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Abstract 

Background:  Translational research is a key area of focus of the National Institutes of Health (NIH), as demonstrated 
by the substantial investment in the Clinical and Translational Science Award (CTSA) program. The goal of the CTSA 
program is to accelerate the translation of discoveries from the bench to the bedside and into communities. Differ-
ent classification systems have been used to capture the spectrum of basic to clinical to population health research, 
with substantial differences in the number of categories and their definitions. Evaluation of the effectiveness of the 
CTSA program and of translational research in general is hampered by the lack of rigor in these definitions and their 
application. This study adds rigor to the classification process by creating a checklist to evaluate publications across 
the translational spectrum and operationalizes these classifications by building machine learning-based text classifiers 
to categorize these publications.

Methods:  Based on collaboratively developed definitions, we created a detailed checklist for categories along the 
translational spectrum from T0 to T4. We applied the checklist to CTSA-linked publications to construct a set of coded 
publications for use in training machine learning-based text classifiers to classify publications within these categories. 
The training sets combined T1/T2 and T3/T4 categories due to low frequency of these publication types compared 
to the frequency of T0 publications. We then compared classifier performance across different algorithms and feature 
sets and applied the classifiers to all publications in PubMed indexed to CTSA grants. To validate the algorithm, we 
manually classified the articles with the top 100 scores from each classifier.

Results:  The definitions and checklist facilitated classification and resulted in good inter-rater reliability for coding 
publications for the training set. Very good performance was achieved for the classifiers as represented by the area 
under the receiver operating curves (AUC), with an AUC of 0.94 for the T0 classifier, 0.84 for T1/T2, and 0.92 for T3/T4.

Conclusions:  The combination of definitions agreed upon by five CTSA hubs, a checklist that facilitates more 
uniform definition interpretation, and algorithms that perform well in classifying publications along the translational 
spectrum provide a basis for establishing and applying uniform definitions of translational research categories. The 
classification algorithms allow publication analyses that would not be feasible with manual classification, such as 
assessing the distribution and trends of publications across the CTSA network and comparing the categories of publi-
cations and their citations to assess knowledge transfer across the translational research spectrum.
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Background
Prior definitions
Since 2006, academic research centers functioning as 
National Institutes of Health (NIH) Clinical and Trans-
lational Science Award (CTSA) hubs have provided ser-
vices, resources, and educational offerings to clinical and 
translational researchers. The objective of developing this 
infrastructure was to speed the movement of research 
findings from the lab to clinical studies and eventually 
to therapeutic practices that improve health in the com-
munity and reduce health disparities. Evaluation of these 
hubs and their programs presents many challenges, and 
a lack of consistency and clarity in definitions for key 
terms connected with CTSA goals is a core challenge in 
developing metrics of CTSA success. Evaluators from 
CTSA hubs have worked to develop definitions for these 
terms to assist in the complex challenges of assessing the 
impacts of the hubs on biomedical science, research, and 
workforce development, and on longer term objectives 
such as changes in clinical practices and improvements in 
health disparities and overall human health [1].

While the goal of the CTSA program is to speed the 
movement of research findings along the translational 
research spectrum, it is difficult to assess progress in this 
area due to the lack of clarity and consensus around the 
definitions of the stages of research along this spectrum. 
For more than a decade, different conceptualizations of 
the translational research spectrum have been proposed, 
with different ways of dividing up the spectrum and dif-
ferent definitions for the resulting categories [2–9]. These 
competing models create difficulties in communication 
around the translational research spectrum, and develop-
ment of metrics based on conflicting models can lead to 
misinterpretations, particularly as translational research-
ers are typically unaware of competing definitions [10].

Recent recommendations from both the National 
Center for Advancing Translational Sciences (NCATS) 
[11] and the 2013 Institute of Medicine (IOM) report 
[12] classify translational research into five stages. While 
this agreement between the number of phases described 
by NCATS and the IOM report is a promising start for 
convergence, the respective models diverge significantly. 
Most significantly, the IOM report describes the T0 
phase as basic science research [9], but defines this as 
including preclinical and animal studies, and so being 
squarely within the translational spectrum. The NCATS 
model also starts with “basic research” but places basic 
research outside of the translational spectrum and 
defines preclinical research as a separate stage. This 
marked lack of standardization impedes the broad utility 
of any work around publication classification.

Ultimately, translation is “the process of turning obser-
vations in the laboratory, clinic and community into 

interventions that improve the health of individuals and 
the public—from diagnostics and therapeutics to medi-
cal procedures and behavioral changes” [13]. Segment-
ing a process such as translational research into discrete 
categories inevitably involves a degree of arbitrariness 
and simplification. Despite these inherent shortcomings, 
agreement on definitions could pave the way for common 
metrics to distinguish between different components of 
this process and examine movement through the process.

Prior approaches
Prior to the current conceptualization of the translational 
research spectrum, Narin broke the research spectrum 
into four categories from basic to clinical [14]. A num-
ber of efforts to look at the classification of journals and 
publications either used the Narin categories [14–16] 
or built on them [17, 18]. Approaches to categorization 
of publications often applied filters based on title words 
[16–18]. There have also been efforts to look at citation 
usage, or knowledge transfer, across categories [16, 19, 
20]. More recently, Weber proposed a triangle of biomed-
icine [21] where articles are mapped to either humans, 
animals, or cells and molecules based on the medical 
subject headings (MeSH) used by PubMed. Weber also 
looked at the position of an article’s citations within the 
triangle of biomedicine to examine movement towards 
research on humans. However, these approaches are 
not directly applicable to classifying publications along 
the translational research spectrum, since they either 
ignore research beyond clinical or combine all human 
research into one category, rather than distinguishing 
between clinical research and public or population health 
research.

Current challenges
All CTSA hubs are required to report publications that 
result from research that used CTSA services, resources, 
and educational offerings, or that received hub funding 
for pilot projects or career development (KL2 and TL1 
awards). This stems, at least in part, from the require-
ment that publications comply with the NIH Public 
Access policy [22], and results in an extensive data set 
on which to base assessments of productivity, collabora-
tion, and translation resulting from projects supported 
by CTSA hub resources. The importance of establish-
ing metrics based on this data has been recognized both 
within and outside of the CTSA network [12, 23].

In its 2013 assessment of the CTSA program, the IOM 
report [12] stated that metrics need to move beyond the 
standard benchmark of counting publications, however 
it did not specify what types of publications-related met-
rics would be most useful. The IOM report also stated 
the importance of tracking research outcomes if the 
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accountability of translational research is to be improved 
and recommended that CTSA hubs support research 
across the entire translational spectrum from T0 to T4. 
The challenge is that in order for hubs to assess whether 
they are in fact supporting the full range of translational 
research, they must have a means by which to classify 
research projects by their translational phase.

Current CTSA efforts around common metrics have 
focused on the Relative Citation Ratio [24], an article-
level, field-normalized citation metric. This is a signifi-
cant move beyond publication counts in that it actually 
begins to gauge the impact of CTSA supported publica-
tions rather than simply counting them. However, this 
metric still fails to address the translation of research 
findings. A publication and its citation network holds 
information about the nature of a research project, what 
that research is based on, and how the results of that 
research are being used. This information contains the 
promise of yielding information about translation, but 
exploiting it requires a scalable way to determine the 
translational phase of the research involved.

Bibliometric analysis of publications has the potential 
to contribute to a more in-depth understanding of how 
CTSA support moves research along the translational con-
tinuum and how that CTSA support ultimately contributes 
to improved health. Analysis of the types of translational 
research (T0 to T4) being supported and published by the 
CTSA program could help hubs track their relative suc-
cess in achieving potential short, medium, and long term 
objectives, and allocate their scarce resources to maximize 
research necessary to advance translation.

Our contribution
There are three significant challenges to measuring the 
impact of translational research publications. The first 
challenge is to establish a common set of definitions; 
without agreement on what translational research is, and 
what the progression of this research is, local measure-
ments of impact will not be comparable to those from 
other CTSA hubs. The second challenge is to operation-
alize those definitions; consistent definitions without a 
consistent method for applying these definitions will also 
not produce comparable results. The final challenge is 
to create a methodology that facilitates the application 
of these definitions, so that categorizing publications or 
projects along the translational spectrum is sufficiently 
scalable to realistically allow organizations to implement 
these metrics given time and staffing constraints. In this 
study, we achieve consensus regarding definitions across 
five CTSA hubs, operationalize those definitions, and 
build classifiers to facilitate classification. We hope that 
this provides a strong basis for adoption of these defini-
tions more broadly across the CTSA consortium.

We developed a checklist to produce greater consist-
ency, or inter-rater reliability, in how we classified pub-
lications into our agreed upon categories of translational 
research. Sets of manually-classified publications were 
used to train machine learning-driven models to iden-
tify articles belonging to each translational research 
class. By using the categories from the 2013 IOM report 
[12] as a starting point, achieving agreement on defini-
tions across the five participating CTSA institutions, 
and operationalizing these definitions, we believe we 
have laid the groundwork for better consistency across 
CTSA organizations in these definitions. The develop-
ment of consistency across the CTSA hubs is important 
to the consortium, as evidenced by the work on devel-
oping common metrics and that consistency enables 
measurement that can inform the effective allocation of 
resources, identification of institutional strengths, and 
return on investment measurements within and across 
CTSA hubs.

Our work differs from previous efforts to automate 
categorization of articles in this area by using the most 
current conceptualization of the translational research 
spectrum. The two most significant ways in which the 
translational research spectrum varies from other cat-
egorization schemes is in its inclusion of post-clinical 
research (e.g. health services research, patient-centered 
outcomes research, comparative effectiveness research), 
and the inclusion of human research that studies under-
lying disease mechanisms rather than testing clinical 
interventions in the T0 category. Our use of the machine 
learning approach is also a departure from previous 
research classification models.

Methods
Part 1 of the methods details the process used by the col-
laborating sites to arrive at agreement on the definitions 
of categories along the translational research spectrum 
and to develop a checklist to improve inter-rater reli-
ability. Part 2 details the methods used in the construc-
tion of the training set, document processing, application 
of machine learning algorithms to the training set, and 
internal and external performance estimation.

Part 1: translational category definition and checklist 
development
To arrive at the final criteria for manual coding of pub-
lications into categories along the translational research 
spectrum, one or more representatives from each of the 
collaborating institutions engaged in an iterative pro-
cess of consensus meetings, definition development, and 
coding. We based our initial categorization scheme on 
the definitions used by each CTSA institution, if appli-
cable. Those definitions were drawn from reviews of 
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the literature [6, 8, 9, 12, 25] and from the work of other 
CTSA hubs (Harvard [26], University of Texas-South-
western Medical Center [27], University of Wisconsin, 
Indiana University, University of Pittsburgh). Next, publi-
cation coders participated in several meetings to develop 
a shared mental model of how to define the research 
spectrum prior to developing the training set.

After agreement on definitions for each of the catego-
ries of translational research, three pilot rounds were 
performed in which small sets of publications were man-
ually coded by all available coders, with at least one coder 
from all participating institutions. The number of coded 
sets for each round varied between seven and 10 as not 
all coders were available at all times for each institution, 
and at each institution, multiple coders might produce 
either multiple individual sets or a single collaborative set 
of coded publications. The first pilot set was constructed 
by choosing publications intended to highlight issues 
within the definitions or different interpretations of the 
definitions by individual coders. The second pilot set was 
randomly selected from publications that acknowledged 
the CTSA grants of each of the five collaborating institu-
tions. The third pilot set was a combination of randomly 
selected publications and publications selected from the 
first two pilot sets. These coding pilots were undertaken 
to test inter-rater reliability and determine the need for 
further refinement of definitions.

Poor inter-rater reliability resulted from coding the 
pilot projects using the definitions, with agreement for 
the three sets of articles ranging from 0 to 14 %. The large 
number of coders increased the possibility of disagree-
ment, therefore, we also assessed reliability by taking into 
consideration articles on which all but one coder agreed, 
for which the maximum percent agreement was 25. The 
poor inter-rater reliability led us to develop a checklist 
for each of the categories along the translational spec-
trum. An iterative process similar to that employed for 
definition development allowed us to reach consensus on 
the checklist.

Part 2: translational category machine learning models
Corpus construction
To train the classifiers, the five categories of translational 
research were grouped into three categories, roughly cor-
responding to basic, clinical, and post-clinical research. 
T3 and T4 articles were grouped into one set, due to 
the low frequency of T4 articles during initial piloting of 
classification schemes. Similarly, T1 and T2 articles were 
grouped into one set due to the low frequency of both 
types of articles in the training set. An additional cate-
gory was designated as TX, denoting articles that did not 
fall along the translational research spectrum, although 

they cited a CTSA hub. The training set for each classifier 
would then consist of articles that were coded as being 
in a particular category and those that were coded as 
not being in that category, the latter set including TX for 
each of the categories.

The training sets were assembled in two stages. In the 
first stage, 200 publications were selected as follows: 
Using the Entrez E-utilities from NCBI [28] within Mat-
lab [29] code, we accessed PubMed IDs (PMIDs) for all 
publications indexed in PubMed to past or present CTSA 
award grant numbers for collaborating institutions. 
Forty publications from each institution were randomly 
selected from the subset containing abstracts. This was 
done using the randperm function in Matlab to create a 
random permutation of the indexes into the list of PMIDs 
and stepping through the randomized indexes into the 
list of PMIDs from each and selecting the first 40 that 
had an abstract. Each institution was assigned 80 publi-
cations to manually code: their own 40 publications, plus 
10 publications from each of the other four institutions. 
The publications were assigned so that each of the 200 
publications was coded by two institutions. Within each 
institution, each publication was coded by between one 
and three coders. For each publication, coders assigned 
both a category from the translational spectrum and the 
number of the checklist item(s) that led them to choose 
that code.

After the initial coding, the following process was used 
to select the training set. Publications for which there 
was agreement between the two coding institutions were 
included in the training set. For publications where the 
codes were not in agreement, the lead author acted as a 
third coder and looked at the selected codes, the check-
list items, and the article features to determine a code. 
When that code agreed with one of the institutions, it 
was assigned to the article, which was then included in 
the training set. When the lead author’s code did not 
agree with the codes of either institution, the article was 
excluded from the training set.

Due to a low frequency of T1 and T2 articles in the 
initial corpus, a second set of articles was assembled 
for coding. Filtering the articles by a set of search terms 
was used to increase the frequency of T1 and T2 articles 
within the training set. A set of highly sensitive search 
terms (Additional file 1) was developed such that all pre-
viously identified T1 and T2 articles were retrieved using 
these terms. These search terms produced a large per-
centage of articles that were not coded as T1 or T2. This 
large number of false negatives was consistent with the 
goal of increasing the percentage of T1 and T2 articles in 
the training set, while not limiting the range of T1 and 
T2 articles represented. Articles were again randomly 
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selected from publications indexed to the award num-
bers for the five participating CTSA institutions, using 
the Entrez E-utilities from NCBI within Matlab code. 
Articles included in this training set were limited to those 
meeting three criteria in addition to the grant number 
indexing: (1) articles with an abstract, (2) articles not 
included in the first training set, and (3) articles with one 
of the T1/T2 search terms in the title and/or abstract. 
Not all of the five institutions had 40 articles that met 
these criteria, therefore the second training set consisted 
of only 186 publications.

Document preprocessing
Document preprocessing converts the text of the scien-
tific articles into a matrix that can be processed by the 
machine learning algorithms. We used a “bag of words 
representation” where the text is represented by the set 
of words without regard to grammar or word order, with 
words represented by the document zones where they 
occur [30]. Those zones included the title, abstract, and 
the full MeSH term/phrase. This encoding produces a 
matrix where the rows are individual documents and the 
columns are individual words in either the title, abstract, 
or mesh terms.

Each individual cell contains an importance weight that 
indicates the usefulness of the word for classification. 
The assumption is that words that have high frequency in 
one document are more discriminatory than words that 
appear across many documents. The classic algorithm for 
weighting the importance of a word is term frequency—
inverse document frequency [31]; we use logarithmic fre-
quencies with redundancy normalized by the square root 
of the sum of the squares of the individual word weights, 
i.e., the L2 norm. This algorithm shows superior perfor-
mance in benchmark work [32].

Finally, in contrast to other work in text classification, 
we did not remove stop words, i.e., common words such 
as “and” or “the,” nor did we stem the words, i.e., replace 
all forms of a word with the root word, for example 
“smoking” and “smoked” are mapped to “smok*”). While 
we consider these feature engineering approaches to be 
refinements toward improving performance, in our expe-
rience, these approaches will have a minor impact on 
performance.

Machine learning algorithms
Because the algorithm that  will perform best for any 
given classification problem is not known a priori, we 
relied on prior benchmarks in text classification to guide 
our choices for candidate algorithms. Specifically, we 
chose naïve Bayes as a standard baseline algorithm in text 
classification to compare to three of the highest perform-
ing algorithms in multiple benchmarks: Bayesian logistic 

regression, random forests, and support vector machines 
[33].

Naïve Bayes  This algorithm directly applies Bayes theo-
rem to the classification task and assumes that the prob-
ability distribution of a feature is independent of another 
feature, given the class labels. We used the Multinomial 
Naïve Bayes [34] implementation in the mallet package 
[35]. This algorithm does not require tuning.

Bayesian logistic regression  We employed Bayesian 
logistic regression because this algorithm demonstrated 
superior performance in text classification benchmarks. 
This algorithm constrains the coefficients using a Laplace 
prior and allows an efficient solution to the convex opti-
mization. We used the bbrtrain [36] implementation for 
this study. We used the autosearch option to optimize the 
regularization parameter. This option does a grid search 
using tenfold cross validation across the lambda param-
eters of 0.01–316 in multiples of the square root of 10.

Random forests  We employed the random forest imple-
mentation in the fest [37] program. Random forests [38] 
are an ensemble classification method. The method pro-
duces a classification tree at each iteration. This classifica-
tion tree is built from a random subset of the data, and at 
each node in the tree, a random subset of predictor vari-
ables are selected. Multiple trees are constructed in this 
fashion until the classification of these individual trees are 
combined to form a final prediction at test time. We con-
sidered tuning parameters of a forest of 100, 300, and 500 
trees and feature selection at each node of square root of 
the number of features ×1, ×2, and ×3.

Support vector machines  We employed a linear support 
vector machine (SVM) classification algorithm as imple-
mented in the liblinear package [39]. The linear SVMs 
calculate maximal margin hyperplane(s) separating the 
two classes of the data. These linear SVMs demonstrated 
superior text classification performance compared to 
other methods [40]. The liblinear implementation is a ver-
sion of the support vector machine optimized for quickly 
finding a linear separating hyperplane. We used liblinear 
as implemented in libSVM v1.96 [41] with costs of 0.1, 1.0, 
and 10 and differential weights for costs according to the 
prior category distribution of the training set.

Performance estimation (internal)
Nested stratified cross validation  The goal of our algo-
rithms is to predict translational class in a future test 
set. We simulated this prediction with an unbiased esti-
mate using a nested cross validation protocol [42]. This 
protocol divides the data into a training set, a validation 
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set, and a test set. The training set is used to build the 
model. The validation set is used to optimize any param-
eters of the machine learning algorithm. Finally the test 
set is used to estimate performance of the built model. 
We employed fivefold cross validation. The first three 
folds are used to train the model. The 4th fold is the 
validation set. The 5th fold is the test set. We executed 
this procedure five times using each fold as the test set 
once and reported the average of the five times. Finally 
we repeated each run 10 times and report the average 
result over the 10 runs. The folds are also stratified to 
maintain the proportion of documents in each classifi-
cation stage.

Performance metrics  Results are reported as area under 
the (receiver operating) curve (AUC). We employed this 
reporting metric because it is commonly used to evaluate 
classification models, is invariant to the imbalanced prior 
probabilities of each translational class, and shows perfor-
mance across the entire spectrum of possible sensitivities 
and specificities. The area under the receiver operating 
curve ranges from 0.5 to 1.0. The score corresponds to the 
probability that a document in the translational class will 
rank higher than a document not in the translational class. 
A score of 1.0 means that 100 % of the time, the algorithm 
ranks a translational class document higher than a docu-
ment not in the translational class.

Performance estimation (external)
We did an additional external validation to evaluate gen-
eralizability of the built models. We applied the models 
we built in each translational class to a set of articles 
indexed to CTSA grants in PubMed.

Corpus construction  We downloaded 40,633 articles 
indexed in PubMed to 134 active and inactive CTSA 
center and training grants from 61 institutions as of 
8/12/2015. We defined this “external test set” as the set 
that included all articles indexed to those grants except 
for those that were in the training set and those that did 
not have an abstract. All articles were scored by each of 
the three classifiers (T0, T1/T2, T3/T4) (scores in Addi-
tional file 2). A corpus was constructed of the 100 articles 
with the highest scores from each of the classifiers, so the 
total corpus was 300 articles, and each article was coded 
by two institutions. Articles were randomly assigned 
to each of the five collaborating institutions for coding, 
so each institution was assigned 120 articles to code. 
The coders were blinded to the scores; articles assigned 
to each institution were ordered by PMIDs so that the 
articles from each of the 3 categories were interspersed. 
When the two institutions did not agree on the coding, 
the lead author used the article information and the two 

coder’s checklist codes to make a determination on arti-
cle classification, i.e., acted as a third coder. The PubMed 
IDs and coding for the articles used for the validation are 
available in Additional file 3.

Final model construction  We built the final machine 
learning filter models to apply to the external test set using 
the highest performing classifier, Bayesian logistic regres-
sion. The algorithm takes settings (also called hyperpa-
rameters) that control how closely the algorithm will fit 
the data. These settings were chosen using the “autose-
arch” capability of bbrtrain. Autosearch divides the data 
into tenfold. The method implements a search across the 
various settings and finds the setting that maximizes the 
sum of the log-likelihoods. We then built the final model 
using that setting.

Performance metrics  We used a simple measure of accu-
racy within the top 100 lists.

Results
Part 1
Definition and checklist consensus
The iterative process of coding articles and revising the 
definitions, resulted in resolution of several key points 
of disagreement regarding the definitions of each of the 
phases of translational research. Agreement was reached 
by moving away from generalizations about types of 
research, such as “T0 is animal research” or “systematic 
reviews are T3,” and looking at the intent of the research 
and how its outcomes could be used.

The point of greatest disagreement was whether 
research on humans could be categorized as T0 research. 
Views on this ranged from no inclusion of human data in 
T0, to inclusion of human research only if it used exist-
ing data, to inclusion of human studies that explored 
underlying mechanisms as long as there was no interven-
tion. We ultimately agreed that human research fits the 
definition of T0 research when the focus of that research 
is to elucidate biological, social, and behavioral mecha-
nisms that underlie either health or disease; human 
research only falls into the T1 category when it focuses 
on applying that understanding of the system to a health 
application.

The categorization of health services research was a 
second point of contention. Although some health ser-
vices research is interventional, other studies identify 
issues or explore underlying mechanisms of health ser-
vices delivery without testing solutions. While there was 
agreement that interventional health services research 
should be categorized as T3, some felt that research to 
elucidate the process should fall under T0, while oth-
ers felt that any health services research should be 
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categorized as T3. We were able to agree that health ser-
vices research falls under T3, whether or not the study 
involved an intervention by distinguishing between elu-
cidating mechanisms underlying health care delivery and 
elucidating mechanisms underlying disease and health.

A third issue was the categorization of systematic 
review articles; some coders thought that systematic 
reviews should automatically fall within the T3 category 
and others argued that this should be dependent on the 
topic of the review or the intent of the research under 
review. The resolution of this issue was to clarify that 
unless the systematic review had the potential to lead to a 
practice guideline, it would not fall into the T3 category.

The full definitions arrived at through this process are 
shown in Table 1.

The problem of poor inter-rater reliability seen when 
coding the sets of pilot articles was resolved by intro-
ducing checklists for each of the categories of defini-
tions. Using the checklist, shown in Table  2, agreement 
across all coders increased from 14  to  31  % and agree-
ment across all but one coder increased from 25 to 67 %. 
Because of this marked increase in inter-rater reliability, 
the checklists, rather than the full definitions, were used 
by the coders when classifying publications for the train-
ing set.

The full definitions were of limited utility for coding 
due to the poor inter-rater reliability achieved with the 
definitions alone and were seen as too detailed for the 
purpose of communicating the general ideas underly-
ing the definitions. Hence, a concise set of definitions, 
shown in Table 3, were developed using the same con-
sensus building process as for the detailed definitions. 
The intent of the concise definitions was to convey 
to a general audience the core principles behind the 
definitions for each of the categories of translational 
research.

Checklist application
The training set was constructed with subsets of articles 
from both the initial 200 randomly selected articles and 
from the second set of articles filtered to increase the 
incidence of T1/T2. Of the initial 200 articles, 185 were 
included in the training set, with one article coded as 
belonging to both T0 and T1, resulting in 186 codings. 
Of the second set of 186 articles, 164 were included in the 
training set. Of the 186 articles, 25 % (46) were either T1 
or T2, compared to 9 % (18) of the 200 articles in the first 
training set. The total number of publications included 
in the training set was 349, but there were 350 codings 
due to the one article coded as both T0 and T1. The full 
breakdown of coding is shown in Table  4. All PubMed 
IDs and codes for the training set are available in Addi-
tional file 4.

The coding for the combined training set of 386 docu-
ments had an inter-rater reliability of 64 %, yielding 139 
publications on which the coders from two institutions 
disagreed. Because some institutions had multiple cod-
ers, this might involve disagreement between anywhere 
from two to five coders. Of the 139 publications without 
initial agreement, 17 had disagreement across three or 
more categories. Of those 139 articles, 103 were resolved 
through having an additional coder classify the publica-
tion. The most common discrepancies involved the T0 
category. Of the 139 articles, 34 involved a disagreement 
between a classification as T0 and a classification as T1/2, 
and an additional 33 involved disagreement between T0 
and T3/T4. TX represented a determination by a coder 
that the article did not fall on the translational research 
spectrum, and 32 of the 139 articles involved at least one 
coder specifying TX to indicate no classification and one 
or more coders placing the article somewhere on the 
translational research spectrum.

Part 2
Performance estimation (internal)
The results in Table 5 demonstrate that classifiers built in 
each translational class are highly discriminatory. The T0 
classifier performs with a maximal AUC of 0.94 with ran-
dom forests and linear support vector machines. The T1/
T2 classifier performs with maximal AUC of 0.84 with 
random forests, Bayesian logistic regression, and linear 
support vector machines. Finally the T3/T4 classifier 
performs with a maximal AUC of 0.92 for Bayesian logis-
tic regression and linear support vector machines.

The performance ranges have variability across the 
cross validation folds with Bayesian logistic regres-
sion illustrating a wide range of performance. Also, as 
expected, the Naïve Bayes classifier performs the worst. 
Naïve Bayes assumes conditionally independent features 
given the class and as in most text classification tasks, 
this assumption hurts classifier performance. However, 
for the T0 classifier, the loss of performance is limited; 
possibly because individual words in the T0 class are 
highly predictive of class.

Performance estimation (external)
In the results shown in Table 5, we internally validated the 
models using a stratified N-fold cross validation procedure. 
The stratified N-fold cross validation procedure makes two 
assumptions. First, the procedure assumes the word/token 
distributions are from the same distribution. By design, 
the cross validation makes this assumption as training and 
testing documents are randomly chosen from the dataset. 
Second, the procedure assumes that the proportion of arti-
cles in each class is higher than in actual data. Recall, the 
training datasets were built with a case–control design of 
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identifying positive articles for each class and then consid-
ering all other articles not in the positive class as negative. 
These artificial priors typically overestimate generalization 
performance. Applying the models to an external dataset 
would validate the procedure in real world datasets where 
the proportions of articles in each class are vastly different.

We built final models with the labeled document col-
lections and applied these models to unlabeled docu-
ments attributed to CTSA grants. We then manually 
coded the top 100 documents scored by each of the three 
classifiers, e.g., T0, T1/T2, T3/T4. Category agreement 
was 99, 91, and 95 respectively.

Table 1  Full definitions for each of the phases along the translational research spectrum

T0 Basic biomedical research: identification of opportunities and approaches to health problems

Includes preclinical and animal studies

May or may not consider a particular disease process

May include human subjects, but does not include interventions with human subjects

Goal is to understand the human condition and environment as it exists

Focuses on understanding biological, social and behavioral mechanisms that underlie health or disease

 Defining mechanisms, biomarkers, targets for therapeutic development; drug discovery (lead molecule screening, optimization, formulation); 
prototyping; physical assessments (radiology, laboratory, biopsy)

 Can include non-interventional, correlational epidemiologic studies using existing large data sets

Studies mechanisms or derive modifications of cells, proteins, and DNA present in human disease processes

Identifies functional significance and mechanisms of genomic polymorphisms identified by human genome-wide association studies

T1 Translation to humans: seeks to move fundamental discovery into health application; provide clinical insights

Involves proof of concept studies

Includes Phase 1 clinical trials

 Healthy subjects or select population of patients

 Small sample size

 Tests for safety

Focuses on new methods of diagnosis, treatment, and prevention

Takes place in highly controlled research settings

T2 Translation to patients: health application to implications for evidence-based practice guidelines

Involves controlled clinical research studies which may lead to the basis for clinical application and evidence-based guidelines

Yields knowledge about the efficacy of interventions in highly-controlled/protocol-driven settings

Goal is to identify and analyze the optimal effects of an intervention on the human condition or environment

Phase 2 clinical trials—focus on safety and efficacy (dose-response)

 Select population of patients

 Relatively large sample size

Phase 3 clinical trials—focus on safety and efficacy

 Select population of patients

 Special groups of patients (ex. renal failure)

T3 Translation to practice: practice guidelines to health practices

Includes comparative effectiveness, pragmatic clinical trials, community based participatory research, dissemination and implementation research, 
and clinical outcomes research, post-marketing analysis (Phase 4)

Health services research, including reasons for gaps in care and delivery of recommended and timely care to the right patient

Meta-analyses, and systematic reviews involving interventions

Development and implementation of evidenced-based guidelines, policies, and best practices

T4 Translation to communities: health practice to population health impact, providing communities with the optimal intervention

Includes population-level outcomes research: population monitoring of morbidity, mortality, benefits, and risks

Focuses on wider dissemination/implementation of improved practices/interventions (taking to scale)

Focuses on impacts of policy and/or environmental change

Studies focusing on disease prevention through lifestyle and behavioral modifications

Documents “real-world” health outcomes of population health practices associated with improved disease prevention and reduced medical costs

Results in true benefit to society
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Discussion
Part 1
Definition and checklist consensus
The goal of the definitions and the checklist is to clearly 

define coherent and distinct categories that present as 
clear a path as possible through the translational research 
spectrum for as many types of translational research as 
possible. Interventional research produces the clearest 

Table 2  Checklist for each of five categories along the translational research spectrum

1. Does the research involve use of animals? T0

2. Does the research involve study of mechanisms, relationships, or modification of proteins, DNA, or cells? T0

3. Is the research a Genome Wide Association Study, determining association of a SNP with a particular disease state? T0

4. Does the study examine drug interactions with molecular receptor or enzyme; effects on cell biochemistry, or how to optimize interaction? T0

5. Does the publication describe the creation of a prototype for a new medical device? T0

6. Does the research test a new methodology with potential for use in diagnosis, treatment, or prevention, providing a basis for follow-up study to 
directly test the methodology for safety, feasibility, preliminary results, etc. NOTE: This may be done through use of existing EHR data, other health 
datasets, or through taking measurements from humans, such as physical assessments (radiology, laboratory, biopsy) or response to stimulus 
(but NOT response to intervention).

T0

7. Is a new association between biological, social, and/or behavioral states determined, including association between presence or progression of 
a disease state and a biomarker, social, or behavioral state? Note: This may be done through use of existing EHR data, other health datasets, or 
through taking measurements from humans, such as physical assessments or response to stimulus (but NOT response to intervention).

T0

8. Does the research explore a biological, social, or behavioral mechanism, including the mechanism underlying the presence or progression of a 
disease? NOTE: This may be done through use of existing EHR data, other health datasets, or through taking measurements from humans, such as 
physical assessments or response to stimulus (but NOT intervention).

T0

9. Is it a systematic review or meta-analysis of research that seeks to establish a correlation or elucidate a mechanism (i.e., review of T0 research), or 
to establish need for further work at the T0 level (e.g., further methodology development)?

T0

10. Is it a Phase I clinical trial? T1

11. Does the study test the effect of a new intervention on healthy volunteers in a controlled clinical setting? T1

12. Does the research suggest a new method of diagnosis (e.g., biomarker) or new intervention, determine feasibility or safety, or test it in a small 
group? Note: This should not be research that would lead directly to a practice guideline.

T1

13. Does research describe the use of a new device on a small population to determine potential usefulness and usability? T1

14. Is it a Phase II or Phase III clinical trial? T2

15. Does the study test efficacy and/or determine dosing levels of an intervention in a population with a given disease in a controlled clinical setting? T2

16. Does the study determine the optimal use of a new medical device? T2

17. Does the study determine the efficacy or optimal use of a new method of diagnosis or prevention, including through the use of existing datasets? T2

18. Is it a Phase IV clinical trial? T3

19. Does the research study effectiveness of an intervention or method of diagnosis in the clinic or community, either through the use of existing 
health datasets or new research?

T3

20. Does the research study inconsistency or variation in the application of a diagnosis or intervention? T3

21. Does the research compare the effectiveness of existing health care interventions to determine which work best for which patients and which 
pose the greatest benefits and harms?

T3

22. Does the research involve interventions in the community with input from community members? T3

23. Does the research determine mechanisms underlying effective health care delivery in practice or community settings? T3

24. Does the research identify problems with effective health care delivery in practice or community settings? T3

25. Does the research test an intervention to improve healthcare delivery in practice or community settings? T3

26. Does the research study real world factors affecting interventions (cost, convenience, accessibility, patient preferences)? T3

27. Does the research determine reasons why gaps in care exist? T3

28. Is it a systematic review or meta-analysis of interventions, diagnoses, or something that could lead directly to practice guidelines, or a review 
article that suggests practice guidelines or workflow?

T3

29. Does the publication provide evidence-based guidelines/policies or best practices? T3

30. Does the research use large datasets to monitor morbidity, mortality, benefits, or risks of interventions in populations? T4

31. Does the research study the incidence or prevalence of a disease in a population? T4

32. Does the research examine problems with, mechanisms underlying, potential interventions, impact, or real world outcomes (e.g., level of dis-
ease prevention, reduced medical costs) of population level practices/interventions?

T4

33. Does the research study the impact on health of a policy or environmental change that affects a population? T4

34. Does the research focus on the development or outcomes of population level behavioral/lifestyle interventions? T4
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path along the translational research spectrum as it goes 
through clinical trial phases that fall clearly into the T 
categories, while other paths presented more of a chal-
lenge as they are less distinctly defined. The questions of 
coherence and distinctness are most clearly raised by T0 
research. T0 research encompasses a very broad range 
of research types and includes certain types of human 
research, potentially rendering it too similar to T1/T2 
research. Our machine learning approach addressed 
these issues as the good classification seen would not be 
possible with categories that are not sufficiently coherent 
and distinct from one another.

Checklist application
The degree of inter-rater reliability seen reflects both 
the improvements in definition interpretation seen with 
the introduction of the checklist, as well the the signifi-
cant room for disagreements in interpretation that still 
exists. While it is unlikely that all disagreements across 

Table 3  Concise definitions for each of the phases along the translational research spectrum

T0 Basic biomedical research
Identification of opportunities and approaches to health problems

Includes: preclinical and animal studies; GWAS studies; studies of cells, proteins, and DNA; studies on humans or existing datasets that focus on 
understanding biological, social and behavioral mechanisms that underlie health or disease

T1 Translation to humans
Seeks to move fundamental discovery into health application; provide clinical insights

Includes: proof of concept studies; Phase 1 clinical trials; studies testing feasibility or safety of a new method of diagnosis, treatment, or prevention

T2 Translation to patients
Health application to implications for evidence-based practice guidelines

Includes: Phase 2/3 clinical trials; studies to test efficacy of interventions in highly controlled settings

T3 Translation to practice
Practice guidelines to health practices

Includes: Phase 4 clinical trials, comparative effectiveness research, community based participatory research, dissemination and implementation 
research, clinical outcomes research, health services research, meta-analyses/systematic reviews of interventions, development/implementation 
of guidelines

T4 Translation to communities
Health practice to population health impact, providing communities with the optimal intervention

Includes: population-level outcomes research; wider implementation and dissemination; policy impacts; disease prevention through lifestyle/
behavior modifications; real-world health outcomes; true benefit to society

Table 4  Breakdown of training sets by categories into which 
articles were classified by coders

T0 through T4 are the phases of research along the translational spectrum. TX 
denotes publications that were determined by the coders to not fall into any 
of the T0 through T4 categories. Uncoded denotes publications on which no 
agreement could be reached by the coders as to the correct category. Note 
that there is one article that was determined to fall into both the T0 and T1 
categories, thus resulting in a total of 387 codings for the 386 articles that were 
coded

Training set 1 Training set 2 Combined 
training set

T0 106 56 162

T1/T2 18 46 68

T3/T4 44 50 94

TX 18 12 30

Total included in 
training set

186 164 350

Not included in 
training set

15 22 33

Total 201 186 387

Table 5  AUC and performance ranges for each classifier with different machine learning algorithms

Best performing algorithm(s) for each classifier are italicized

Classifier Translational class

T0 T1/T2 T3/T4

Naïve Bayes 0.91 (0.80–0.97) 0.78 (0.45–0.97) 0.87 (0.72–0.97)

Liblinear (linear support vector machine) 0.94 (0.93–0.96) 0.84 (0.76–0.98) 0.92 (0.90–0.94)

Random forest 0.94 (0.84–0.98) 0.84 (0.75–0.98) 0.87 (0.72–0.98)

Bayesian logistic regression 0.92 (0.82–0.99) 0.84 (0.53–0.99) 0.92 (0.82–0.99)
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coders can be eliminated given the varied and complex 
nature of translational research, the high percentage of 
articles that required a third coder for correct classifica-
tion suggests that improvements in the checklist and/
or increased coder experience may lead to greater inter-
rater reliability.

Limitations
While a strength of this study is that the definitions and 
checklist were developed with input from five CTSA 
institutions, this still constitutes less than ten percent 
of CTSA hubs, so the definitions and checklist may not 
reflect the perspective of the broader CTSA consortium. 
This limitation was mitigated by the participation in the 
collaboration of two former chairs of the CTSA Consor-
tium Evaluation Key Function Committee Definitions 
Workgroup, who brought a valuable perspective from 
their extensive work around definitions with many of the 
CTSA institutions.

Another limitation is that the checklist was applied 
by coders having a variety of backgrounds, and hence 
a diverse understanding of the different topic areas of 
coded publications. This was mitigated by engaging in 
extensive piloting, by having developed the checklist 
through consensus meetings, and by having each publi-
cation coded by two institutions and using a third coder 
to arbitrate disagreements.

Part 2
Performance estimation (internal)
The high discriminatory performance suggests sev-
eral conclusions about the process of classification and 
the content composition of the classes. First the labe-
ling process is reliable. Poor rater reliability in labe-
ling would result in poor performing classifiers. These 
results suggest the opposite. The labeling process is reli-
able and high performing classifiers were built. Second, 
the content for each class is coherent. Highly incoher-
ent words and tokens in the title and abstracts of the 
content would result in poor performing classifiers as 
the classifiers would not be able to identify words and 
tokens that can discriminate. These results suggest that 
the content itself is highly coherent. For example, in the 
T1/T2 class, the presence of the tokens “randomized 
controlled trial” is highly coherent in articles of this top-
ical class and these tokens do not appear highly in the 
other classes.

A more thorough analysis of the features selected, the 
false positives and false negatives incurred in the training 
sets, and stability of the models from the composition of 
the training sets are all points for future research.

Performance estimation (external)
Our models performed as expected in identifying the 
translational class of publications with high discrimina-
tion. The method of performance estimation of looking at 
the top 100 articles was selected to address a driving use 
case of classifying a large number of articles for a given 
CTSA hub. For this use case, it would be expected that 
manual coding would still be done for low scoring arti-
cles, but that the classifiers would minimize the work of 
manual coding by eliminating the need to code high scor-
ing articles. The high degree of accuracy seen for these 
high scoring articles supports the usefulness of these 
classifiers for this purpose.

Limitations
Model stability over  time  Topics in each class may 
change over time and may require periodic updating of 
the models. Models will eventually become obsolete. 
However, the key term here is eventually. It is easy to sug-
gest examples where the model drift may occur. In an 
extreme example, if the models are not built with more 
recent data, then certain classifications will be missed. 
For example, if models were built using articles before 
the widespread use of genetic information in T0 studies, 
applying the models to future data will not identify T0 
studies that use genetic information. Likewise, examples 
of the models remaining relevant are also conceivable. For 
example, the randomized controlled trial is an acceptable 
model for T1/T2 articles and this gold standard will likely 
not change. Classifiers that we have built for other pur-
poses have demonstrated stability over time [43]. How-
ever, in this study, we consider our results preliminary and 
will require additional labels, validation, and verification 
to understand their classification behavior over time.

Training set selection bias  Aside from model drift, 
another potential source of model bias is topical content 
specific to the universities chosen for this pilot. For exam-
ple, one or more institutions may nationally lead in T3/
T4 cardiology research and the models will identify arti-
cles of this type correctly. However other institutions may 
do cardiology research but not in the T3/T4 classes, and 
the model will incorrectly assign weight to this content. 
While future work is planned to build training sets with-
out this limitation, the magnitude of this limitation was 
small enough to still produce good classifiers as indicated 
by the high AUC values.

Artificial to natural priors  We used artificial priors and 
a case control design in building our training sets. The full 
extent of how using artificial priors will affect the classifi-
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cation performance, calibration, and generalization of the 
models requires further exploration.

Performance/thresholding considerations  A key element 
in applying these models is model calibration and accept-
able false positives rates for specific use cases. The clas-
sification algorithms will return a score but these scores 
are not necessarily probabilities. The scores require cali-
bration to probabilities. In Table 6, we show one experi-
ment that shows preliminary evidence that the scores/
probabilities produced by Bayesian logistic regression are 
fairly well calibrated.

As Table 6 shows, the probability produced by Bayes-
ian logistic regression is well calibrated in the T0 class. 
The intercept is −0.09 which indicates that the predicted 
probabilities are slightly lower than expected, and the 
slope is 1.0 indicating good calibration.

Error analysis  More iterative refinement of the fea-
tures is possible. A thorough error analysis of false posi-
tive and false negatives may reveal additional features or 
techniques to improve classification performance. Fur-
ther refinement and error exploration is open for future 
research.

Conclusions
The two-fold results of this study support the use of the 
definitions of categories along the translational spec-
trum provided here by the broader CTSA consortium 
and translational research community. The agreement 
across five CTSA institutions on detailed definitions pro-
vides a good basis for broader uptake. The success of the 
machine-learned classifiers supports the assertion that the 

category definitions arrived at are both coherent and dis-
tinct from each other. The classifiers also operationalize 
the definitions in a way that makes metrics dependent on 
publication classification feasible. Further work is needed 
to build a training set that is drawn from a broader pool 
of articles and is larger to both eliminate potential bias 
in the classifiers and to determine if it is possible to build 
classifiers with good performance for each of the five cat-
egories. Additional improvements in classification may 
be possible with improved feature engineering (i.e. con-
cept detection, non bag-of-words methods) or algorithm 
improvements using deep learning or sequence based 
classifiers. Nevertheless, even these preliminary results 
provide a strong basis for adopting these definitions 
across the CTSA consortium and using these classifiers 
to assess the distribution of CTSA hub research output 
across the translational research spectrum. Because these 
classifiers provide needed infrastructure to begin to assess 
how research moves across the translational spectrum, 
they also provide a basis for developing metrics to assess 
CTSA impact on that movement.
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