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Serum metabolites predict response 
to angiotensin II receptor blockers in patients 
with diabetes mellitus
Michelle J. Pena1, Andreas Heinzel2, Peter Rossing3,4,5, Hans‑Henrik Parving6, Guido Dallmann7, Kasper Rossing3, 
Steen Andersen3, Bernd Mayer2 and Hiddo J. L. Heerspink1*

Abstract 

Background:  Individual patients show a large variability in albuminuria response to angiotensin receptor blockers 
(ARB). Identifying novel biomarkers that predict ARB response may help tailor therapy. We aimed to discover and vali‑
date a serum metabolite classifier that predicts albuminuria response to ARBs in patients with diabetes mellitus and 
micro- or macroalbuminuria.

Methods:  Liquid chromatography-tandem mass spectrometry metabolomics was performed on serum samples. 
Data from patients with type 2 diabetes and microalbuminuria (n = 49) treated with irbesartan 300 mg/day were 
used for discovery. LASSO and ridge regression were performed to develop the classifier. Improvement in albuminuria 
response prediction was assessed by calculating differences in R2 between a reference model of clinical parameters 
and a model with clinical parameters and the classifier. The classifier was externally validated in patients with type 1 
diabetes and macroalbuminuria (n = 50) treated with losartan 100 mg/day. Molecular process analysis was performed 
to link metabolites to molecular mechanisms contributing to ARB response.

Results:  In discovery, median change in urinary albumin excretion (UAE) was −42 % [Q1–Q3: −69 to −8]. The 
classifier, consisting of 21 metabolites, was significantly associated with UAE response to irbesartan (p < 0.001) and 
improved prediction of UAE response on top of the clinical reference model (R2 increase from 0.10 to 0.70; p < 0.001). 
In external validation, median change in UAE was −43 % [Q1–Q35: −63 to −23]. The classifier improved prediction of 
UAE response to losartan (R2 increase from 0.20 to 0.59; p < 0.001). Specifically ADMA impacting eNOS activity appears 
to be a relevant factor in ARB response.

Conclusions:  A serum metabolite classifier was discovered and externally validated to significantly improve predic‑
tion of albuminuria response to ARBs in diabetes mellitus.
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Background
Intervention in the renin-angiotensin-aldosterone sys-
tem (RAAS) has convincingly shown to delay progres-
sion of renal disease in patients with diabetes mellitus 
with elevated urinary albumin excretion (UAE) in several 
large trials. However, individual patients show a large 

variability in long-term renoprotective response, which 
is linked to a large variability in the short-term response 
in albuminuria and blood pressure [1]. Consequently, 
a considerable proportion of patients still have sig-
nificant residual albuminuria, which may contribute to 
progressive renal function loss [2]. The reasons behind 
these individual differences in response to therapy are 
not completely understood, but are in part related to 
renal tissue-specific RAAS activity, dietary salt intake, 
or genetic background [3–7], among others. Identifying 
novel biomarkers that predict the albuminuria lowering 

Open Access

Journal of 
Translational Medicine

*Correspondence:  h.j.lambers.heerspink@umcg.nl 
1 Department of Clinical Pharmacy and Pharmacology, University 
of Groningen, University Medical Center Groningen, P. O. Box 30.001, 
9700RB Groningen, The Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-016-0960-3&domain=pdf


Page 2 of 11Pena et al. J Transl Med  (2016) 14:203 

response to RAAS intervention may improve the current 
“trial-and-error” approach to choosing the optimal ther-
apy for treatment of patients with diabetes mellitus. This 
would mark a step further to implementation of person-
alized medicine.

Biomarker discovery has advanced significantly over 
the past years with the use of high-throughput omics 
screening platforms. Omics profiling has emerged as a 
research area to expand beyond biomarker discovery 
to also unravel molecular pathways involved in disease 
pathophysiology. Integrating these data with clinical data 
may help give further insights in the underlying molecu-
lar mechanisms of drug response variability. Prospective 
metabolomics studies predicting disease progression in 
diabetes mellitus are becoming more common [8–10], 
but to our knowledge, there are to date no metabolomics 
studies for the prediction of drug response in diabetes 
mellitus.

Therefore, the aims of this study were to first discover 
and validate a serum metabolite classifier that pre-
dicts response in albuminuria to angiotensin II receptor 
blocker (ARB) therapy in patients with diabetes mellitus 
and micro- or macroalbuminuria, and secondly, to inte-
grate the identified metabolites in a molecular process 
model capturing disease pathophysiology at the interface 
of drug mechanism of action to decipher the underly-
ing molecular processes driving albuminuria response to 
ARB.

Methods
Patients and study design
Serum samples from patients enrolled in two distinct 
clinical studies conducted at the Steno Diabetes Center 
(Gentofte, Denmark), assessing the albuminuria lowering 
effect of ARBs were used for the present study. Both stud-
ies were performed in accordance with the Declaration of 
Helsinki and approved by the local ethical committee. All 
patients gave their informed consent.

For the discovery cohort, we used data from a crosso-
ver clinical study in type 2 diabetes assessing the effect 
of the ARB irbesartan. This cohort has been previously 
described [11]. In short, 52 patients with type 2 diabe-
tes, hypertension, microalbuminuria, and treated with 
antihypertensive medication were recruited for a double-
masked randomized crossover trial. At inclusion, previ-
ous antihypertensive treatment was discontinued and 
replaced with bendroflumethiazide, 5 mg once daily, for 
the entire study. Following 2 months wash-out (baseline), 
patients were treated randomly with irbesartan 300, 600, 
and 900  mg once daily. All treatment periods were of 
10 weeks’ duration and consisted of an initial two-week 
dose titration period with irbesartan 300  mg once daily 
followed by 8 weeks treatment with irbesartan 300, 600, 

and 900 mg once daily in random order. For the present 
study, patient data and metabolomics measurements 
were available for 49 patients with type 2 diabetes and 
persistent microalbuminuria. For this discovery cohort, 
we defined the outcome of interest as percent change in 
UAE after 12  weeks of treatment of ibestartan 300  mg/
day compared to baseline UAE.

For the external validation cohort, we used data from a 
clinical study in type 1 diabetes assessing the effect of the 
ARB losartan. This cohort has been previous described 
[12], and included patients with type 1 diabetes, hyper-
tension, and diabetic nephropathy. After a four-week 
washout, the patients received 100 mg losartan once daily 
and were followed prospectively with a mean follow-up 
period of 36 months. For the present study, patient data 
and metabolomics measurements were available for 50 
patients with type 1 diabetes and macroalbuminuria. For 
the validation cohort, we defined the outcome of inter-
est as percent change in UAE from baseline to UAE after 
16  weeks of treatment of losartan 100  mg/day. In this 
cohort, glomerular filtration rate (GFR) was measured by 
plasma clearance of 51Cr-EDTA every 6 months.

We expected the treatment effect of irbesartan and 
losartan on albuminuria to be fully present after 12 or 
16  weeks of treatment, respectively. We refer to this as 
the response period.

Metabolomics measurements
Serum metabolomics were performed blinded and meas-
ured by BIOCRATES Life Sciences (Innsbruck, Austria). 
Flow injection analysis and liquid chromatography-tan-
dem mass spectrometry based targeted metabolomics 
measurements were performed on serum samples [13]. 
Samples were randomized on the plate prior to analysis 
to avoid potential confounding interaction between con-
centration and order of injection and to ensure a homog-
enous between-plate design in regard to study groups. 
The full set of 185 metabolites from the following chemi-
cal classes were quantified: acylcarnitines, amino acids, 
biogenic amines, energy/sugar metabolism (Hexoses), 
lysophosphatidylcholines, phosphatidylcholines, and 
sphingomyelins. The quantification of amino acids, acyl-
carnitines, sphingomyelins, phosphatidylcholines, hex-
ose (glucose), and biogenic amines was performed using 
a AbsoluteIDQ™ p180 kit [14]. The assay was based on 
PITC (phenylisothiocyanate)-derivatization in the pres-
ence of internal standards followed by FIA-MS/MS (acyl-
carnitines, lipids, and hexose) and LC/MS (amino acids, 
biogenic amines) using an API4000 QTrap® mass spec-
trometer (Applied Biosystems/MDS Analytical Technol-
ogies, Darmstadt, Germany) with electrospray ionization. 
Multiple reaction monitoring (MRM) detection was used 
for quantification applying the spectra parsing algorithm 
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integrated into the MetIQ software (Biocrates Life Sci-
ences AG, Innsbruck, Austria). Metabolites containing 
more than 70  % missing values across all samples were 
removed from analysis. Resting missing value singletons 
were omitted in statistical analysis. Missing values are 
imputed by nearest neighbor method with k = 6 by using 
the R package pcaMethods [15]. Measured values are 
log2-transformed to obtain normally distributed metabo-
lite variables and to stabilize variance.

Statistical analyses
Analyses were performed using SAS version 9.3. Baseline 
characteristics with normal distribution were reported as 
mean and standard deviation (SD), characteristics with 
skewed distribution were reported as median and 25th 
and 75th percentile [Q1–Q3], and categorical variables 
were reported as number and percentage. The natural log 
of UAE was used in all regression analysis.

Statistical modeling consisted of several steps using a 
previously described methodology for development of a 
classifier [16]. First, a least absolute shrinkage and selec-
tion operator (LASSO) regression model was fitted in 
the discovery cohort to the full metabolite set to select a 
subset of metabolites that best predicted UAE response 
to ARB therapy [17]. The LASSO is advantageous for 
small samples sizes because it places restrictions on the 
absolute sizes of the regression coefficients with a tuning 
parameter λ and controls for multicollinearity, thereby 
selecting the optimal subset of variables that best predicts 
the outcome. The tuning parameter was optimized by 
five-fold cross-validation, and bootstrap (N = 1000) was 
used to evaluate selection probabilities of each metabo-
lite. Next, the metabolites selected by the LASSO were 
refitted in a new model using ridge regression to generate 
the classifier. Cross-validation was performed to select 
a new tuning parameter for the ridge regression model 
that minimized the mean square error (MSE). Finally, the 
classifier was validated in an external cohort by applying 
the betas for each metabolite and the tuning parameter 
as estimated from the discovery cohort.

In both the discovery cohort and the validation cohort, 
the added value of the classifier was evaluated by deriv-
ing the explained variation of the model (R2) from the 
MSEs in order to determine whether the biomarkers sig-
nificantly improved prediction on top of a model of base-
line clinical parameters (age, sex, glycated hemoglobin 
(HbA1c), systolic blood pressure (SBP), GFR, UAE). The 
area under the receiver operating characteristics (ROC) 
curve and integrated discrimination improvement (IDI) 
index were calculated to assess the discriminatory abil-
ity of the serum metabolites for a dichotomous outcome 
of  >30  % decrease in UAE during the response period. 
This threshold was used based on prior work [2, 18, 19].

For the validation cohort, we also determined whether 
the serum metabolite classifier was able to predict 
change in GFR after the initial response period. Patient-
specific GFR change was calculated by fitting a straight 
line through the GFR values after the initial response 
period, i.e. from week 16 to the end of follow-up using 
a linear regression model, as was done in the original 
study [12]. A dichotomous outcome for GFR change ≤ 
or >−3.0 mL/min/1.73 m2/year was created to assess the 
discriminatory ability of the serum metabolites for accel-
erated renal function decline. The threshold of −3  mL/
min/1.73 m2 was chosen based on prior studies [20–22] 
and was approximately the median GFR change in this 
cohort (−3.4 [Q1–Q3: −5.7 to 1.4]).

Molecular model of ARB drug mechanism of action
Identification of protein coding genes showing asso-
ciation with ARB mechanism of action was per-
formed by querying NCBI PubMed and gene2pubmed. 
For both drugs, a PubMed search using the que-
ries ≫ "irbesartan"[TIAB] OR irbesartan[nm] ≪ or ≫ "l
osartan"[TIAB] OR losartan[nm] ≪  was performed for 
identifying publications discussing irbesartan and losar-
tan, respectively. Genes linked to identified publications 
were extracted from gene2pubmed. For irbesartan, 1471 
publications associated to a total of 44 genes and for 
losartan 8166 publications linked to 101 genes in total 
were identified. The total set of 125 protein coding genes 
was used for deriving a mechanism of action molecular 
model as described in Heinzel et al. [23]. In short, molec-
ular features were mapped on a human protein interac-
tion network, and the induced subgraph was split into 
molecular process segments according to network topol-
ogy. The resulting ARB mechanism of action molecular 
model holds 48 protein coding genes embedded in seven 
molecular process segments.

Interference of this ARB mechanism of action molecu-
lar model was performed with a previously identified dia-
betic kidney disease (DKD) molecular model holding 688 
protein coding genes in 34 molecular process segments 
[24]. Interference was defined by an overlap of interact-
ing protein coding genes being present in both the ARB 
mechanism of action molecular model and the DKD 
molecular model.

Assignment of metabolites
Metabolites selected for the classifier were assessed for 
being part of the DKD molecular model. Metabolite-to-
enzyme assignments were identified utilizing the Human 
Metabolome Database (HMDB) and the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database. Of the 
185 metabolites addressed in targeted metabolomics, 114 
metabolites could be assigned to at least one enzyme. 
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The respective number for the shortlist of 21 metabolites 
included in the classifier on drug response is 14. For these 
14 metabolites, 9 could be assigned to the molecular model 
representation of DKD involving 11 assigned enzymes.

Results
Baseline characteristics are presented in Table  1. In the 
discovery cohort, patients were approximately 59 (stand-
ard deviation 10) years of age, mostly male (80  %), had 
a known duration of type 2 diabetes of 13(8) years, and 
median 24-h UAE was 84 [Q1–Q3: 65 to 200] mg/24 h. 
Median change in UAE was −42 % [Q1–Q3: −69 to −8] 
after 12  weeks of treatment of ibestartan 300  mg/day 
(Table 1).

In the validation cohort, patients were approximately 
47(9) years of age, mostly male (60  %), had a known 
duration of type 1 diabetes for 33(9) years, and median 
24-h UAE was 1211 [Q1–Q3: 598  to  2023] mg/24  h. 
Median change in UAE was −43 % [Q1–Q3: −23 to −62] 
over 16  weeks of treatment with losartan 100  mg/day 
(Table  1). During approximately 3 years of follow-up, 
GFR change after the response period was −3.8 (3.6) mL/
min/1.73 m2/year.

There were no significant associations between base-
line characteristics and change in UAE in either the dis-
covery or validation cohorts (Additional file 1: Table S1).

Serum metabolite classifier
Out of the total set of 185 metabolites, 21 metabolites 
were selected with LASSO as best predictors of UAE 
response to ARB therapy in the discovery cohort. These 
21 metabolites were used for the classifier. The 21 metab-
olites are presented in Table 2.

In the discovery cohort, the serum metabolites clas-
sifier was significantly associated with change in UAE 
in response to irbesartan 300  mg/day (p value  <0.001) 
and significantly improved prediction on top of clinical 
parameters (R2 increase from 0.10 to 0.70; p value <0.001) 
(Fig.  1a, b; Table  3). For the dichotomous outcome 
of >30 % decrease in UAE during the response period, the 
control model area under the ROC curve was 0.72, and 
the addition of the serum metabolite classifier signifi-
cantly increased the area under the ROC curve to 0.95 (p 
value = 0.001) (Table 3). The IDI of the classifier was 0.33 
(p value  <0.001) (Table  3). The classifier improved pre-
diction in SBP response (R2 increase from 0.63 to 0.68; p 
value = 0.019). 

In the validation cohort, the serum metabolite classi-
fier was significantly associated with change in UAE in 
response to lorsartan 100  mg/day (p value  <0.001) and 
significantly improved prediction of change in UAE on 
top of a panel of clinical parameters (R2 increase from 
0.20 to 0.53; p value <0.001) (Fig. 1c, d; Table 3). For the 
dichotomous outcome of >30 % decrease in UAE during 
the response period, the area under the ROC curve for 
the control model was 0.74, and the addition of the serum 
metabolite classifier increased the area under the ROC 
curve to 0.89. This increase was not significant (Table 3). 
In The IDI of the classifier was 0.19 (p value  =  0.06) 
(Table  3). The classifier did not improve prediction in 
SBP response in external validation (R2 control = 0.24, R2 
classifier 0.25; p value = 0.54).

In the validation cohort, for prediction of GFR change 
after the response period, the combination of the 21 
serum metabolites significantly improved prediction on 
top of clinical parameters (R2 increase from 0.15 to 0.60; 
p value  <0.001). For the dichotomous outcome for GFR 
change ≤  or  >−3.0  mL/min/1.73  m2/year, a significant 
increase was observed in the area under the ROC curve 
with the addition of the serum metabolites on top of 
clinical parameters (ROC increase from 0.71 (95  % CI 
0.57 to 0.86) to 0.88 (95 % CI 0.79 to 0.98); p value 0.010).

Metabolite assignment
To study the molecular mechanisms linked to albuminu-
ria response and ARB effect, molecular process analysis 

Table 1  Patient characteristics

Data are reported as mean ± standard deviation (SD) or number (percent) or 
median [25th, 75th percentile]

Type 2 diabetes 
discovery cohort 
(n = 49)

Type 1 diabetes 
validation cohort 
(n = 50)

Baseline

 Age (years) 59.0 (10.0) 44.6 (8.9)

 Male sex (number (%)) 39 (80) 30 (60)

 SBP (mmHg) 140.0 (15.4) 150.6 (17.7)

 DBP (mmHg) 81.6 (8.8) 84.7 (10.9)

 HbA1c (%) 8.3 (1.4) 8.9 (1.2)

 HbA1c (mmol/mol) 67.2 (15.3) 73.8 (13.1)

 Cholesterol (mmol/l) 5.3 (1.0) 5.2 (1.0)

 HDL (mmol/l) 1.2 (0.3) 1.6 (0.5)

 GFR (ml/min/1.73 m2) 102.3 (19.2) 86.5 (23.4)

 24-h UAE (mg/24 h) 84 [65, 200] 1211 [598, 2023]

Follow-up

 Change in SBP (mmHg) −6.4 (16.2) −8.7 (14.3)

 Change in DBP (mmHg) −6.0 (8.8) −5.6 (8.6)

 Percent change in UAE (%) −42 % [−69, −8] −43 % [−62, −23]

 >30 % decrease in UAE 
from baseline  
[number (%)]

31 (63) 34 (68)

 GFR change after response 
period (mL/min/1.73 m2/
year)

Not available −3.8 (3.6)
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was conducted by assigning the metabolites included in 
the classifier to enzymes and further to molecular pro-
cesses identified in a DKD molecular model. The com-
bined irbesartan/losartan drug mechanism of action 
molecular model holding 48 protein coding genes is pre-
sented in Fig. 2a. The model interference of the ARB drug 
mechanism of action molecular model with the DKD 
molecular model is shown in Fig.  2b. In total, 20 inter-
acting protein coding genes being reported as associated 
with ARB effect were also identified in the DKD molecu-
lar model. Key overlap of ARB effect with DKD patho-
physiology are shown in Fig. 2c, at first including the drug 
target angiotensin II receptor, type 2 (AGTR2) together 
with the bradykinin system and the NFκB/PPARγ axis.

Nine out of the 21 metabolites included in the classi-
fier could be assigned to eleven enzymes also involved in 
the DKD molecular model, including enzymatic turnover 
as well as metabolite transport. Metabolite-enzyme links 
are provided in Table 4.

Interference of ARB drug mechanism of action molec-
ular model and the DKD molecular model identifies the 
enzyme nitric oxide synthase 3 (NOS3). The metabo-
lites included in the classifier were assigned to NOS3 are 
asymmetric dimethylarginines (ADMA) and citrulline, 

with ADMA being the most frequently selected metab-
olite in the LASSO (Table  2). Furthermore, overlap of 
enzymes at the molecular process level between the 
molecular models was observed involving amino acids 
(glutamine, asparagines and tryptophan), lysophosphati-
dylcholines (lysoPC a C16:0 and lysoPC a C16:1), and 
phosphatidylcholines (PC aa C36:0 and PC aa C42:2). 
This subset of seven metabolites assigned to direct drug-
to-DKD interference (ADMA, citrulline) or to molecu-
lar processes with interference on the molecular model 
level (lysoPC a C16:0, lysoPC a C16:1, PC aa C36:0, PC aa 
C42:2, tryptophan) significantly improved the explained 
variation in albuminuria response (R2) in the discovery 
study (R2 = 0.50; p < 0.001 versus clinical model) and val-
idation study (R2 = 0.39; p = 0.001 versus clinical model).

Discussion
This study discovered and externally validated a serum 
metabolite classifier that significantly improves predic-
tion of albuminuria response to ARBs in patients with 
diabetes mellitus with micro- or macroalbuminuria 
on top of traditional clinical risk factors. Metabolites 
included in the classifier could be assigned to general 
molecular mechanisms of oxidative stress, inflammation, 

Table 2  LASSO-selection of best predictors

Results from LASSO regression of 21 metabolites selected for the serum metabolites classifier, five fold cross-validation, and bootstrap resampling (N = 1000) in the 
discovery cohort of patients with type 2 diabetes with microalbuminuria (n = 49)
a  The relative frequency of the marker being included in the model across 1000 bootstrap resamples

Metabolite Mean estimate Standard deviation 95 % CI Selection percentagea

Asymmetric dimethylarginine (ADMA) 4.4 6.5 0, 22 52.4

Asparagine (Asp) −3.0 7.4 −26, 0 26.2

Carnitine (C0) −2.4 6.8 −24, 0 20.0

Acylcarnitine (C12-DC) 11.3 24.6 0, 88 31.4

Linoleoylcarnitine (C18:2) −3.0 7.5 −27, 0 22.8

Acylcarnitine (C5:1-DC) 2.9 7.4 0, 25 23.4

Glutarylcarnitine (C5-DC/C6-OH) 3.3 7.5 0, 28 27.2

Acylcarnitine (C6:1) 3.7 9.9 0, 34 23.5

Acylcarnitine (C7-DC) 2.39 6.99 0, 25 20.6

Octanoylcarnitine (C8) −3.0 8.8 −31, 0 20.6

Citrulline (Cit) −2.0 4.9 −17, 0 27.5

Glutamine (Gln) 3.7 7.8 0, 28 31.8

Histidine (His) 7.5 14.0 0, 48 36.2

Lysophosphatidylcholines (lysoPC a C16:0) −10.4 18.4 −62, 0 36.9

Lysophosphatidylcholines (lysoPC a C16:1) −2.9 6.4 −22, 0 26.2

Phosphatidylcholines (PC aa C36:0) 4.5 7.0 0, 23 44.1

Phosphatidylcholines (PC aa C42:2) 9.7 13.8 0, 46 51.6

Symmetric dimethylarginine (SDMA) 0.3 1.0 0, 3 22.5

Spermine −3.9 7.0 −24, 0 36.2

Tryptophan (Trp) 6.2 12.2 0, 41 35.1

Valine (Val) 3.5 8. 7 0, 31 24.4
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and fibrosis pathways. Specifically, NOS3 activity appears 
to be a relevant factor in predicting the albuminuria low-
ering response to ARBs. Our findings suggest the use of 
serum metabolites as a tool to tailor albuminuria lower-
ing ARB treatment and illustrate the use of metabolomics 
to unravel underlying molecular mechanisms of ARB 
response.

Metabolomics, the measurement of exogenous or 
endogenous small molecules in a sample, is an emerging 
research area to identify novel biomarkers. The metabo-
lome integrates the biological information of the genome, 
transcriptome, proteome, and overall enzymatic reac-
tions of an individual, therefore enabling the detection 

of short and long-term physiological or pathological 
changes occurring in diseases [25]. Metabolomics can 
be used to unravel molecular pathways of biological pro-
cesses in order to better understand disease progression 
[9, 26, 27], but to the best of our knowledge, this is the 
first study integrating metabolomics to study response 
to drug therapy. These types of studies are necessary to 
characterize the molecular mechanisms of drug effects 
and drug response variability.

Pharmacological blockade of angiotensin II activity 
by ARBs is currently the most widely used therapeutic 
option, next to angiotensin converting enzyme inhibitors 
(ACEi), for treatment of hypertension and albuminuria 

Fig. 1  Prediction of change in UAE from baseline. a Discovery cohort, clinical parameters model; b Discovery cohort, clinical parameters + serum 
metabolite classifier model; c Validation cohort, clinical parameters model; d Validation cohort, clinical parameters + serum metabolite classifier 
model. The lines of identity are shown in grey, and the regression lines are shown in red. In the case of perfect prediction, the regression line would 
be equal to the line of identity
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Table 3  Risk prediction of change in UAE in response to ARB therapy

* Comparing clinical parameters + metabolites to only clinical parameters
a  Baseline Age, Sex, SBP, HbA1c, GFR, UAE
b  Metabolites assigned to both drug interference:direct disease phenotype and disease progression processes (seven metabolites: ADMA, citrulline, lysoPC a C16:0, 
lysoPC A C16:1, PC aa C36:0, PC aa C42:2, tryptophan)

R2 p value* Discrimination of >30 % decrease in UAE

ROC 95 % CI p value* IDI 95 % CI p value*

Discovery cohort

 Clinical parametersa 0.10 Ref. 0.72 0.57 0.87 Ref. Ref.

  +Serum metabolites classifier 0.70 <0.001 0.95 0.89 1.00 0.001 0.50 0.36 0.63 <0.001

  +Subset of 7 metabolitesb 0.50 <0.001 0.90 0.81 0.99 0.012 0.33 0.19 0.47 <0.001

Validation Cohort

 Clinical parametersa 0.20 Ref. 0.74 0.59 0.89 Ref. Ref.

  +Serum metabolites classifier 0.53 <0.001 0.89 0.79 0.99 0.063 0.30 0.15 0.46 <0.001

  +Subset of 7 metabolitesb 0.35 0.002 0.78 0.64 0.92 0.460 0.19 0.09 0.47 0.055

Fig. 2  a Combined irbesartan/losartan drug mechanism of action molecular model holding 48 protein coding genes (nodes) organized in seven 
molecular process segments (boxes). Protein interactions are indicated as edges, interactions of proteins across process segments are omitted. b 
Interference of ARB mechanism of action model on the DKD molecular model. Matching network segments are shown as red nodes. Nodes colored 
in blue identify enzymes associated with metabolites included in the classifier, nodes in pink indicate metabolite transport. c Gene symbols for 
selected nodes matching in drug and DKD molecular models, and associated metabolites in case of enzymes according to Table 4
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in diabetes mellitus. Yet, approximately 25 % of patients 
with diabetes mellitus do not respond in terms of albu-
minuria lowering to ARBs [1]. The serum metabolite 
classifier was able to predict the short-term albuminu-
ria response to the ARBs. This observation is important 
from a therapeutic point of view as a poor anti-albumi-
nuric response predicts poor long-term renal prognosis 
[28]. Importance of early albuminuria reduction is not 
only evident for renoprotection but also for cardiovas-
cular protection [2]. The metabolite panel thus provides 
an indication which patients will be protected for long-
term renal and cardiovascular outcomes. In addition to 
predicting UAE response, the classifier predicted SBP 
response in the discovery cohort but not in the valida-
tion cohort. The failure to predict the SBP response may 
be explained by prior observations that not all patients 
experience a parallel decrease in both blood pressure and 
albuminuria [18, 19]. In other words, the degree of blood 
pressure lowering with ARB may be independent of the 
degree of albuminuria lowering. This has been shown in 
multiple studies of ARB therapy in diabetic nephropathy, 
such as RENAAL, IDNT, and IRMA-2 trials [1, 18, 19, 
29], as well as with the albuminuria-lowering endothelin 
A receptor antagonist atrasentan [30]. Identification and 
validation of novel biomarkers that can predict response 
to therapy may improve on the current “trial-and-error” 
approach in prescribing medication, may ultimately help 
reduce the large individual variability in response to 

therapy, and could be a step forward to implement per-
sonalized medicine.

We performed a molecular process analysis aiming 
to further unravel the molecular mechanisms linked to 
albuminuria response to ARBs in diabetes mellitus. The 
network approach assumes that individual drug response 
variability can be in part attributed to individual variabil-
ity in underlying molecular mechanisms involved in the 
progression of disease in the light of personalized molec-
ular pathophysiology. Indeed, coupled pathophysiologi-
cal processes such as oxidative stress, inflammation, and 
fibrosis appear to drive disease progression, but the indi-
vidual contribution of each process varies per individual. 
Drugs on the other hand, address specific targets and 
thereby interfere in specific disease associated processes. 
At this level, metabolites, or biomarkers more generally, 
may help to gain insight to which specific pathophysi-
ological processes are driving disease progression and 
are targeted by a specific drug’s mode of action [31]. 
The combined losartan/irbesartan mechanism of action 
molecular model included a total of 48 protein coding 
genes retrieved from literature mining. Adding detailed 
omics profiling specifically on drug effect on kidney cells 
and tissue via in vitro or in vivo models would provide an 
improved representation of ARB molecular effect. While 
losartan and irbesartan are different molecules, we spec-
ulated that this would not affect the predictive ability of 
the serum metabolite classifier. Indeed, this appears to be 

Table 4  Metabolite-enzyme links as  identified in  the DKD molecular model and  description of  assigned reactions 
and transport function

Metabolite-enzyme link Description

Metabolite Enzyme

ADMA NOS2, NOS3 Produces nitric oxide (NOS) which is a messenger molecule with diverse functions throughout 
the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosy‑
lase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such COX2

ADMA is an endogeous inhibitor of eNOS (NOS3) function

Aspargine Glutamine ASNS Asparagine Synthase: Adenosine triphosphate + l-Aspartic acid + l-Glutamine + Water → Aden‑
osine monophosphate + Pyrophosphate + l-Asparagine + l-Glutamic acid

Asparagine SLC1A1 Solute carries family member 1, l-Asp cotransporter

Glutamine TGM2 Catalyzes the cross-linking of proteins and the conjugation of polyamines to proteins

Citrulline NOS1, NOS2, NOS3 l-Arginine + NADPH + Oxygen → Citrulline + Nitric oxide + NADP + Water
NADPH + N-(o)-Hydroxyarginine + Oxygen + Hydrogen Ion → NADP + Nitric oxide + Citrul‑

line + Water
l-Arginine + Oxygen + NADPH + Hydrogen Ion → Nitric oxide + Citrulline + NADP + Water

lysoPC a C16:0
lysoPC a C16:1
PC aa C36:0
PC aa C42:2

PLA2G1B PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides

PC aa C36:0 ATP8A1
ATP10A
PLSCR1

Transport of aminophospholipids

Tryptophan IDO1 Catalyzes the cleavage of the pyrrol ring of tryptophan and incorporates both atoms of a mol‑
ecule of oxygen
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the case as the classifier was able to predict albuminuria 
response in both losartan and irbesartan.

A key finding from the molecular process analysis is 
the relevance of nitric oxide (NO) in ARB response, as 
illustrated by the direct interference of ARB molecular 
mechanism of action and DKD molecular model by the 
enzyme NOS3, and further reflected by the inclusion of 
ADMA and citrulline in the serum metabolite classifier. 
ADMA, an endogeneous NO synthase inhibitor, is con-
sidered relevant in endothelial dysfunction contributing 
to extracellular matrix remodeling and being involved 
in inflammation [32]. Increased ADMA levels have 
been shown to contribute to increased risk of progres-
sive DKD and predict fatal and nonfatal cardiovascular 
events in patients with type 1 diabetic nephropathy [33]. 
The positive beta values for ADMA in the regression 
models suggest that higher concentrations of the metab-
olite are associated with less albuminuria reduction. We 
therefore speculate that higher concentrations of ADMA 
lead to increased blockade of NOS3, resulting in a 
decrease in NO availability and diminished albuminuria 
response. Furthermore, citrulline, catalyzed by NOS3, 
has been shown to be inversely correlated to inflamma-
tory parameters such as C-reactive protein [34]. Sup-
plementation with citrulline has been shown to increase 
arginine/ADMA ratio, in turn decreasing blood pres-
sure and improving vascular function [35]. Our study 
points to higher concentrations of citrulline associated 
with greater reductions in albuminuria. ADMA and cit-
rulline assignments in the drug molecular model and 
DKD molecular model further suggest that albuminuria 
response to ARBs is reflected on the background of pro-
gressive disease as well as influenced by eNOS activity.

Some metabolites in the classifier could not be directly 
linked to the ARB mechanism of action molecular model, 
but were linked to processes driving progression of kid-
ney disease. This indicates that in order to assess drug 
response, the interplay between disease progression 
molecular characteristics and specific drug molecular 
effects should be considered. This notion was further 
emphasized when testing a different subgroup of metab-
olites. The subset of seven metabolites being present in 
the DKD molecular model and being linked with oxida-
tive stress response, inflammation and fibrosis (TGFB 
and downstream ECM remodeling) next to NOS3 activ-
ity significantly improved prediction of albuminuria 
response. Furthermore, interferences at the process units 
at the direct drug target together with the bradykinin 
system and on NFκB/PPARγ indicate involvement of 
inflammatory processes and lipid metabolism contribut-
ing to ARB response. These observations suggest that for 
assessing drug response, both disease progression status 

and specific drug molecular effects need to be taken into 
account. Metabolites of the renin-angiotensin-aldoster-
one system were not included in the classifier, suggest-
ing that markers of RAAS activity do not predict the 
response to RAAS inhibition, which is in line with prior 
studies [36, 37].

Within the validation cohort, we were able to assess 
GFR change after the initial response period up to the 
end of follow-up. We observed an improvement in GFR 
over follow-up in patients who had a >30 % decrease in 
UAE from baseline, compared to a patients who did not 
see such a benefit in albuminuria response (Additional 
file  1: Table S2). This is in line with previous literature 
showing that greater reduction in albuminuria is asso-
ciated with a lesser decline in eGFR during long-term 
follow-up [19]. Of interest, the metabolites were able to 
improve prediction of GFR changes, indicating that the 
serum metabolite classifier enables the identification of 
a group of patients who do not have a good albuminuria 
response to ARB therapy and have a fast deterioration of 
renal function over time. Further studies in large, diverse 
patient cohorts is necessary for validating these findings.

Limitations of this study include lack of comprehen-
siveness of drug mechanism of action characterization as 
the combined losartan/irbesartan mechanism of action 
molecular model was developed only from published lit-
erature. Undiscovered or unpublished mechanisms are 
therefore not represented in our model. Moreover, we 
were not able to determine the effect of co-medication 
in individual patients’ expression of metabolites. This 
would be important for further exploration in light of 
many (elderly) patients with diabetes mellitus with poly-
pharmacy. In addition, the relative small sample sizes of 
the included trials may have decreased the precision of 
our effect estimates. Unfortunately, a type 2 diabetes vali-
dation cohort was not available. We therefore validated 
the metabolomics classifier in a type 1 diabetes cohort 
and demonstrated that the classifier was able to predict 
response to ARB therapy in this population as well. We 
acknowledge that the disease molecular mechanisms 
of type 1 diabetes and type 2 diabetes are very different 
from each other; however, we speculate that in terms of 
response to albuminuria lowering therapy, the response 
to treatment and predictors of response may be simi-
lar. We showed that the classifier was able to predict the 
albuminuria response to two different ARBs, but we were 
unable to assess within this study whether the metabo-
lite classifier would be different in the same patient if 
that patient were taking a different class of RAAS block-
ade (such as ACEi). Whether the classifier predicts the 
response to other interventions in the RAAS has to be 
analyzed in future studies.
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Conclusions
In conclusion, we discovered and externally validated 
a classifier of 21 serum metabolites that significantly 
improve prediction of albuminuria response to ARBs 
in diabetes mellitus. Metabolites included in the classi-
fier were assigned to stress/inflammation pathways and 
downstream consequences of fibrosis and extra cellular 
matrix remodeling. Specifically, NOS3 activity appears 
to be a specific factor relevant in ARB response. These 
results indicate that for assessing drug response, both 
disease progression status and specific drug molecu-
lar effects need to be taken into account. Moreover, the 
results of this metabolomics study support the growing 
evidence of using omics tools as a strategy to improve 
molecular characterization of drug effect and disease 
pathophysiology. The complementary use of omics plat-
forms, integrated into molecular process models and 
from there determining biomarker panels, makes imple-
mentation of personalized medicine increasingly realistic 
in clinical practice.
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