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Abstract 

Background:  Vitamin D (VitD) and thymoquinone (TQ) are nutraceutical agents with well-known immunomodula-
tory and hepatoprotective properties. This study measured whether VitD and TQ, individually or combined, could 
have direct fibrolytic activities and/or enhanced performance during remedial treatment of liver fibrosis established 
by CCl4 in rats.

Methods:  Eighty five male Wistar rats were used as 10 negative controls (NC) and the remainders were distributed 
equally into 5 groups: short (S-PC) and long (L-PC) positive controls, TQ, VitD and VitD/TQ groups. CCl4 was injected 
for 7 weeks followed by a week of no intervention. TQ and/or VitD were given orally (3 days/week) from week 9 and 
euthanasia was at week 17 for all groups except the S-PC was at week 9. Following histopathological and digital 
image analyses, TGF-β1, IL-6, IL-10, IL-22 and MMP-9 were measured by ELISA in liver homogenates while the corre-
sponding cytokine receptors were measured by immunohistochemistry. The mRNA expressions of all molecules were 
measured by quantitative RT-PCR.

Results:  Fibrosis was evident in both PC-groups and was significantly more advanced in the L-PC than S-PC, reaching 
to cirrhosis. The concentrations of TGF-β1, IL-6, IL-22 and their receptors were significantly higher (P < 0.05) simultane-
ously with significantly lower (P < 0.05) concentrations of MMP-9, IL-10 and IL-10 receptors in the S-PC and L-PC than 
the NC-group. TQ and VitD monotherapies showed significantly less fibrosis than L-PC but were similar to S-PC. Both 
remedial monotherapies also resulted in significant decreases of TGF-β1, IL-6, IL-22 and their receptors together with 
significant increases of MMP-9 and IL-10 system compared with S-PC and L-PC groups. Interestingly, dual therapy 
resulted in the most significant improvement in fibrosis score and index, yet was significantly higher (P < 0.05) than 
the NC-group, and concurred with the utmost significant restorations of all candidate genes and proteins.

Conclusions:  VitD and TQ exhibited comparable anti-fibrogenic effects and modulated several pro- and anti-fibrotic 
mediators. Additionally, VitD/TQ dual therapy alleviated the previously established liver fibrosis simultaneously with 
significantly enhanced actions at the molecular level. More studies are required to explorer the therapeutic value of 
TQ and VitD against liver fibrosis in human.
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Background
Hepatic fibrosis and later the development of cirrho-
sis are major health concerns causing 1.5 million annual 

deaths worldwide [1]. Liver fibrosis is a wound-healing 
response to chronic liver inflammation that ultimately 
results in the progressive accumulation of extracellular 
matrix (ECM) and distortion of normal liver architecture 
[2]. Chronic liver inflammation may result from several 
well-known risk factors such as viral infection, drug use, 
autoimmune hepatitis, alcohol abuse and metabolic dis-
orders [3]. Hepatic stellate cells (HSCs) are the main cell 
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type to produce ECM in the liver and, following sustained 
liver injury, they trans-differentiate from a quiescent to 
an active state with the formation of fibrotic scar tissue 
[1–3]. Activated HSCs mediate abnormal degradation of 
the main components of ECM such as type IV collagen 
and increase the deposition of collagen type I and III with 
over-expression of the cytoskeleton protein; α-smooth 
muscle actin, resulting in an excess of non-functioning 
ECM [2].

At the molecular level, several cytokines are involved 
in the regulation of immune responses to liver injury as 
well as activation of HSCs [3, 4]. Transforming growth 
factor (TGF)-β1 and interleukin (IL)-6 are pro-fibrotic 
cytokines that are upregulated during chronic liver 
inflammation and their serum and tissue concentrations 
correlate positively with the degree of liver fibrosis [5, 6]. 
On the other hand, IL-10 exhibits anti-fibrotic activities 
and an increase in the hepatic expression of the cytokine 
and its receptors (IL10RA & IL10RB) have been associ-
ated with significantly less scar formation following a 
variety of liver injuries [7, 8]. IL-22 is another cytokine 
produced mainly by T-helper (Th)-17, Th-22 and natural 
killer cells which are enriched in the intrahepatic envi-
ronment [9]. This cytokine is known to play a critical role 
in  liver  immunity and its receptor (IL-22R) is expressed 
by several liver cells including HSCs [9–13]. However, the 
role of IL-22 in the liver whether as inducer or suppressor 
of fibrosis is dependent on the etiology of hepatic disease 
[9, 14, 15]. Activated HSCs also express MMPs which are 
endopeptidases that play an important role in degrada-
tion and removal of all of the major components of the 
ECM [16, 17]. The activity of MMPs is mainly regulated 
by tissue inhibitors of metalloproteinases (TIMPs) which 
are also secreted by the activated HSCs [17, 18]. Disrup-
tion in the delicate balance between MMPs and TIMPs 
synthesis by HSCs significantly contributes in liver fibro-
genesis [17–19].

Interestingly, recent clinical studies using antiviral 
drugs have provided evidence about the possibility of 
healing/regression of fibrosis, which was long thought 
to be an irreversible process [2, 20]. However, effective 
pharmaceutical therapies and/or direct fibrolytics are 
still lacking and hence there is an increase demand for 
designing novel therapeutic strategies for established 
hepatic fibrosis [2, 3]. In this context, several studies have 
indicated the anti-fibrotic activities of a variety of natural 
products including vitamin D (VitD) and thymoquinone 
(TQ).

VitD is a steroid hormone that has traditionally been 
associated with systemic Ca2+ homeostasis and bone 
mineralization. Indeed, VitD regulates hundreds of dif-
ferent genes together with its well-established immu-
nomodulatory and anti-inflammatory effects [21–23]. 

Additionally, pathological alterations in VitD concentra-
tions have been observed with a variety of chronic liver 
diseases and there was a significant correlation between 
the levels of the hormone with the degree of liver fibro-
sis [24–26]. TQ is another natural product that has been 
shown to exhibit immunomodulatory and hepatopro-
tective actions and is the most abundant constituent of 
the Nigella sativa seeds, which are popularly known as 
black seeds or the seeds of blessing [27–29]. Despite the 
previous reports on the anti-fibrotic properties of VitD 
and TQ [21, 23, 24, 27–29], none of the previous stud-
ies explored whether dual therapy with both agents could 
have potential fibrolytic activities and/or boosted interac-
tions for the treatment of liver fibrosis.

The present study therefore measured the effects of 
VitD and TQ dual therapy, which was initiated following 
the establishment of liver fibrosis by carbon tetrachloride 
(CCl4) in rats, and the results were compared with con-
trols and monotherapy groups. Additionally, the effects 
of combining both agents on the hepatic expression of 
TGF-β1, IL-6, IL-10, IL-22, their receptors and MMP-9 
were measured at the protein and gene levels. The explo-
ration of possible additive interactions between VitD and 
TQ as anti-fibrotics and/or fibrolytics could lead to the 
development of more effective alternative/complemen-
tary therapeutic approaches, especially in those patients 
with advanced liver fibrosis and/or decompensated liver 
diseases.

Methods
Drugs and chemicals
Vitamin D3 oral drops was purchased from Novartis 
International AG (Basel, Switzerland), while Carbon tet-
rachloride, TQ, dimethylsulfoxide (DMSO) and olive oil 
were from Sigma-Aldrich Co. (MO, USA).

Study design
All experimental protocols were approved by the Com-
mittee for the Care and Use of Laboratory Animals at 
Umm Al-Qura University and were in accordance with 
the EU Directive 2010/63/EU for animal experiments. 
A total of 85 male Wistar rats of 10  weeks of age and 
weighing 200–250 g each were housed in clean and ster-
ile polyvinyl cages (5 rats/cage), maintained on standard 
laboratory pellet diet and water ad  libitum; and kept in 
a temperature-controlled air-conditioned at 22–24  °C 
and 12  h dark/light cycle. All animals received humane 
care during the study protocol and during euthanasia. 
The animals were allocated randomly into 10 negative 
control rats ‘NC group’ and another 30 animals that only 
received CCl4 were distributed equally into short ‘S-PC’ 
and long ‘L-PC’ positive controls. The remaining animals 
were also equally divided (15 rats/group) into those that 
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received CCl4  +  VitD3 ‘VitD group’; CCl4  +  TQ ‘TQ 
group’ and the last group received CCl4 + VitD3 + TQ 
‘VitD/TQ group’.

Treatment protocol
The total duration of the study was 16 weeks of interven-
tions and euthanasia was carried out in the 1st  day of 
week 17 for all groups, except the S-PC that was eutha-
nized at the 1st day of week 9. CCl4 was prepared fresh 
on the day of use by mixing it with olive oil at a ratio of 
1:1 and the mixture was then injected intraperitoneally 
in the designated groups twice weekly at a dose of 3 μl/g 
body weight for a total of 7  weeks. The rats in the ‘NC 
group’ were also injected with olive oil mixed with sterile 
saline during the first 7 weeks at the same time of inject-
ing CCl4 in the remaining groups. All animals were left 
under observation following the last CCl4 injection and 
with no further intervention for one week.

Treatment with VitD and/or TQ started from week 
9 on the day at which CCl4 injection would have been 
given and the treatment continued till the day before 
euthanasia. Cholecalciferol (4500  IU/ml) was prepared 
by adding 7.8 to 27.2  ml sterile saline every morning 
to form a final concentration of 1000  IU/ml and 0.5  ml 
(500 IU) were given orally every other day (3 days/week) 
to each rat in the ‘VitD’ and ‘VitD/TQ’ groups as previ-
ously described [30]. TQ (240 mg) was also freshly dis-
solved on the day of use in 8 ml of 0.5 % DMSO, diluted 
in 8 ml olive oil to prepare a final concentration of 15 mg/
ml and then administered orally every other day (3 days/
week) at the dose of 35 mg/kg/day (0.5 ml/rat) using gas-
tric gavage [31]. The rats in the ‘NC’, ‘L-PC’ and ‘VitD’ 
groups also received a mixture of olive oil and 0.5  % of 
DMSO orally similar to the ‘TQ’ and ‘VitD/TQ’ groups.

Types of samples
All rats were euthanized following anaesthesia using die-
thyl ether (Fisher Scientific UK Ltd, Loughborough, UK) 
and 3 ml of venous blood were collected from each ani-
mal in a plain tube. All blood samples were centrifuged 
and the serum was used to measure the levels of liver 
enzymes (ALP, ALT and AST), renal function parameters 
(creatinine, BUN and urea) and concentrations of 25-OH 
vitamin D on Cobas e411 (Roche Diagnostics Interna-
tional Ltd, Switzerland) according to the manufacturer’s 
protocol.

For histopathology and immunohistochemistry 
experiments, a liver specimen of 1  cm length ×0.5  cm 
width  ×0.5 thickness was taken from the middle lobe 
of each liver, processed by a conventional method and 
finally embedded in paraffin. Another two specimens 
from the middle lobe of the liver (1 gm/each) were 
also obtained from each animal with one piece being 

immediately processed for protein extraction using 
6  ml of RIPA lysis buffer containing protease inhibitors 
(Santa-Cruz Biotechnology Inc., CA, USA) and electri-
cal homogeniser. Following centrifugation, the concen-
trations of total proteins were measured at 280 OD on a 
BioSpec-nano machine (Shimadzu Corporation, Tokyo, 
Japan). All samples were then diluted by normal sterile 
saline for a final concentration of 500 µg/ml of total pro-
tein to measure the levels of candidate proteins in liver by 
ELISA.

The second specimen was immediately immersed in 
15 ml of RNALater (Thermo Fisher Scientific, CA, USA) 
and total RNA was later extracted using the Purelink 
RNA mini kit (Thermo Fisher Scientific) according to the 
manufacturer’s instructions and following homogeni-
zation using tissue raptor and sterile plastic tubes with 
beads (Omni International, GA, USA). The quality and 
quantity of extracted RNA was assessed on a BioSpec-
nano machine and typically had an A260/A280 ratio of 
1.7–1.9 and cDNA was immediately synthesized by tran-
scribing 200 ng of total RNA using a high capacity RNA-
to-cDNA Reverse Transcription Kit (Thermo Fisher 
Scientific) according to the manufacturer’s protocol.

Histology studies
Serial sections of 5 μm thickness were cut from each tis-
sue block and were stained with haematoxylin and eosin 
(H&E) and Mason’s trichrome (Abcam, MA, USA) to 
assess hepatic architecture and collagen type I deposi-
tion, respectively. All sections were examined on an 
EVOS XL Core microscopy (Thermo Fisher Scientific) 
at ×100, ×200 and ×400 magnifications by two expert 
histopathologists who were blind to the source groups 
to evaluate and score liver fibrosis in 20 random fields 
at ×200 and according to the previously published scal-
ing system as follow: 0 = Absent; 1 = Slight; 2 = Moder-
ate; 3 = Severe and 4 =  cirrhosis [32, 33]. Additionally, 
quantitative measurement of collagen deposition (fibrosis 
index  %) was done using ImageJ software (https://imagej.
nih.gov/ij/) as previously described [33, 34] (Additional 
file 1: Figure S1).

Enzyme linked immunosorbant assay (ELISA)
The concentrations of TGF-β1, IL-6, IL-10, IL-22 and 
MMP-9 proteins in liver tissue homogenates were meas-
ured using specific rat ELISA kits (R&D systems, Min-
neapolis, USA). All samples were processed in duplicate 
on a fully automated ELISA system (Human Diagnos-
tics, Germany) and according the manufacturers’ guide-
lines. As reported by the manufacturer, the detection 
range of both TGF-β1 and IL-10 kits was between 31.2 
and 2000 pg/ml, with sensitivities of 4.6 pg/ml for TGF-
β1 and 10  pg/ml for IL-10, intra-assay and inter-assay 
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precisions of <4 and <10 % for both kits. The IL-6 kit had 
a detection range between 62.5 and 4000  pg/ml with a 
sensitivity of 21 pg/ml, intra-assay precision <8.8 % and 
inter-assay precision <10  %. The detection range of the 
IL-22 kit was 15.6–1000  pg/ml, a sensitivity of 8.2  pg/
ml, intra-assay precision <5  % and inter-assay precision 
<10 %. The kit for MMP-9 detects the total protein (free 
and bound) with a range between 0.2 and 10 ng/ml, sen-
sitivity of 0.028  ng/ml and, both intra-assay and inter-
assay precisions <6.9 %.

Immunohistochemistry
The primary antibodies (Santa-Cruz Biotechnology Inc.) 
against IL-6, IL-10 A & B and IL-22A1 receptors were 
polyclonal goat IgG antibodies while rabbit polyclonal 
IgG antibodies were used to detect TGF-β type II and IL-
22A2 receptors. An avidin–biotin horseradish peroxidase 
technique was applied to localize the target molecules 
by ImmunoCruz™ Rabbit or Goat LSAB Staining Sys-
tems (Santa-Cruz Biotechnology Inc.) according to the 
manufacturer’s protocol. The concentrations were 1:200 
for TGF-βRII and IL-6RA antibodies, and 1:100 for the 
remaining antibodies. The negative control slides con-
sisted of a section of the tissue block being studied that 
was treated identically to all other slides but the primary 
antibodies were replaced with corresponding primary 
normal goat or rabbit IgG antibodies (Santa-Cruz Bio-
technology Inc.) to control for non-specific staining.

The sections were observed on an EVOS XL Core 
microscope to evaluate and score the immunostain. Each 
section was examined by two observers who were blind 
to the source of sections and the intensity of staining 
was assessed in 5 random fields of each section at ×200 
magnification and by using ‘H score’ that was calculated 
as follow [30, 35]: H score = ƩPί (ί +1), where ί repre-
sents the intensity of staining (0 =  negative; 1 =  weak; 
2 =  moderate and 3 =  strong) and Pί is the percentage 
of cells (0–100 %) stained at each intensity. In the case of 
a wide disagreement between both observers, the slides 
were reanalyzed by a third independent reviewer.

Quantitative RT‑PCR
The PCR reactions were carried out in triplicate wells on 
ABI® 7500 system using power SYBR Green master mix 
(Thermo Fisher Scientific). Each PCR well included 10 µl 
SYBR Green, 7 µl DNase/RNase free water, 1 µl contain-
ing 5 pmol of each primer (Additional file 2: Table S1) and 
cDNA (25 ng) and, 40 cycles (95 °C/15 s and 60 °C/1 min) 
of amplification were performed. Negative controls 
included one minus-reverse transcription (minus-RT) 
control from the previous RT step and another minus-
template PCR, in which nuclease free water was used as 
a template.

The 2−∆∆Ct method was used to perform relative quan-
titative gene expression of rat TGFB1, TGFBR2, IL6, 
IL6RA, IL10, IL10RA, IL10RB, IL22, IL22RA1, IL22RA2 
and MMP9 target genes. Three reference genes were 
tested and rat β-actin gene showed the most consistent 
results and it was used to normalize the Ct values of the 
genes of interest. The results are expressed as fold-change 
compared with the ‘NC group’.

Statistical analysis
Statistical analysis of the results was performed using 
SPSS version 16. Normality and homogeneity of data 
were assessed with the Kolmogorov and Smirnoff test 
and Levene test, respectively. Student’s t test or Mann–
Whitney U test was used to compare between 2 groups 
based on data normality. One way ANOVA followed by 
LSD post hoc test or Kruskal–Wallis followed by Dunn’s 
post hoc test were used to compare between >2 groups 
depending on the data homogeneity. P value <0.05 was 
considered significant.

Results
Biochemical findings
There was no significant difference (P > 0.05) between the 
study groups in renal function parameters (Table 1). How-
ever, serum ALP (P = 0.003), ALT (P = 0.04 × 10−5) and 
AST (P =  0.0005) enzymes were significantly increased 
in in the ‘S-PC’ than the ‘NC’ group (Table 1). A further 
significant increase in the 3 enzymes (P =  0.07 ×  10−4; 
P = 0.0001 and P = 0.004, respectively) was also detected 
in the ‘L-PC’ compared with ‘S-PC’. Remedial monother-
apy with TQ or VitD significantly decreased (P  <  0.05) 
the serum levels of the liver enzymes compared with 
the 2 positive control groups. Nevertheless, the levels 
remained significantly higher, except for AST, follow-
ing single therapy with TQ (P = 0.008 for ALP; P = 0.02 
for ALT) and VitD (P = 0.02 for ALP; P = 0.03 for ALT) 
compared with ‘NC’ group (Table 1). Dual therapy with 
VitD and TQ resulted in the most significant decrease in 
the liver enzymes compared with both positive control 
groups and the results were comparable to those of NC 
group (Table 1). Additionally, the serum 25-OH vitamin 
D concentrations were significantly higher (P  <  0.05) in 
the groups that received cholecalciferol compared with 
the other study groups. However, there was no significant 
difference between the study groups in the serum cal-
cium concentrations (Table 1).

Effects of vitamin D3 and TQ mono and dual therapies 
on liver fibrosis
H&E stained liver specimens from the NC-group showed 
normal features of hepatocytes, liver architecture, central 
veins and portal areas (Fig. 1A). CCl4 injection resulted in 
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distortions of the normal hepatic architecture with swol-
len hepatocytes around the central veins and interrup-
tion of hepatic tissue by numerous fibrous septa together 
with diffuse cellular infiltration around the fibrous bands 
and dilated portal areas in the S-PC (Fig. 1B) and L-PC 
(Fig. 1C) groups. Furthermore, more prominent damage 
with excessive hepatic lobulation was evident in the L-PC 
group. Monotherapy with TQ (Fig. 1D) or VitD (Fig. 1E) 
was associated with better histological features and lower 
cellular infiltration in addition to less fibrous septa com-
pared with L-PC. However, no major differences were 
observed between both monotherapy groups or by com-
paring each of them with the S-PC. Interestingly, dual 
therapy with TQ and VitD (Fig.  1F) showed the best 
improvement in the hepatic microanatomy compared 
with all other CCl4 groups with more marked restora-
tion towards normal hepatic histology and a reduction of 
cellular infiltration but the hepatocytes were still swollen 
around the dilated central veins.

Minimal/negligible deposition of collagen type I was 
observed around the portal areas in the NC-group by 
Masson’s trichrome stain (Fig.  1G). Additionally, portal 
fibrosis and peri-portal septa were evident in both the 
S-PC (Fig.  1H) and L-PC (Fig.  1I) specimens and both 
groups had significantly higher fibrosis score (Fig.  1M; 
P = 0.02 × 10−5 and P = 0.04 × 10−8, respectively) and 

index (Fig.  1N; P =  0.05 ×  10−7 and P =  0.03 ×  10−11, 
respectively). However, the fibrogenesis process was sig-
nificantly more progressive in the L-PC specimens reach-
ing to cirrhosis, which was characterized by large fibrous 
bands extending from the portal areas to the central veins 
through the hepatic tissue, resulting in extensive abnor-
mal lobulation of the examined sections. TQ (Fig.  1J) 
and VitD (Fig.  1K) monotherapies significantly inhibited 
the progression of fibrogenesis compared with the L-PC 
group but fibrosis was yet observed around the portal 
areas with peri-portal fibrous extensions similar to the 
S-PC group. Additionally, the fibrosis score (P = 0.6) and 
index (P = 0.8) were similar between both groups of sin-
gle therapy and none of them showed significant differ-
ence (P > 0.05) compared with S-PC group. In parallel with 
the H&E observations, combined therapy of TQ and VitD 
(Fig. 1L) showed the best mitigation in liver damage that 
was indicated by a significant regression in the amount of 
fibrous tissues that was mainly restricted around the portal 
areas. The fibrosis score and index were also significantly 
lower than S-PC (P =  0.003 and P =  0.02, respectively), 
L-PC (P = 0.04 × 10−4 and P = 0.03 × 10−6, respectively), 
TQ (P  =  0.0009 and P  =  0.03, respectively) and VitD 
(P = 0.002 and P = 0.02, respectively) groups. Neverthe-
less, the fibrosis score and index were still significantly 
higher than normal hepatic specimens (Fig. 1M, N).

Table 1  Mean ± SD of body weight, serum concentrations of 25-OH vitamin D, calcium, liver enzymes and renal function 
parameters in the different study groups

a  P < 0.05 compared with normal ‘NC group
b  P < 0.05 compared with short positive control ‘S-PC group’
c  P < 0.05 compared with long positive control ‘L-PC group’
d  P < 0.05 compared with ‘TQ group’
e  P < 0.05 compared with ‘VitD group’

NC group S-PC group L-PC group TQ group VitD group VitD/TQ group

Body weight (g) 231.57 ± 20.01 222.8 ± 18.71 201.97 ± 23.01a,b 228.42 ± 13.64c 230.1 ± 22.2c 229.5 ± 18.7c

25-OH Vitamin D (ng/ml) 46.19 ± 8.1 34.3 ± 4.9a 26.6 ± 6.7a,b 35.7 ± 9.5a,c 65.5 ± 9.1a,b,c,d 68.8 ± 8.7a,b,c,d

Calcium (mg/dL) 9.17 ± 0.51 9.1 ± 0.63 9.22 ± 0.44 9.24 ± 0.35 9.29 ± 0.42 9.23 ± 0.38

ALP (IU/L) 122.6 ± 11.2 211.4 ± 23.8a 315.7 ± 29.7a,b 170.8 ± 19.4a,b,c 167.3 ± 21.9a,b,c 131.6 ± 21.6b,c

ALT (U/L) 67 ± 5.4 133.3 ± 12.4a 271.2 ± 18.7a,b 88.7 ± 13.1b,c 75.4 ± 7.3b,c 69.3 ± 8.7b,c,d

AST (U/L) 92.4 ± 24.2 166.1 ± 28.8a 218.8 ± 26.7a 109.2 ± 21.6b,c 103 ± 19.8b,c 99 ± 11.9b,c

Creatinine (mg/dL) 0.22 ± 0.03 0.23 ± 0.05 0.2 ± 0.06 0.2 ± 0.03 0.19 ± 0.03 0.21 ± 0.05

Urea (mg/dL) 47.6 ± 5.1 49.1 ± 4.8 52.3 ± 4 51.6 ± 9.5 47.3 ± 5.8 49.1 ± 3.7

BUN (mg/dL) 22.2 ± 2.4 22.7 ± 2.8 24.4 ± 1.9 23.3 ± 2.4 22 ± 2.7 21.9 ± 2.4

(See figure on next page.) 
Fig. 1  Histopathological features of hepatic sections from the NC (A, G), S-PC (B, H), L-PC (C, I), TQ monotherapy (D, J), VitD monotherapy (E, K) and 
VitD/TQ dual therapy (F, L) groups by H&E (A–F) and Masson’s trichrome (G–L) stains (×200 magnification, scale bar = 8 µm). Additionally, the (M) 
arbitrary fibrosis score and (N) fibrosis index are shown in the bar graphs between the study groups. (Green arrow = central vein; black arrow = portal 
tract; red arrow = cellular infiltrations; yellow arrow = fibrous septa; a = P < 0.05 compared with NC group; b = P < 0.05 compared with S-PC group; 
c = P < 0.05 compared with L-PC group; d = P < 0.05 compared with TQ group and e = P < 0.05 compared with VitD group)
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Hepatic tissue concentrations of targeted proteins
The concentrations of TGF-β1 (P  =  0.004), IL-6 
(P =  0.04 ×  10−3) and IL-22 (P =  0.008) increased sig-
nificantly in parallel with significant decreases in IL-10 
(P =  0.01) and MMP-9 (P =  0.03), proteins in the tis-
sue homogenate samples from S-PC compared with NC 
(Table 2). Additional significant alterations in the hepatic 
concentrations of TGF-β1 (P =  0.02), IL-10 (P =  0.03), 
IL-22 (P = 0.005), and MMP-9 (P = 0.007), but not IL-6 
(P =  0.4), were also detected between L-PC and S-PC 
groups (Table 2).

In comparison with the S-PC and L-PC groups, sin-
gle therapy with TQ significantly decreased the con-
centrations of TGF-β1 (P = 0.002 and P = 0.01 × 10−3, 
respectively), IL-6 (P = 0.03 × 10−5 and P = 0.07 × 10−7, 
respectively) and IL-22 (P = 0.003 and P = 0.05 × 10−3, 
respectively). However, TQ monotherapy showed non-
significant reduction in the concentrations of IL-10 
(P  =  0.3) and MMP-9 (P  =  0.1) compared with S-PC 
group. In contrast, significant differences were observed 
between TQ and L-PC (P = 0.004 for IL-10 and P = 0.01 
for MMP-9) groups.

Similarly, VitD monotherapy resulted in a decrease in 
TGF- β1 (P =  0.04 ×  10−3 and P =  0.03 ×  10−5), IL-6 
(P = 0.01 × 10−7 P = 0.03 × 10−11) and IL-22 (P = 0.09 
and P  =  0.003) compared with the S-PC and L-PC 
groups, respectively (Table  2). Moreover, an increase 
in MMP-9 (P =  0.003 and P =  0.06 ×  10−4) and IL-10 
(P =  0.2 and P =  0.0004) was seen in the VitD group 
compared with both positive control groups, respec-
tively. The lowest decrease in the liver concentrations of 
TGF-β1 (P = 0.09 × 10−4 and P = 0.006), IL-6 (P = 0.003 
and P = 0.002) and IL-22 (P = 0.005 and P = 0.003) pro-
teins, while the utmost increase in IL-10 (P = 0.002 and 
P = 0.004) and MMP-9 (P = 0.04 × 10−4 and P = 0.0001), 
were detected in the dual therapy group compared with 
TQ and VitD monotherapy groups, respectively (Table 2).

Immunohistochemistry of targeted cytokine receptors
All target receptors were localized mainly at the cell 
membrane and occasionally in the cytoplasm of normal 
liver cells from the NC group (Figs. 2A, G, 3A, G, 4A, G). 
Following establishment of fibrosis by CCl4, the intensity 
of the immunostain was significantly stronger for TGF-
βRII (Fig.  2B; P =  0.006), IL-6R (Fig.  2H; P =  0.0003), 
IL-22RA1 (Fig.  4B; P  =  0.04  ×  10−4) and IL-22RA2 
(Fig.  4H; P =  0.01 ×  10−5) in the S-PC compared with 
NC group (Table  3). In contrast, a significant decrease 
in the expression of IL-10 receptors A (P =  0.007) and 
B (P =  0.03) was observed between the S-PC (Fig.  3B, 
H respectively) and NC groups (Table  3). Furthermore, 
a significantly stronger staining was noted in TGFβRII 
(Fig. 2C; P = 0.008), IL6R (Fig. 2I; P = 0.03) and IL22R 
A1 (Fig. 4C; P = 0.09 × 10−4) and A2 (Fig. 4I; P = 0.03) 
between the L-PC and the S-PC groups. Concurrently, 
weaker significant expressions were detected, mainly 
adjacent to fibrotic areas, in IL10 receptors A (Fig.  3C; 
P = 0.03) and B (Fig. 3I; P = 0.009) between both groups.

In agreement with the results of ELISA, single therapy 
with TQ or VitD lead to a significant decrease in the 
expression of TGF-βRII (Fig.  2D; P =  0.03 and Fig.  2E; 
P  =  0.002, respectively), IL-6R (Fig.  2J; P  =  0.03 and 
Fig.  2K; P  =  0.002, respectively), IL-22RA1 (Fig.  3D; 
P = 0.02 and Fig. 3E; P = 0.008, respectively), IL-22RA2 
(Fig.  3J; P =  0.03 and Fig.  3K; P =  0.002, respectively) 
compared with the S-PC group (Table  3). Additionally, 
there was a significant increase in the intensity of IL-
10RA (Fig. 2D; P = 0.02 and Fig. 2E; P = 0.006, respec-
tively) and IL-10RB (Fig.  3K; P  =  0.02 and Fig.  3L; 
P = 0.03, respectively) in the TQ and VitD groups com-
pared with the S-PC group (Table  3). Significant differ-
ences (P  <  0.05) were also observed between the two 
monotherapy groups in the intensity of immunostain 
for all receptors except IL10RA (P  =  0.2) and IL10RB 
(P = 0.4).

Table 2  Mean ±  SD of  protein concentrations of TGF-β1, IL-6, IL-10, IL-22 and  total MMP9 in  liver tissue homogenates 
by ELISA

a  P < 0.05 compared with NC group
b  P < 0.05 compared with S-PC group
c  P < 0.05 compared with L-PC group
d  P < 0.05 compared with TQ group
e  P < 0.05 compared with VitD group

NC group S-PC group L-PC group TQ group VitD group VitD/TQ group

TGF-β1 (pg/ml) 569.6 ± 97.8 988.4 ± 93.3a 1394.7 ± 101.4a,b 875.2 ± 76.7a,b,c 705.6 ± 56.3a,b,c,d 600.2 ± 78.7b,c,d,e

IL-6 (pg/ml) 663.9 ± 76.5 1721.2 ± 325.3a 1980.4 ± 233.4a 717.4 ± 110b,c 672.3 ± 94.9b,c 457.4 ± 121a,b,c,d,e

IL-10 (pg/ml) 479.06 ± 21.9 222.7 ± 53.8a 121.5 ± 26.6a,b 206.9 ± 23.3a,c 237.1 ± 25.7a,c 323.2 ± 33.5a,b,c,d,e

IL-22 (pg/ml) 379.7 ± 48.4 744.9 ± 61.7a 963.8 ± 102a,b 649.8 ± 52.3a,b,c 663.6 ± 47.4a,c 452.5 ± 38.9a,b,c,d,e

MMP-9 (ng/ml) 4.1 ± 0.13 3.4 ± 0.31a 2.6 ± 0.52a,b 3.7 ± 0.36a,c 3.9 ± 0.17a,b,c 4.52 ± 0.34a,b,c,d,e
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By further analysis, the dual therapy group showed the 
most significant alterations in the expression of TGFBRII 
(P = 0.03 × 10−4 and P = 0.05 × 10−5), IL-6R (P = 0.0002 
and P = 0.07 × 10−6), IL-10RA (P = 0.03 and P = 0.007), 

IL-22RA1 (P = 0.004 and P = 0.1) and IL-22RA2 (P = 0.004 
and P = 0.0002), compared with TQ monotherapy and VD 
monotherapy groups, respectively. However, no difference 
was observed in IL10RB between the 3 groups (Table 3).

A C

D E F

TGF-β receptor II

IL-6 receptor α

G I

J K L

B

H

Fig. 2  Immunohistochemical expression of TGF-β receptor II and IL-6 receptor in liver sections from the NC (A, G), S-PC (B, H), L-PC (C, I), TQ mono-
therapy (D, J), VitD monotherapy (E, K) and VitD/TQ dual therapy (F, L) groups (×200 magnification, scale bar = 8 µm)
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Hepatic gene expression of targeted molecules and their 
receptors
The results of quantitative RT-PCR experiments showed 
a significant decrease in the mRNA expression of MMP9 

in the S-PC (five folds; P = 0.01 × 10−6) and L-PC (nine 
folds; P =  0.03 ×  10−9) compared with the NC group. 
Single therapy with TQ or VitD induced a significant 
up-regulation in MMP9 mRNA compared with S-PC 

IL-10 receptor A

IL-10 receptor B

A C

D E F

G I

J K L

H

B

Fig. 3  Immunohistochemical expression of IL-10 receptors A and B in liver sections from the NC (A, G), S-PC (B, H), L-PC (C, I), TQ monotherapy  
(D, J), VitD monotherapy (E, K) and VitD/TQ dual therapy (F, L) groups (×200 magnification, scale bar = 8 µm)
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(~4 folds; P =  0.0004 and 3.2 folds; P =  0.002, respec-
tively) and L-PC groups (sevenfolds; P = 0.03 × 10−4 and 
5.8 folds; P =  0.002, respectively). The highest increase 
in the MMP9 mRNA was detected in the dual therapy 

compared with TQ (1.6 folds; P =  0.006) and VitD (2.1 
folds; P = 0.004) monotherapy. The results of the remain-
ing target molecules correlated with their corresponding 
proteins results and are illustrated in Fig. 5.

IL-22 receptor A1

IL-22 receptor A2

A C

D E F

I

J K L

B

G H

Fig. 4  Immunohistochemical expression of IL-22 receptors A1 and A2 in liver sections from the NC (A, G), S-PC (B, H), L-PC (C, I), TQ monotherapy 
(D, J), VitD monotherapy (E, K) and VitD/TQ dual therapy (F, L) groups (×200 magnification, scale bar = 8 µm)
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Discussion
Herein, the anti-fibrotic and fibrolytic activities of reme-
dial therapies with TQ and VitD individually or com-
bined were measured in established liver fibrosis by 
CCl4 in rats. We also measured whether combining both 
agents could have additive/enhanced mechanistic effects 
on a panel of pro- and anti-fibrogenesis mediators. The 
histopathological findings confirmed the development 
of fibrosis prior to the initiation of the different reme-
dial therapy protocols and liver damage was significantly 
more aggravated and reached to cirrhosis in the L-PC 
group compared with S-PC. TQ or VitD as single ther-
apy lead to a significant restoration of hepatic architec-
ture as well as a significant decrease in the deposition of 
ECM compared with the L-PC but not the S-PC group. 
Additionally, there were no significant differences in the 
fibrosis score and index between the two monotherapy 
protocols. At the molecular level, single therapy with TQ 
or VitD significantly decreased the genes and proteins 
expression of TGF-β1, IL-6, IL-22 and their correspond-
ing receptors, while increased the levels of MMP-9, IL-10 
and its receptors compared with both S-PC and L-PC 
groups.

These observations are in agreement with several pre-
viously published results from a variety of studies that 
have shown that TQ and VitD mitigate the development 
of fibrosis through their immunomodulatory actions 
[22, 26–28]. However, the absence of a significant alle-
viation in liver fibrosis between the TQ, VitD and the 
S-PC groups suggest that monotherapy with any of these 
agents of interest could be an effective remedial strategy 
for the prevention of further progression, but not fibroly-
sis, of a previously established liver fibrosis.

Nevertheless and to the best of our knowledge, this 
study is the first to measure the effect of TQ and VitD 
combined therapy for the treatment of liver fibrosis. 

The present data showed that dual therapy resulted in 
a significant resolution of fibrosis that concurred with a 
reduction in the serum levels of liver enzymes compared 
with S-PC group. Furthermore, the dual therapy resulted 
in the most significant downregulations as well as upreg-
ulations of the tested pro- and anti-fibrogenic pathways, 
respectively. Thus we speculate that, in addition to their 
well-established anti-fibrotic effects, the combination of 
the two nutraceuticals could represent a novel and poten-
tially effective direct fibrolytic strategy against estab-
lished liver fibrosis.

Hepatic fibrogenesis involves multiple cellular and 
molecular events. Following liver injury, stimulated 
Kupffer cells secret TGF-β1, which in turn activates 
HSCs, and later the deposition of excess ECM [2, 3, 22]. 
Activated HSCs also produce higher amounts of IL-6 that 
increases collagen production, HSCs proliferation and 
differentiation, and neutralizes the activities of MMPs 
[17–20] by upregulating the production of TIMPs [13, 
36]. Contrarily, IL-10 is believed to inhibit the fibrogenic 
process by increasing the production of immunoglobu-
lins, downregulating pro-fibrotic cytokines and promot-
ing the degradation of ECM [7, 37, 38].

Our results correlate with the previous reports since 
they showed a significant increase in TGF-β1, IL-6 and 
their receptors with a simultaneous significant decrease 
in MMP-9, IL-10 and its receptors at the protein and 
gene levels in the positive control groups. Addition-
ally, the development of liver fibrosis in our study was 
associated with significantly higher levels of IL-22 ant 
its receptors, suggesting a pro-fibrogenic role for the 
cytokine [9–12]. The effect of hepatic IL-22 as whether 
pro- or anti-fibrotic is poorly understood, the available 
data are conflicting and the role of the cytokine in liver 
fibrogenesis appears to be dependent on the etiological 
context of liver disease [9, 14, 15]. In this regards, several 

Table 3  Mean ± SD of immunohistochemistry scores for TGF-β receptor II, IL-6 receptor, IL-10 receptors type A and type 
B, and IL-22 receptors type A1 and A2 in liver specimens from the different study groups

a  P < 0.05 compared with NC group
b  P < 0.05 compared with S-PC group
c  P < 0.05 compared with L-PC group
d  P < 0.05 compared with TQ group
e  P < 0.05 compared with VitD group

NC group S-PC group L-PC group TQ group VitD group VitD/TQ group

TGF-β receptor II 184.4 ± 28.7 297.9 ± 22.3a 345.2 ± 24.2a,b 266.7 ± 23.6a,b,c 242.2 ± 26.8a,b,c 177.2 ± 17.8b,c,d,e

IL-6RA 201 ± 26.7 319.6 ± 22.3a 370.6 ± 28.7a,b 287.6 ± 25.3a,b,c 229.6 ± 30.1a,b,c,d 169.7 ± 22.6b,c,d,e

IL-10RA 163.5 ± 31.2 86.4 ± 23.4a 58.6 ± 19.3a,b 158.6 ± 24.3b,c 171.9 ± 28.5b,c 228.1 ± 27.8a,b,c,d,e

IL-10RB 219.1 ± 23.8 147.1 ± 28.8a 103.2 ± 20.3a,b 226.1 ± 23.9b,c 215.7 ± 31.6b,c 231.3 ± 22.2b,c

IL-22RA1 122.4 ± 29.5 256.9 ± 32.3a 373.1 ± 26.8a,b 211.8 ± 37.2a,b,c 178.1 ± 33.6a,b,c,d 153.1 ± 21.6a,b,c,d

IL-22RA2 87.7 ± 18.6 311.4 ± 29.9a 366.5 ± 22.6a,b 237.4 ± 26.8a,b,c 194.7 ± 28.6a,b,c,d 168 ± 25.4a,b,c,d,e
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earlier studies have reported an increase in Th-17 and 
IL-22 during fibrogenesis [9–13] and in  vitro treatment 
with IL-22 also stimulated HSCs to secrete pro-fibrotic 
cytokines [12]. On the other hand, others also demon-
strated that IL-22 had a hepatoprotective role and alle-
viated the development of hepatic fibrosis [15, 39, 40]. 
Therefore, further in vivo studies using several models of 
liver fibrosis are required to illustrate the precise role of 
IL-22 in the pathogenesis of liver fibrosis.

VitD is acquired as a pro-hormone mainly following 
skin exposure to sun light and, to a lesser extent, from 
nutritional sources [41]. The pro-hormone is later con-
verted in the liver by the actions of the 25-hydroxylase 
enzyme to an intermediate form [25(OH)VitD], which is 
subsequently transported to the kidney for a final activa-
tion step by the 1-α hydroxylase enzyme [41]. Chronic 
liver or kidney diseases are therefore well-known causes 
of abnormal low levels of the hormone and the findings 
of several studies have demonstrated beneficial effects of 
adding VitD supplementation during the course of treat-
ment of hepatic and renal diseases [21, 42]. The present 

study is in support to the previous observations since 
oral supplementation with cholecalciferol resulted in a 
restoration in the observed decrease in serum levels of 
25-OH VitD following hepatic damage by CCl4. Notably, 
TQ monotherapy, possibly through its hepatoprotective 
properties [43, 44], also resulted in a significant allevia-
tion in serum 25-OH VitD levels compared with L-PC 
group. However, more studies are needed to measure the 
effects of TQ on the activities of hepatic 25-hydroxylase 
enzyme to support our observations.

The hepatoprotective and anti-fibrogenic effects of both 
TQ and VitD have been previously shown and VitD is the 
most studied among both compounds in liver fibrosis. 
Animal studies have demonstrated that chronic vitamin 
D deficiency or the deletion of Vdr−/− gene in mice lead 
to spontaneous development of liver fibrosis with abnor-
mal increase in the levels of TGF-β1 and IL-6 as well as a 
significant decrease in IL-10 [45, 46]. The expression of 
VDR also decreased significantly in activated primary rat 
HSCs in vitro, an effect that was reversed by exogenous 
treatment with VitD [22]. The researchers have further 

Fig. 5  Mean ± SD of messenger RNA relative expression of A TGF-β1 and its type II receptor, B IL-6 and its receptor, C IL-10 and its type A and B 
receptors and D IL-22 and its type A1 and A2 receptors in the different study groups. (a = P < 0.05 compared with NC group; b = P < 0.05 com-
pared with S-PC group; c = P < 0.05 compared with L-PC group; d = P < 0.05 compared with TQ group and e = P < 0.05 compared with VitD group)
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reported that the production of collagen Iα1 was VDR 
dependent and, treatment with VitD also lead to up-
regulation of MMP-9, cell cycle arrest and inhibition of 
HSCs proliferation [22]. Similar results have also been 
shown by more recent studies on cultured primary HSCs 
from mice [47] and human [48]. Additionally, a signifi-
cant negative correlation has also been observed between 
the serum levels of vitamin D either with serum IL-6 or 
with the degree of liver damage in patients with chronic 
hepatitis C [21, 25, 26].

Equivalent results have also been reported follow-
ing the use of TQ for the treatment of liver fibrosis in a 
variety of experimental in vivo models as well as in vitro 
experiments [29, 43, 49]. TQ therapy was also associated 
with inhibition of the trans-differentiation process of 
immortalized human HSCs and reduction of ECM depo-
sition together with a significant increase in the levels of 
IL-10 and MMPs [43, 44]. Our findings are aligned and 
support the aforementioned studies as there was a sig-
nificant resolution in hepatic fibrosis and liver enzymes 
following monotherapy with either VitD or TQ com-
pared with L-PC group. Additionally, both compounds 
resulted in a significant decrease in the tissue concentra-
tions of TGF-β1, IL-6, IL-22 as well as the expression of 
their corresponding receptors at the gene and protein 
levels. A significant increase in the hepatic concentra-
tions of MMP-9 and IL-10 system was also observed in 
the groups treated with VitD and TQ. Nevertheless, there 
was no significant difference between both agents, as well 
as when compared with the S-PC group, in the degree of 
liver damage induced by CCl4. These findings provide 
additional support to the notions that monotherapy with 
either TQ [43, 44] or VitD [45, 46] could be an efficient 
nutraceutical strategy for the prevention and/or pro-
tection from further liver damage induced by chronic 
hepatic inflammation. However, our results also suggest 
that the monotherapy with either of the agents of interest 
has a limited efficacy in the resolution of an established 
liver fibrosis.

At the present time, little is known regarding whether 
VitD or TQ could have direct fibrolytic activities. In this 
concern, all the available studies that investigated the 
effects of TQ initiated the therapeutic protocol either 
before or at the same time of fibrogenesis induction and 
none of them tested the compound following the estab-
lishment of liver fibrosis [29, 43, 49]. On the other hand, 
only a single study measured the anti-fibrogenic as well 
as fibrolytic effects of VitD following thioacetamide and 
bile duct ligation models, respectively [23]. Similar to our 

observations, the researchers have reported that VitD 
inhibited the development of fibrosis but did not induce 
significant regression in established cirrhosis [23]. Nota-
bly, ours is the first study to demonstrate a significant 
regression in liver fibrosis and ECM deposition following 
TQ and VitD dual therapy, compared with all other CCl4 
injected groups, including S-PC. We therefore hypothesis 
that the dual therapeutic strategy with TQ and VitD could 
have promising direct fibrolytic activities in the liver.

The breakdown of ECM is mainly achieved through 
MMPs, which are tightly regulated by TIMPs. The lat-
ter bind reversibly to the active site of MMPs in a 1:1 
molar ratio and, pathological imbalances in this system 
have been linked to the pathogenesis of hepatic fibrosis 
[17, 18]. It has also been shown that the levels of TIMPs 
increase significantly by TGF-β, IL-6 and IL-22 in several 
in vitro and in vivo studies [16, 50, 51]. Alternately, treat-
ment with IL-10 has been demonstrated to significantly 
increase the production of MMPs, including MMP-9, as 
well as significantly decrease TIMPs during liver fibrosis 
[7, 37, 38].

Both TQ and VitD have been reported to upregu-
late the protein expression and activity of many MMPs; 
among them is MMP-9, and to suppress the expression 
of TIMP-1 [23]. MMP-9 is known for its high affinity 
to bind with TIMP-1 thus scavenging and reducing the 
effects of TIMP-1 on the other MMPs [18, 52]. Addition-
ally, the observed fibrolytic effect of combined therapy 
protocol in our study was associated with improved 
actions for TQ and VitD on the expression of TGF-β1, 
IL-6, IL-10, IL-22 and MMP-9 in hepatic tissue. Hence, 
we propose that dual therapy with VitD and TQ could 
directly stimulate the degradation of ECM by inducing 
the production of MMPs and/or downregulating TIMPs 
through the modulation of several cytokines. However, 
future studies to measure the effect of TQ and VitD com-
bined therapy on the expression of MMPs and TIMPs 
in different models of liver fibrosis as well as by HSCs 
in vitro are essential to support our hypothesis.

Conclusions
VitD and TQ modulated several pro- and anti-fibrogenic 
pathways and exhibited comparable anti-fibrotic effects 
in CCl4 model of liver fibrosis. Additionally, their com-
bination resulted in enriched and significant mitigation 
of previously established liver fibrosis and might offer a 
potential direct fibrolytic strategy. Further studies are 
need to illustrate the clinical value of both natural prod-
ucts in the treatment of liver fibrosis in human.
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