim-
ited subset of patients from Sardinia [30]. The aim of this 
study was to evaluate the prognostic role of the somatic 
mutations in all candidate genes (KRAS, BRAF, NRAS, 
and PIK3CA) using a very large population-based collec-
tion of Sardinian patients with metastatic CRC.

Methods
Samples
One thousand two hundred and eighty-four patients with 
histologically-proven diagnosis of colorectal carcinoma 
(CRC) were included into the study. At the time of enrol-
ment, only patients presenting with metastatic disease 
(stage IV, according to the American Joint Committee on 
Cancer (AJCC) guidelines [31]) entered the study. For all 
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included patients, medical records and pathology reports 
were used to assess the histological classification and 
disease stage at the time of the diagnosis of the primary 
CRC. To avoid any bias, CRC patients were consecutively 
collected from September 2009 to December 2015; they 
were included regardless of age at diagnosis and disease 
characteristics of the primary tumour. No CRC case from 
our series was associated with clinically relevant colorec-
tal polyposis. Sardinian origin was ascertained in all cases 
through verification of the place of birth for all patients 
and their parents.

Formalin-fixed, paraffin-embedded tissue samples 
from CRC patients were obtained from the archives of 
the Institutes and Services of Pathology participating to 
the study. Tissue sections were estimated to contain at 
least 80 % neoplastic cells by light microscopy.

All patients were informed about the aims of this study 
and, before the tissue sample was collected, gave a writ-
ten informed consent. The study was reviewed and 
approved by the ethical review board of the University of 
Sassari.

Mutation analysis
Genomic DNA was isolated from tissue sections using 
standard protocols, as previously described [28]. Briefly, 
somatic DNA was purified using the QIAamp DNA FFPE 
Tissue kit (Qiagen Inc., Valencia, CA, USA) and the DNA 
quality assessed for each specimen.

Mutation analysis was conducted in the coding 
sequence of the following genes: KRAS (exons 2, 3, and 4), 
NRAS (exons 2, 3, and 4), BRAF (exon 15, where almost 
all of the oncogenic mutations are located), and PIK3CA 
(exons 9 and 20, which are mostly implicated in the pro-
tein kinase activity). For KRAS, NRAS, and BRAF genes, 
quantitative measurements of mutations were based on 
pyrosequencing assays, which were performed on a Pyro-
Mark Q24 system (Qiagen Inc., USA), following the man-
ufacturer’s instructions. For PIK3CA gene, exons 9 and 
20 were investigated for mutations by direct sequencing, 
using an automated fluorescence-based cycle sequencer 
(ABIPRISM 3130, Life Technologies-ThermoFisher Sci-
entific, Waltham, MA, USA), as previously described by 
our group [30]. Protocols for PCR-based assays will be 
available upon request. For PIK3CA gene, mutation anal-
ysis was missing in about two-fifths of cases (488/1284; 
38 %) due to the low amount of available tumour tissue 
samples.

Statistical analysis
The Cox regression model was performed using raw 
mortality and tumor-specific mortality. The time of over-
all survival was expressed in months, and the independ-
ent variables (KRAS, NRAS, all-RAS, BRAF, RAS-BRAF, 

PIK3CA, all genes, pT, pN, M) were stratified in age 
groups: 32–45 (N =  60), 46–64 (N =  440), and 65–98 
(N =  491). Evaluation of the impact of all independent 
variables on prognosis was calculated regardless the type 
of treatment (EGFR inhibition or others) administered to 
patients. Kaplan–Meier estimates were executed through 
stratification by mutation data. The above-mentioned 
variables (mutational status, survivals, pT, pN, M) were 
included in a logistic regression for multivariate analy-
sis by Pearson’s Chi Square test. The exact coefficient for 
sample proportion analysis was performed to determine 
whether there was any significant difference (below 0.05 
level) between considering a mutated gene alone and 
considering mutations in multiple genes. All analyses 
were performed using the statistical package SPSS/7.5 
per Windows.

Results
Genomic DNA from primary tumour tissues of 1284 
consecutively-collected patients with metastatic colorec-
tal carcinoma (mCRC), originating from different geo-
graphical areas within Sardinia island, was screened for 
somatic mutations in KRAS, NRAS, BRAF, and PIK3CA 
genes. As reported in Table  1, the most frequent ana-
tomical site and degree of differentiation of the primary 
tumour were the left colon (516; 40  %) and the moder-
ately differentiated grade (1041; 81  %), respectively. The 
median age was 64 years (range, 32-88 years), with a pre-
ponderance of males (772; 60 %) (Table 1). At the time of 
diagnosis, minority of patients presented with localized 
disease (AJCC stage II: 286; 22 %) (Table 1).

Pyrosequencing assays were conducted for identifi-
cation of mutations in the exons 2, 3 and 4 of both the 
KRAS and NRAS oncogenes as well as in the exon 15 of 
the BRAF oncogene. Somatic mutations in these genes 
were detected in 537 of 1284 (41.8 %) primary tumours: 
457 (35.6 %) KRAS, 53 (4.1 %) NRAS, and 27 (2.1 %) BRAF 
mutations. Overall, no concurrent mutations of KRAS, 
NRAS, and BRAF genes were detected. Six patients had 
two mutations in KRAS gene: G12C and Q61H, G12D 
and Q61L, G12D and Q61H, G12  V and Q61H, G12  V 
and Q61R, G13 V and Q61H. In Fig. 1, spectrum and dis-
tribution of the 543 mutations identified is shown. The 
codon 12 of KRAS (345/463; 74.5 %) and the codon 61 of 
NRAS (25/53; 47 %) were the most affected in our series 
(Additional file  1: Table S1). For BRAF, all 27 patients 
carrying a mutation in this gene presented the substitu-
tion of valine by a glutamic acid at position 600 (V600E), 
which has been widely demonstrated to account for vast 
majority of the BRAF mutations reported in literature 
(Fig. 1; Additional file 1: Table S1) [32, 33].

All mutations identified in the present study are 
reported in both the Human Gene Mutation Database 
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Table 1  Distribution of RAS-BRAF mutations according to the characteristics of CRC patients

Characteristic No. % KRAS mut NRAS mut BRAF mut All mut

Sex

Male 772 60.1 253 (32.8 %) 31 (4.0 %) 13 (1.7 %) 297 (39.8 %)

Female 512 39.9 204 (39.8 %) 22 (4.3 %) 14 (2.7 %) 240 (46.9 %)

Anatomical tumour site

Right-transverse colon 441 34.3 148 (35.6 %) 18 (4.1 %) 9 (2.0 %) 175 (39.7 %)

Left colon 516 40.2 185 (35.9 %) 21 (4.1 %) 10 (1.9 %) 216 (41.9 %)

Rectum 327 25.5 124 (37.9 %) 14 (4.3 %) 8 (2.4 %) 146 (44.6 %)

Disease stage at diagnosis

Stage II (T3–4N0M0) 286 22.3 108 (37.8 %) 11 (3.8 %) 6 (2.1 %) 125 (43.7 %)

Stage III (TXN1–3M0) 567 44.1 191 (33.7 %) 24 (4.2 %) 9 (1.6 %) 224 (39.5 %)

Stage IV (TXNXM1) 431 33.6 158 (36.7 %) 18 (4.2 %) 12 (2.8 %) 188 (43.6 %)

Tumour grading

Well differentiated 138 10.7 49 (35.5 %) 7 (5.1 %) 3 (2.2 %) 59 (42.8 %)

Moderately differentiated 1041 81.1 370 (35.5 %) 41 (3.9 %) 21 (2.0 %) 432 (41.5 %)

Poorly differentiated 105 8.2 38 (36.2 %) 5 (4.8 %) 3 (2.9 %) 46 (43.8 %)

Age, years

≤50 126 9.8 47 (37.3 %) 10 (7.9 %) 3 (2.4 %) 60 (47.6 %)

51–60 325 25.3 118 (36.3 %) 12 (3.7 %) 6 (1.8 %) 136 (41.8 %)

61–70 492 38.3 173 (35.2 %) 19 (3.9 %) 9 (1.8 %) 201 (40.9 %)

>70 341 26.6 119 (34.9 %) 12 (3.5 %) 9 (2.6 %) 140 (41.1 %)

Fig. 1  Somatic mutations in candidate genes among Sardinian CRC patients
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(HGMD) at http://www.hgmd.cf.ac.uk/ac/index.php and 
the catalogue of somatic mutations in cancer (COSMIC) 
at http://www.sanger.ac.uk/genetics/CGP/cosmic/.

Among available DNA samples, 796 primary tumours 
were also evaluated for the occurrence of pathogenetic 
mutations in exons 9 and 20 of the PIK3CA gene (see 
“Methods” section). Overall, PIK3CA mutations were 
detected in 114 (14.3 %) patients; one primary CRC tissue 
presented two mutations (E545G and Q1033L). Screen-
ing revealed the occurrence of mutations in three codons 
of exon 9 (95/115; 82.6  %) and four codons of exon 20 
(20/115; 17.4  %) in the PIK3CA gene (Additional file  1: 
Table S2).

Again, all identified PIK3CA mutations have been 
reported in gene mutation databases (HGMD and COS-
MIC; see above) as commonly associated with CRC, 
with a recognized functional role of the corresponding 
mutated proteins.

Table 2 summarizes the distribution and relationship of 
the somatic mutations identified in the series of 796 CRC 
patients analysed in all four genes. Altogether, a muta-
tion of at least one gene was discovered in about half 
(378/796; 47.5 %) of CRC cases; in other words, one out 
of two primary tumours displayed an extended wild-type 
genetic status, with lack of any pathogenic sequence vari-
ation in these four main candidate genes.

Considering the patients’ origin, distribution of RAS 
mutations was confirmed to be heterogeneous in Sar-
dinia, as previously reported by our group [30]: 247/537 
(46.0 %) mutated cases in North Sardinia versus 263/747 
(35.2 %) in Middle-South Sardinia (Fig. 2). No difference 
in BRAF mutation distribution was instead observed 
within the island: 12/537 (2.2  %) in North Sardinia ver-
sus 15/747 (2.0  %) in Middle-South Sardinia (Fig.  2). It 
should be kept in mind, that all somatic samples from the 
entire series of Sardinian CRC patients were analysed for 
mutations with the same methodological procedures (see 
“Methods” section).

Mutations in KRAS, NRAS, BRAF, and PIK3CA genes 
were evaluated for association with several pathological 
parameters: sex, age at diagnosis, anatomical location of 
primary CRC, tumour grading, AJCC stage of the dis-
ease. No significant correlation was found between the 
occurrence of mutations in any of the four genes and all 
analysed parameters (see Table 1).

Logistic regression multivariate analysis was performed 
on the totality of tested patients to estimate relative risk 
of survival variations and to adjust potential confound-
ing effects, as well as to assess possible multiplicative 
interactions. Using the Cox model adjusted according to 
disease stage and diagnosis age, the occurrence of muta-
tions in BRAF gene was found to have a highly-significant 
negative impact on prognosis, on either partial survival 
(from the diagnosis of advanced disease to the time of 
death or last control, PS) [p = 0.006; HR: 3.21; 95 % CI: 
1.38−7.44] or overall survival (from the disease onset 
to the time of death or last control, OS) [p < 0.001; HR: 
4.12; 95  % CI: 2.49–6.81] (Table  3). No prognostic val-
ues on both survivals of either KRAS or NRAS or all RAS 
(KRAS + NRAS) or PIK3CA mutated status were instead 
observed in our series (Table 3).

Considering the time to progression as metastatic dis-
ease (from the detection of primary CRC to the diagno-
sis of first distant metastasis, TTPM), the occurrence of 
BRAF mutations again remained a statistically-independ-
ent negative prognostic factor [p = 0.009; HR: 2.97; 95 % 
CI: 1.26–6.33] (Table 3). Noteworthy, the impact on OS 
and TTPM of the BRAF mutations was so highly signifi-
cant to negatively affect such survivals in the combined 
group of mutated patients (considering all mutations in 
RAS and BRAF genes) (Table 3).

Using the Kaplan–Meier method, survival curves indi-
cated that patients carrying a BRAF mutation presented 
strongly significant poorer partial [p < 0.001] and overall 
[p < 0.001] survivals in comparison with those carrying a 
BRAF wild-type gene (Fig.  3). With the exception of the 
NRAS mutations on partial survival [p =  0.047], no sig-
nificant association with both types of survival was instead 
observed for mutations in the other genes (a prognostic 
value close to be significant was found for all-RAS muta-
tion-positive status [p = 0.059] on overall survival) (Fig. 3).

No correlation between occurrence of gene mutations 
and response to therapies (EGFR inhibitors or others) has 
been inferred into the present study (such clinical data 
are being collected for a successive study in next future).

Discussion
Colorectal cancer is one of the most prevalent malig-
nancies worldwide [1, 2, 28]. Great efforts have been 
made in the last decades for the comprehension of the 

Table 2  Frequencies of gene mutations in the series of 796 patients screened for all four genes

Mutated genes KRAS KRAS + PIK3CA NRAS NRAS + PIK3CA BRAF BRAF + PIK3CA PIK3CA Wild-type

Cases 227 36 21 8 16 6 64 418

% 28.5 4.5 2.7 1.0 2.0 0.8 8.0 52.5

http://www.hgmd.cf.ac.uk/ac/index.php
http://www.sanger.ac.uk/genetics/CGP/cosmic/
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pathophysiological and molecular mechanisms of the 
disease, and improvements in its clinical management 
have been made. Despite this, a lot more has to be done 
to improve the outcomes in the treatment of advanced 
stage patients, in whom the prognosis remains relatively 
poor [34]. On this purpose, the most relevant advances 
in recent years regard the targeted therapies inhibiting 
the EGFR-RAS cascade. The EGFR is a transmembrane 
protein for the epidermal growth (EGF) that explicates 
its functions through the activation of the RAS protein 
family (HRAS, KRAS, and NRAS). Activated RAS pro-
teins promote cell proliferation and tumour progression 
and invasiveness through several mechanisms, including 
constitutive stimulation of the kinases into the MAPK 
pathway [15]. EGFR-targeted agents, like cetuximab and 
panitumumab that compete with EGF for binding to 
the receptor, have been employed in clinical practice, in 
order to reduce cell proliferation, migration, invasion, 
and metastasis formation [18].

KRAS mutations have been demonstrated to reduce 
the effectiveness of the anti-neoplastic agents mentioned, 
and they are currently a validated predictive marker of 

negative pharmacological response to anti-EGFR thera-
pies. Mutations on codons 12 and 13 in exon 2 have 
been initially established as biomarkers of resistance to 
anti-EGFR antibodies; soon after, mutations on codons 
61 and 146, as well as mutations on exons 3 and 4, have 
been discovered to produce the same effect [35–38]. As 
we mentioned before, these mutations cause a constitu-
tive phosphorylation of the RAS proteins, which perma-
nently promote cell proliferation and drastically reduce 
the effects of the EGFR inhibition [15–18]. Mutations in 
the entire coding region of the NRAS oncogene as well 
as in the exon 20 of the PIK3CA gene, which are rarer in 
CRC patients, have also been demonstrated to be predic-
tors of reduced response to anti-EGFR therapies [36–38].

In our series, KRAS, NRAS, BRAF, and PIK3CA 
mutations were observed in 47.5  % of the CRC cases 
examined, mostly confirming the mutation prevalence 
observed in our previous study (a mutation of at least 
one among the KRAS, BRAF, and PIK3CA genes was dis-
covered in about 45  % of Sardinian CRC cases) [30]. In 
Italian population, higher rates were recently reported 
in a considerably smaller collection of CRC patients 

Fig. 2  Geographical distribution of RAS and BRAF mutation carriers in Sardinia. a Frequencies in percentage; b number of cases
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from North Italy [39]. Using the same mutation screen-
ing tests of our present study (pyrosequencing assays; see 
“Methods” section), Foltran and colleagues reported that 
the 39.2  % of their cases was wild-type, defined as lack 
of mutations in KRAS exons 2-4, NRAS exons 2 and 3, 
BRAF exon 15, and PIK3CA exons 9 and 20 [39]. Con-
versely, the mutation rates were 47.4, 3.6, 5.2, and 16.5 % 
for KRAS, NRAS, BRAF, and PIK3CA, respectively (about 
12 % of cases carried both KRAS and PIK3CA mutations) 
[39]. In the Sardinian population, mutation rates were 
much lower for KRAS (35.6 %) and BRAF (2.1 %), slightly 
lower for PIK3CA (14.3 %) and slightly higher for NRAS 
(4.1  %). Focusing on KRAS mutations only, Sardinian 
CRC patients were found to carry a mutated KRAS gene 
in 30 to 36 % of the cases [30, 40].

The distribution of the mutations within the terri-
tory of the island was confirmed to be heterogeneous, 
with the northern populations presenting higher rates 
of mutations, especially in the RAS genes [30]. This pat-
tern confirms older evidences, regarding not only CRC 
but also other malignancies, and suggests that the genetic 
background may influence the occurrence of cancer gene 
mutations, even within relatively homogeneous popula-
tions such as that from Sardinia [30, 41–43]. Globally, the 
mutation rates found in our cohort are however within 

the ranges published in other series throughout the world 
[30, 44].

In our study, we did not evidence any relation between 
the mutation rates and the clinical and/or pathologi-
cal parameters examined (age, sex, anatomical location, 
stage of the disease at diagnosis, grading). Most of the 
lesions were located in the left colon, but most of the 
mutations involved the rectum, even if the differences 
were not statistically significant. Some authors advocate 
that the anatomical location, histology and grading of the 
primary lesions has a relevant prognostic role, especially 
because BRAF mutations have been more frequently 
observed in right-sided, poorly differentiated mucinous 
tumors [26, 45–47].

Somatic mutations in the exon 15 of BRAF have been 
widely demonstrated, indeed, to negatively impact the 
prognosis of patients with CRC, independently of any 
clinical parameter studied [26, 45–47]. This was observed 
also in the present study; patients with substitution of a 
valine by a glutamic acid at position 600 (V600E), which 
was the only mutation found in our cases and the most 
commonly reported in the scientific literature, had a 
worst PS, OS, and TTPM in comparison to those with-
out this alteration [32, 33]. Furthermore, the group of 
mutated patients—combining carriers of all mutually 
exclusive mutations in RAS and BRAF genes—presented 
a worst OS. This finding is in line with those of other 
authors who found that the all-wild type malignancies 
(RAS, BRAF, and in some cases PIK3CA included) had 
globally a better prognosis in comparison to the mutated 
ones [36, 39]. This is particularly relevant considering 
that a significant portion of the patients (approximately 
a half of them in our series) with CRC do not present any 
mutation of the genes mentioned above. The prognostic 
role of PIK3CA is less clear; it is known that it often coex-
ists with KRAS mutations and predicts resistance to anti-
EGFR therapies, but its exact prognostic role is poorly 
understood [39]. Ogino et  al. evidenced that PIK3CA 
is associated with poor prognosis among patients with 
curatively resected colon cancer, but such an associa-
tion was not confirmed neither in our series, nor in other 
studies in early or advanced stage patients [39, 48, 49].

The prognostic role of KRAS mutations as a global 
prognostic factor of disease progression and survival 
in CRC patients is controversial. Several studies have 
reported a statistically significant reduction in disease-
free survival (DFS) and OS in the presence of KRAS 
mutations [50–52]. Ogino and colleagues performed an 
evaluation of the independent effect of the CIMP and 
MSI alterations as well as of the KRAS and BRAF muta-
tions on the prognosis of 649 patients with IV stage CRC 
[53]. The study did not identify a relevant role for the 
KRAS mutations on prognosis, but the authors provided 

Table 3  Statistical correlation of  gene mutations 
with prognostic parameters

Mutated gene Risk ratio 95 % CI p

Partial survival (from metastatic disease onset to death or last control)

 KRAS 1.257 0.628–1.739 0.4906

 NRAS 1.634 1.018–2.712 0.0763

 All RAS 1.345 0.968–2.158 0.0924

 BRAF 3.214 1.387–7.445 0.0064

 All RAS + BRAF 1.733 0.997–2.994 0.0511

 PIK3CA 1.403 0.877–1.479 0.1365

Overall survival (from disease diagnosis to death or last control)

 KRAS 1.219 0.983–1.512 0.0703

 NRAS 1.052 0.612–1.810 0.8522

 All RAS 1.108 0.932–1.316 0.2432

 BRAF 4.120 2.491–6.812 <0.001

 All RAS + BRAF 1.878 1.238–3.996 0.0394

 PIK3CA 0.934 0.711–1.226 0.6246

Time to progression as metastatic disease (from disease diagnosis to 
first metastasis)

 KRAS 1.077 0.843–1.677 0.1508

 NRAS 1.154 0.853–1.851 0.1006

 All RAS 1.277 1.025–2.371 0.0943

 BRAF 2.972 1.261–6.332 0.0091

 All RAS + BRAF 2.217 1.125–4.371 0.0214

 PIK3CA 0.964 0.691–1.346 0.8337
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evidence that CIMP high appears to be an independent 
predictor of a low CRC specific mortality, while BRAF 
mutations are associated with a high CRC specific mor-
tality [53]. By contrast, in their combined analysis of 
specific KRAS gene alterations, BRAFV600E status, and 
MSI, Zlobec et  al. found that specific KRAS mutations 
act as informative prognostic factors in both sporadic 
and hereditary CRC [54]. In another recent series of 342 

cases, Winder et al. were the first to report an improved 
OS in patients with KRAS codon 13 mutations, com-
pared to those with wild-type genes, further suggesting 
that different types of KRAS mutations may be differ-
ently associated with OS in patients with CRC [55]. 
Finally, a multivariate analysis by Bazan et al. in a series 
of 160 cases found that KRAS codon 13 mutations were 
associated with poorer OS but not DFS [56]. Finally, 

Fig. 3  Kaplan-Meier cumulative survival analyses according to gene mutation status: partial survival in the left column, overall survival on the right; 
0 wild-type, 1 mutated



Page 9 of 11Palomba et al. J Transl Med  (2016) 14:292 

Ren et  al. in a recent well-designed meta-analysis per-
formed a careful selection of 23 articles published from 
1992, including 25 sets of data with 4687 patients and 
1364 (29  %) KRAS-mutated cases [57]. Among them, 9 
papers indicated that KRAS mutations were associated 
with worse prognosis, 15 failed to demonstrate any sta-
tistically significant association between such mutations 
and prognosis, and, finally, one data set identified an 
improved survival rate for patents with CRC and KRAS 
mutations [57]. Globally, the authors found that KRAS 
mutations were not associated with CRC prognosis, 
either before or after adjustment for the effect of publi-
cation bias [57].

In a previous study on Sardinian patients, we observed 
an improved TTPM in male patients with CRC harbour-
ing KRAS mutations; we hypothesized that such a finding 
may be associated with the specific types of KRAS muta-
tions observed in males and females as consequence of 
exposure to different lifestyle factors [57]. Nevertheless, 
such a finding was not confirmed in the present study, 
performed in a considerably greater number of patients. 
On the other hand, we found in the present series that a 
mutated NRAS negatively affects partial survival, even if 
it did not show any impact on OS or TTPM. Global cases 
with RAS mutations had a prognostic value on PS and 
TTPM close to be significant, and this further enhances 
the above-mentioned observation that colorectal malig-
nancies with wild-type status in all these candidate genes 
generally present a better prognosis.

The discrepancy of results among the mentioned stud-
ies on the prognostic role of RAS and PIK3CA mutations 
in CRC may be caused by some confounding factors. The 
most frequent are: (1) heterogeneity of the study popula-
tions; (2) discrepancies in study designs and methodolo-
gies; (3) strategies for mutational detection; (4) presence 
of underlying predisposing conditions (i.e. ulcerative 
colitis); (5) variability of the staging systems (Dukes, 
AJCC, different editions); and (6) differences in clinical 
management and treatment. The advantage of our study 
is to avoid several bias through a prospective collection 
of data on a consistent high number of patients from a 
homogeneous population, processed and analysed in a 
single institution. To date, we can consider as validated 
the prognostic role of BRAF mutations as well as that of 
the wild-type status in all main candidate genes. Further 
studies are probably necessary to better assess the prog-
nostic role of the single RAS and PIK3CA mutations.

Conclusions
Our findings evidence that approximately a half of 
the Sardinian patients with CRC present one or more 
mutations in one or more of the KRAS, NRAS, BRAF, 
and PIK3CA genes. The KRAS mutations are the most 

frequent, followed by those in NRAS, and BRAF, as 
observed in other studies, and they are strongly con-
firmed to be mutually exclusive. On the other hand, 
PIK3CA mutations often coexist with the RAS muta-
tions. With the exclusion of mutations in any of the other 
genes, harbouring a mutated BRAF was demonstrated to 
negatively impact the prognosis—regardless the type of 
survival taken into consideration—in CRC patients from 
Sardinian population. This makes the role of the latter 
mutations clear; as for the others, further investigations 
are necessary to better comprehend their prognostic 
impact.
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