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Polymorphisms in FADS1 and FADS2 alter 
plasma fatty acids and desaturase levels in type 
2 diabetic patients with coronary artery disease
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Abstract 

Background:  To explore whether plasma fatty acids and SNPs in the fatty acid desaturase (FADS) gene associated 
with type 2 diabetes (T2D) and coronary artery disease (CAD).

Methods:  In this cross-sectional study, we utilized gas chromatography–mass spectrometric analysis and the 
high-resolution melting method to detect plasma fatty acids and SNPs respectively (rs174537G>T, rs174616C>T, 
rs174460T>C, and rs174450A>C) in 234 T2D, 200 CAD, 185 T2D&CAD patients, and 253 healthy controls.

Results:  We found that T2D&CAD patients had the highest plasma arachidonic acid, dihomo-gamma-linolenic acid 
and delta-6 desaturase, and the lowest stearic acid, linolenic acid, and saturated fatty acids; plasma eicosapentaenoic 
acid and docosahexaenoic acid elevated in T2D patients, but significantly reduced in CAD patients. Moreover, T2D 
patients with rs174537 GG genotype were at risk of developing T2D&CAD (odds ratio (OR) 1.763; 95 % CI 1.143–2.718; 
p = 0.010), with elevated plasma LDL-cholesterol, arachidonic acid, and delta-6 desaturase.

Conclusions:  Our results show that SNPs in FADS gene (particularly rs174537) associate with plasma fatty acids and 
desaturase levels in patients with both T2D and CAD, which maybe increases the risk of CAD in diabetic patients.

Keywords:  Coronary artery disease (CAD), Type 2 diabetes (T2D), Fatty acids, Desaturase, Polymorphism(s)

© 2016 Li et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Type 2 diabetes (T2D) and coronary artery disease 
(CAD) are global public health concerns [1]. People with 
diabetes also have a high incidence of CAD [2]; T2D 
patients with CAD (T2D&CAD) have mortality rates that 
are about 2 to 4 times higher than those of T2D patients 
without CAD [3]. Recently, An et al. [4] reported that in 
Chinese adults, diabetes is associated with a substantially 
increased risk of cardiovascular-cause mortality. Thus, 
it is important to explore risk factors of T2D, CAD and 
T2D&CAD: these factors include obesity, metabolic syn-
drome, family history of T2D or CAD, impaired glucose 
tolerance, low physical activity, increased plasma tri-
glycerides (TG), and decreased HDL-cholesterol [5–7]. 
Of these risk factors, plasma fatty acid composition is 

of particular interest because of the role of plasma fatty 
acids in normal and pathophysiologic responses [8].

The desaturase enzymes are of great importance in 
the chemical structure and functions of fatty acids. The 
stearoyl coenzyme is definitely required for the conver-
sion of saturated fatty acids into monounsaturated fatty 
acids, and delta-5 desaturase (D5D) and delta-6 desatu-
rase (D6D) catalyze the rate-limiting steps in the conver-
sion of linoleic acid (LA, C18:2n-6) and gamma-linolenic 
acid (GLA, C18:3n-6) into long-chain n-6 and n-3 poly-
unsaturated fatty acids. In fact, the influence of desatu-
rase enzymes on fatty acids has been identified as an 
essential factor of T2D and CAD [9]. The fatty acid desat-
urase genes FADS1 and FADS2 code, respectively, for 
the desaturase enzymes D5D and D6D, which cluster in 
a head-on-head direction on chromosome 3. The role of 
FADS3 in fatty acid metabolism is still unclear, although 
FADS3 is also clustered at the same location as FADS1 
and FADS2 [10].
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Previous studies have suggested that plasma and tis-
sue concentrations of n-3 and n-6 fatty acids are asso-
ciated with several single nucleotide polymorphisms 
(SNPs) in the FADS1 and FADS2 genes [11–13]. Our 
previous research demonstrated that participants with 
the rs174460 C allele had a higher risk of CAD than 
those who had the corresponding T allele, and that the 
rs174537 T allele is associated with a lower risk of CAD 
when compare with the carriers of rs174537 G allele [14]. 
Genome-wide association studies in humans have also 
highlighted the influence of variations in the FADS1 and 
FADS2 gene cluster on glucose and lipid metabolisms, 
such as total cholesterol [15] and LDL-cholesterol, and 
disease conditions such as metabolic syndrome, myo-
cardial infarction, and dyslipidemia [16, 17].  However, 
few studies have specifically focused on the association 
between genetic polymorphisms in the FADS gene clus-
ter and the risk of T2D&CAD. Due to the functions of 
FADS gene in fatty acids metabolism and homeostasis, 
we hypothesize that SNPs in FADS gene will influent the 
desaturase activity, which therefore alters the character-
istics of plasma fatty acids and the risk of T2D&CAD. 
To test our hypothesis, in this study, we explored genetic 
polymorphisms in the FADS gene cluster and plasma 
fatty acids in patients with T2D, CAD or T2D&CAD, and 
healthy controls.

Methods
Patients
872 unrelated individuals were recruited at Zhongnan 
Hospital of Wuhan University, including: 234 patients 
with T2D, 200 patients with CAD, 185 patients with 
T2D&CAD, and 253 healthy controls. T2D was diag-
nosed according to 2012 ADA diabetes treatment guide-
lines [18]. CAD patients were with either coronary 
angiography or myocardial infarction, which was defined 
as a ≥50  % stenosis in any major coronary artery [19]. 
Healthy controls were randomly selected from physi-
cal examination population who had normal liver func-
tion and kidney function, and fasting blood glucose and 
lipids were within reference ranges; and exclusion crite-
ria were diabetes, cardiovascular disease or other serious 
disease or use of any medicine or fish oil supplement. 
Healthy controls should maintain their usual diet, T2D 
patients should maintain low-fat and -carbohydrate diet, 
CAD patients should maintain low-fat and -sodium diet, 
T2D&CAD patients should maintain low-fat, -carbohy-
drate and -sodium diet. All patients underwent statins 
for cholesterol-lowering. Written informed consent was 
obtained from all participants, and the study protocol 
was approved by the ethics committee of Zhongnan Hos-
pital of Wuhan University.

Fatty acids analysis
To detect fatty acid methyl esters, we used a previously 
described method [20] with minor modifications. After 
filtration, 1μL of sample was injected into the Agilent 
7890/5975 gas chromatography–mass spectrometry sys-
tem (Agilent Technologies, Santa Clara, CA, USA). The 
HP-INNOWax column (30  m  ×  0.25  mm  ×  0.25  μm) 
(Agilent Technologies) was used for gas chromatogra-
phy–mass spectrometry analysis. The gas chromatog-
raphy oven temperature was programmed to increase 
from 60  °C (2  min) to 160  °C at 20  °C/min and then to 
240  °C (6  min) at 10  °C/min, and the flow rate of car-
rier gas was at 1 mL/min. The interface temperature was 
250  °C, the ion-source temperature was 230  °C, and the 
electron-impact ionization was 70  eV, with a full scan 
ranging from 20 to 550 m/z and a solvent delay of 3 min. 
Peak identification of target compounds was based on 
the retention times and full scan spectra of the standards. 
The levels of individual fatty acids are expressed as a per-
centage of total fatty acid methyl esters. D5D activity was 
estimated as the ratio of AA to DGLA, and D6D activity 
was estimated as the ratio of GLA to LA. Palmitoleic acid 
(C16:1) to palmitic acid (C16:0) and OA to SA ratios were 
used as a surrogate estimation of the activity of D9D-16 
and D9D-18, respectively.

SNP selection and genotyping
We used a commercially available DNA isolation kit 
(TIANamp, Beijing, China) to extract genomic DNA 
from whole blood (200  μL), according to the protocol. 
SNPs in FADS gene were identified using the Interna-
tional HapMap Project SNP database and Tag SNPs 
(tSNPs) were selected with their features in Haploview 
V4.1 by a minor allele frequency (MAF >5 %) and pair-
wise tagging (r2  ≥  0.8), and reference population was 
CHB. Moreover, we examined linkage disequilibrium 
(LD) between any two of four selected tSNPs using the 
SNP Annotation and Proxy Search (SNAP) database. 
Four SNPs (Flap structure-specific endonuclease-10154 
rs174537G>T, FADS2 rs174616C>T, rs174460T>C, and 
rs174450A>C) were genotyped with the high-resolution 
melting of a small amplicon, as described previously [14].

Statistical analysis
All statistical analyses were performed with SPSS 19.0 
for Windows (IBM, Armonk, NY, USA). Continuous 
variables are expressed as means ±  SDs. Skewed vari-
ables are described by the median and interquartile 
range. K-independent nonparametric analysis was used 
to compare the fatty acid levels among the T2D, CAD, 
T2D&CAD, and healthy groups. Ordinal logistic regres-
sion analysis (ordinal values were 1 for healthy controls, 
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2 for patients with T2D or CAD, and 3 for patients with 
T2D&CAD) were used to evaluate the associations of 
SNPs with diseases. Hardy–Weinberg equilibrium, gen-
otype and allele frequency distributions were performed 
using SNPStats (Barcelona, Spain) [21] after adjust-
ing for age and sex. All statistical tests were two-sided, 
and p values of less than 0.05 or Bonferroni correction-
adjusted p values of less than 0.0125 were considered 
statistically significant.

Results
Clinical characteristics
The demographic and clinical characteristics of T2D, 
CAD, and T2D&CAD patients and healthy controls 
are listed in Table 1. We found significant differences in 
plasma TG, TC, HDL-cholesterol, LDL-cholesterol, and 
fasting plasma glucose (FPG) levels among four groups. 
Besides, T2D patients had the highest FPG and HbA1c 
levels, yet CAD patients and T2D&CAD patients had 
lower levels of TC and LDL-cholesterol than that in T2D 
patients.

Plasma fatty acids and desaturase activities
As shown in Fig.  1, a total of 34 standard fatty acid 
methyl esters were distinctly separated on HP-INNOWax 
column within 20 min. Plasma fatty acids and desaturase 
activities, except for Alpha-linolenic acid (ALA, 18:3n-
3) and D5D,differed among the four groups according 
to the results of K-independent nonparametric analysis 
(Table  1). Of the four groups, T2D&CAD patients had 
the highest levels of arachidonic acid (AA, C20:4n-6), 
dihomo-gamma-linolenic acid (DGLA, C20:3n-6) and 
D6D; and the lowest levels of stearic acid (SA, C18:0), 
LA and saturated fatty acids. Of the four groups, T2D 
patients had the highest levels of palmitic acid (C16:0), 
oleic acid (OA, C18:1n-9), EPA, DHA, monounsaturated 
fatty acids, n-3 fatty acids, D9D-16 (C16:1/C16:0), D9D-
18 (C18:1n9/C18:0) and n-3/n-6; and the lowest levels of 
GLA, AA and D6D (AA/LA). Of the four groups, CAD 
patients had the highest levels of palmitoleic acid (C16:1) 
and GLA and the lowest levels of EPA, DHA, and n-3 
fatty acids.

Association of SNPs with T2D&CAD risk
Genotype distributions of the four SNPs were in Hardy–
Weinberg equilibrium in healthy controls (Table  2). 
Among the four SNPs, only the genotype distributions 
of rs174537G>T differed in both additive (p  =  0.032) 
and dominant models (p =  0.027) among all study par-
ticipants. Ordinal logistic regression analysis was per-
formed in healthy controls, T2D patients and T2D&CAD 
patients to assess whether rs174537 associated with 
the risk of T2D&CAD, the results revealed that T2D 

patients with rs174537 GG genotype were at higher risk 
of developing T2D&CAD (odds ratio (OR) 1.763; 95  % 
CI 1.143–2.718; p = 0.010) (Table 3). Besides, similar risk 
also existed in CAD patients with rs174537 GG genotype 
(OR, 2.050; 95 % CI 1.292–3.258; p = 0.002) (Additional 
file1: Table S1).

Clinical characteristics, plasma fatty acids and desaturase 
activities in rs174537 GG genotype participants
Compared with T2D&CAD patients with rs174537 GG 
genotype, healthy controls with GG genotype had lower 
levels of TC, TG, LDL-cholesterol, FPG, C16:0, PA, OA, 
ALA, DHA, DGLA, AA, n-3 fatty acids, n-6 fatty acids, 
monounsaturated fatty acid, D6D, D9D-18, and n-3/n-6 
and had higher levels of HDL-cholesterol, SA and LA. 
CAD patients with GG genotype had higher levels of 
HDL-cholesterol and lower levels of FPG, OA, DHA, n-3 
fatty acids, D9D-18, and n-3/n-6 than did T2D&CAD 
patients with GG genotype. T2D patients with GG gen-
otype had higher levels of TC, TG, FPG, OA, EPA, LA, 
n-3 fatty acids, D5D and n-3/n-6 and had lower lev-
els of LDL-cholesterol, and D6D than did T2D&CAD 
patients with GG genotype (Table 4). Moreover, we also 
compared healthy controls, T2D, CAD with T2D&CAD 
patients with rs174537 GT or TT genotype (Additional 
file 1: Table S2, Table S3).

Discussion
In this study, we found that either plasma fatty acid lev-
els or the estimated desaturase activities significantly 
differed in T2D, CAD, T2D&CAD patients and healthy 
controls; T2D patients with rs174537 GG genotype 
were at risk of developing T2D&CAD. Additionally, 
T2D&CAD patients with the rs174537 GG genotype 
had elevated plasma levels of TC, LDL-cholesterol, FPG, 
GLA, DGLA, and AA.

Interestingly, T2D patients had the highest EPA and 
DHA concentrations, whereas CAD patients had the low-
est levels of plasma EPA and DHA. T2D&CAD patients 
showed increased D6D (AA/LA), D9D-18 (OA/SA), and 
D9D-16 (C16:1/C16:0) activity.

Our findings, to some extent, suggest that elevated lev-
els of EPA and DHA might protect T2D patients from 
CAD. Several large-scale studies of fish oil supplements 
that contain high concentrations of EPA and DHA have 
also confirmed the beneficial effects of n-3 fatty acids 
on cardiovascular events [22, 23]. Other studies showed 
that fish oil supplements reduced the number of deaths 
and episodes of chronic cardiac failure [24] and patients 
treated with EPA had a 22  % lower risk of CAD than 
those not treated with EPA [2], which confirmed that 
high blood EPA levels,compare to DHA, can reduce car-
diovascular events [25].
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Our data further support these conclusions that EPA 
can prevent coronary events. Moreover, one study found 
that EPA suppresses TG synthesis in the liver and low-
ers serum TG and decreases atherogenic lipoproteins 
such as remnants and small, dense LDL-cholesterol and 
concluded that EPA was effective in reducing the inci-
dence of CAD events for patients with dyslipidemia [26]. 

However, another study found that daily n-3 fatty acid 
supplements (containing EPA and DHA) did not reduce 
the rate of death from cardiovascular causes or other out-
comes in patients at high risk for cardiovascular events 
[27]. We also found that CAD patients with or without 
T2D had lower levels of TC and LDL-cholesterol than did 
T2D patients. Clinical studies [28, 29] have shown that 

Table 1  Clinical characteristics and Differential fatty acid levels and desaturase activities in healthy controls and patients

a  p values derived from K-independent non-parametric analysis

Characteristics Healthy controls  
(n = 253)

T2D patients  
(n = 234)

CAD patients  
(n = 200)

T2D&CAD patients 
(n = 185)

pa

Male/Female (%) 60.5/39.5 62/38 55.5/44.5 63.2/36.8 0.412

Age (year) 59.73 ± 10.06 57.74 ± 12.76 59.47 ± 10.53 60.30 ± 9.73 0.282

Systolic blood pressure 
(mmHg)

128.19 ± 20.59 130.90 ± 17.73 129.16 ± 18.94 131.87 ± 19.54 0.247

Diastolic blood pressure 
(mmHg)

78.42 ± 13.75 76.64 ± 10.71 78.51 ± 12.20 78.61 ± 11.78 0.513

Total cholesterol (mmol/l) 4.43 (3.97, 4.91) 4.68 (3.99, 5.31) 4.05 (3.33, 4.64) 4.07 (3.31, 4.99) <0.0001

Triglyceride (mmol/l) 1.01 (0.78, 1.32) 1.82 (1.21, 2.74) 1.26 (0.93, 1.60) 1.37 (1.01, 1.98) <0.0001

HDL-cholesterol (mmol/l) 1.29 (1.12, 1.49) 1.05 (0.90, 1.20) 1.17 (0.99, 1.35) 1.03 (0.87, 1.29) <0.0001

LDL-cholesterol (mmol/l) 2.70 (2.33, 3.05) 2.70 (2.10, 3.21) 2.42 (1.72, 2.89) 2.42 (1.84, 3,12) <0.0001

Fasting plasma glucose 
(mmol/l)

4.92 (4.59, 5.33) 8.50 (6.45, 11.73) 5.68 (5.11, 6.29) 6.93 (6.03, 8.16) <0.0001

HbA1c (%) _ 7.70 (6.50, 9.48) _ 6.70 (6.10, 7.30) <0.0001

HbA1c (mmol/mol) _ 60.66 (47.54, 80.11) _ 49.73 (43.17, 56.28) <0.0001

Fatty acids (%)

 Palmitic acid, C16:0 22.41 (21.40, 23.63) 23.61 (21.78, 25.34) 23.17 (21.38, 24.64) 23.40 (21.76, 24.77) <0.0001

 Stearic acid, C18:0 9.33 (8.52, 9.98) 9.14 (7.63, 10.78) 9.16 (8.37, 9.89) 8.96 (8.14, 9.85) 0.048

 Total monounsaturated 
fatty acid

16.05 (14.14, 18.12) 19.27 (16.93, 21.71) 17.40 (15.47, 19.60) 18.47 (15.99, 20.65) <0.0001

 Palmitoleic acid, C16:1 0.70 (0.52, 0.95) 0.88 (0.42, 1.50) 0.95 (0.66, 1.23) 0.90 (0.59, 1.55) <0.0001

 Oleic acid, C18:1n-9 14.85 (13.10, 16.74) 18.29 (16.06, 20.52) 15.90 (14.29, 17.83) 17.23 (14.75, 19.65) <0.0001

 Total polyunsaturated  n-3 
fatty acid

3.65 (2.93, 4.31) 7.07 (4.42, 10.05) 3.40 (2.78, 4.00) 4.22 (3.20,7.25) <0.0001

 α-linolenic acid, C18:3n-3 0.55 (0.35, 0.76) 0.58 (0.13, 1.08) 0.55 (0.34, 0.78) 0.65 (0.34, 0.92) 0.195

 Eicosapentaenoic acid, 
C20:5n-3

0.21 (0.00, 0.46) 0.87 (0.28, 1.75) 0.17 (0.00, 0.40) 0.18 (0.00, 1.17) <0.0001

 Docosahexaenoic acid, 
C22:6n-3

2.72 (2.17, 3.38) 4.78 (1.95, 7.40) 2.52 (2.00, 3.12) 3.22 (2.49, 5.01) <0.0001

 Total polyunsaturated n-6 
fatty acid

46.32 (43.57, 49.04) 45.66 (42.34, 49.19) 44.37 (41.37, 47.46) 45.08 (41.69, 48.27) <0.0001

 Linoleic acid, C18:2n-6 35.96 (32.94, 39.49) 34.63 (30.50, 40.53) 33.11 (29.66, 36.64) 32.61 (29.36, 36.47) <0.0001

 γ-linolenic acid, C18:3n-6 0.22 (0.05, 0.42) 0.13 (0.00, 0.37) 0.32 (0.10, 0.57) 0.17 (0.00, 0.49) <0.0001

 Dihomo-γ-linolenic acid, 
C20:3n-6

1.35 (1.07, 1.63) 1.37 (0.16, 2.13) 1.54 (1.18, 2.03) 1.63 (1.03, 2.40) <0.0001

 Arachidonic acid, C20:4n-6 7.98 (6.68, 9.43) 7.59 (3.97, 10.82) 7.92 (6.28, 9.70) 9.18 (6.67, 11.27) <0.0001

Desaturase activity

 C20:4n-6/C20:3n-6 (D5D) 6.22 (4.61, 7.67) 5.11 (3.71, 8.26) 5.23 (3.39, 7.60) 5.07 (3.47, 7.75) 0.051

 C20:4n-6/C18:2n-6 (D6D) 0.22 (0.18, 0.27) 0.22 (0.10, 0.35) 0.24 (0.19, 0.31) 0.28 (0.19, 0.36) <0.0001

 C16:1/C16:0 (D9D-16) 0.03 (0.02, 0.04) 0.04 (0.02, 0.07) 0.04 (0.03, 0.05) 0.04 (0.03, 0.06) 0.002

 C18:1n-9/C18:0(D9D-18) 1.62 (1.39, 1.90) 1.97 (1.58, 2.42) 1.77 (1.49, 2.06) 1.94 (1.67, 2.29) <0.0001

 n-3/n-6 0.08 (0.06, 0.10) 0.16 (0.09, 0.23) 0.08 (0.06, 0.09) 0.10 (0.07, 0.17) <0.0001
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Fig. 1  Total-ion chromatogram of standard fatty acid methyl esters separated on HP-INNOWax column. Peaks: 1, C6:0, caproic acid; 2, C8:0, caprylic 
acid; 3, C10:0, capric acid; 4, C11:0, undecanoic acid; 5, C12:0, lauric acid; 6, C13:0, tridecanoic acid; 7, C14:0, myristic acid; 8, C14:1, myristoleic acid; 9, 
C15:0, pentadecanoic acid; 10, C15:1, cis-10-pentadecenoic acid; 11, C16:0, palmitic acid; 12, C16:1, palmitoleic acid; 13, C17:0 heptadecanoic acid; 
14, C17:1, cis-10-heptadecenoic acid; 15, C18:0, stearic acid; 16, C18:1n-9, oleic acid; 17, C18:2n-6, linoleic acid; 18, C18:3n-6, gamma-linolenic acid; 
19, C18:3n-3, alpha-linolenic acid; 20, C20:0, arachidic acid; 21, C20:1, cis-11-eicosenoic acid; 22, C20:2, cis-11,14-eicosadienoic acid; 23, C20:3n-6, 
dihomo-gamma-linolenic acid; 24, C21:0, heneicosanoic acid; 25, C20:4n-6, arachidonic acid; 26, C20:3n3, cis-11,14,17-eicosatrienoic acid; 27, 
C20:5n-3, eicosapentaenoic acid; 28, C22:0, behenic acid; 29, C22:1n-9, erucic acid; 30, C22:2, cis-13,16-docosadienoic acid; 31, C23:0, tricosanoic 
acid; 32, C24:0, lignoceric acid; 33, C22:6n-3, docosahexaenoic acid; 34, C24:1, nervonic acid

Table 2  Distributions of genotype and allele frequency in healthy controls and patients

a  Hardy–Weinberg Equilibrium (HWE) was calculated in healthy controls
b  p values derived from the Chi square test of allele frequency
c  p values derived from the Chi square test of genotype distribution

SNP Genotype Healthy 
controls
(n = 253)

T2D patients
(n = 234)

CAD patients
(n = 200)

T2D &CAD 
patients 
(n = 185)

HWEa p valueb Additive 
model, p 
valuec

Dominant 
model, p 
valuec

rs174537G>T GG 65 88 58 63 0.56 0.009 0.032 0.027

GT 131 106 90 91

TT 57 40 52 31

rs174616C>T CC 113 104 88 99 0.59 0.383 0.445 0.180

TC 115 109 90 68

TT 25 21 22 18

rs174460C>T TT 151 129 106 112 0.56 0.185 0.136 0.344

TC 91 81 78 56

CC 11 24 16 17

rs174450A>C AA 101 86 82 80 0.46 0.550 0.743 0.589

AC 122 113 96 80

CC 30 35 22 25
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lipid-lowering therapy, such as statins, plays an extremely 
important role in preventing and treating CAD, and 
statins can competitively inhibit 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase activity and can reduce 
hepatic cholesterol synthesis, circulating LDL-cholesterol 
levels, and other apolipoprotein B-containing lipopro-
teins [30, 31].

We found that T2D patients had the highest D9D-16 
and D9D-18 levels, followed by T2D&CAD patients. 
Moreover, T2D&CAD patients had the lowest D5D activ-
ity and the highest D6D activity. Increased D9D activity 
is associated with insulin resistance, fatty liver disease, 
and metabolic syndrome, and D9D is considered to be 
a promising target for treating insulin resistance [32]. 
Kröger et  al. [33] discovered that the estimated D5D 
activity was negatively correlated with diabetes risk, 
whereas the estimated D6D activity was strongly and 
positively correlated with diabetes risk. Several studies 
have suggested that participants with a high estimated 
D5D activity have a 50 % lower risk of diabetes compared 
with those with a low D5D activity; these findings were 
based on analysis of extreme quintiles [34, 35] or ter-
tiles [36]. CAD patients with elevated D6D activity had 
a higher risk of diabetes [37]. Although the mechanism 
by which insulin resistance increases cardiovascular risk 
is still unclear, D5D and D6D, which are encoded by 
FADS1  and  FADS2, may influence glucose metabolism 
[38]. Several studies have reported that SNPs in the FADS 
gene cluster are correlated with desaturase activity and 
that this correlation differed among ethnic groups [15, 
39].

As we all know, cardiac and vascular diseases are often 
accompanied by diabetes, however, in some patients who 
had had a CAD but who had not previously been diag-
nosed with diabetes. Obviously, the severity of healthy 
control, T2D, and T2D&CAD is gradually increased, 
which is a typical ordinal event of T2D progress. Thus, 

we use ordinal logistic regression to find out whether 
T2D patients with rs174537 GG genotype were at risk 
of developing T2D&CAD. Our results demonstrate that 
the genotype distributions of rs174537G>T influence 
desaturase activity and are associated with the risk of 
both T2D and CAD, which is consistent with previous 
reports [11, 40]. Besides, in order to exclude the impact 
of CAD, we set up a CAD group, therefore the ordinal 
logistic regression was also applied to the healthy con-
trol, CAD and CAD&T2D and the results are listed in 
Additional file 1: Table S1. We also found that the minor 
allele T of rs174537 was significantly associated with n-3 
fatty acid concentrations in the three patient groups. 
Numerous SNPs in the FADS gene cluster were reported 
to be significantly associated with fatty acid alterations 
in serum and red blood cell membranes [16, 30, 41]. 
Genome-wide association studies analysis also confirmed 
that the rs174537 SNP is significantly associated with the 
AA level in patients with CAD and/or T2D [16]. How-
ever, in our study, we observed this association only in 
the T2D&CAD group. The rs174537 SNP is located in 
an intron and is in linkage disequilibrium with rs174546 
(r2 =  0.99) and rs3834458 (r2 =  0.98), which can influ-
ence gene expression directly [17, 42].  Therefore, it is 
possible that this variant of the rs174537 SNP is a marker 
of other functional polymorphisms or is in linkage with 
currently unidentified causal variants that affect fatty 
acid concentrations. In addition, T2D&CAD patients 
with the rs174357 GG genotype had decreased D5D and 
elevated D6D and D9D activity. Our previous study of 
CAD patients also supports this finding [14].

Indeed, we were unable to take “one-size-fits-all” medi-
cation therapy for patients and standard energy intake 
for all subjects, that resulted in failure to adjust for die-
tary intake and medicine in the statistical analyses, and 
our HP-INNOWax column assay did not get the trace 
amounts of several fatty acids in human plasma, but with 

Table 3  Risk estimation of  SNPs by  ordinal logistic regression analysis in  healthy controls, T2D patients, T2D&CAD 
patientsa

a  Ordinal values were 1 for healthy controls, 2 for patients with T2D, and 3 for patients with T2D&CAD
b  p values derived from ordinal logistic regression after adjustment for sex, age, TC, TG, HDL-cholesterol, LDL-cholesterol, and FPG

SNP Group Estimate Wald value p valueb OR (95 % CI)

rs174537G>T GG 0.567 6.576 0.010 1.763 (1.143–2.718)

GT 0.299 2.145 0.143 1.349 (0.904–2.014)

rs174616C>T CC 0.256 0.932 0.334 1.292 (0.768–2.175)

CT −0.143 0.285 0.593 0.867 (0.513–1.464)

rs174450A>C AA 0.054 0.052 0.820 1.055 (0.663–1.680)

AC 0.006 0.001 0.978 1.006 (0.637–1.590)

rs174460C>T TT 0.336 1.388 0.239 1.399 (0.800–2.447)

TC −0.162 1.006 0.316 0.850 (0.619–1.168)
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a large sample size, these factors did have limited influ-
ence on our research. Our data indicate that polyunsat-
urated fatty acid metabolisms, desaturase activity, and 
FADS polymorphisms contribute to the simultaneous 
development of T2D and CAD. Our results suggest that 
rs174537 may be a key SNP in the FADS gene cluster and 
is associated with plasma fatty acid levels.

Conclusions
It is the first time to show an association of plasma fatty 
acids, desaturase activities, and FADS genotypes with 
patients who had both T2D and CAD. Genetic variation 
in the FADS gene cluster, particularly rs174537, might 
cause the alterations in plasma fatty acids and desaturase 
levels, which could provide new insights for diagnostic 
and therapeutic strategies for patients with both T2D and 
CAD, and help prevent T2D patients from CAD.
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Table 4  Comparisons of clinical parameters, plasma fatty acids and desaturase activities grouping by rs174537 GG geno-
type

* p < 0.0125 derived from two-independent nonparametric analysis with Bonferroni correction (T2D&CAD patients vs healthy controls or T2D patients or CAD 
patients)

Characteristics Healthy controls
GG (n = 65)

T2D patients
GG (n = 88)

CAD patients
GG (n = 58)

T2D&CAD patients
GG (n = 63)

Total cholesterol (mmol/l) 4.50 ± 0.72* 4.79 (4.00, 5.30)* 4.05 (3.29, 4.60) 4.52 (3.59, 5.50)

Triglyceride (mmol/l) 0.97 (0.79, 1.22)* 1.71 (1.21, 2.33)* 1.31 (1.01, 1.60) 1.36 (1.05, 1.94)

HDL-cholesterol (mmol/l) 1.37 (1.10, 1.55)* 1.07 (0.90, 1.21) 1.10 (0.94, 1.37)* 1.10 (0.93, 1.35)

LDL-cholesterol (mmol/l) 2.74 (2.27, 3.29)* 2.81(2.10, 3.17)* 2.42 (1.83, 2.84) 2.75 (2.03, 3.53)

Fasting plasma glucose (mmol/l) 4.89 (4.58, 5.54)* 8.51 (6.56, 12.24)* 5.47 (5.01, 6.29)* 7.00 (6.08, 8.24)

Total saturated fatty acid 32.14 (31.21, 33.53) 32.88 (31.24, 34.39) 33.07 (31.21, 34.97) 32.86 (29.45, 34.20)

Palmitic acid, C16:0 22.17 (21.44, 23.58)* 23.62 (21.80, 25.37) 22.46 (21.27, 24.41) 23.96 (21.00, 25.09)

Stearic acid, C18:0 9.19 (8.51, 9.87)* 9.02 (7.62, 10.55) 9.24 (8.56, 10.19) 8.45 (6.86, 9.75)

Total monounsaturated fatty acid 16.13 (14.40, 18.27)* 18.93 (16.80, 21.12) 16.58 (15.04, 19.52) 18.21 (15.41, 20.39)

Palmitoleic acid, C16:1 0.73 (0.57, 0.96)* 0.65 (0.33, 1.30) 0.88 (0.55, 1.26) 1.00 (0.55, 1.67)

Oleic acid, C18:1n-9 15.09 (13.33, 16.89)* 18.00 (16.16, 20.07)* 15.38 (13.91, 17.65)* 16.83 (13.76, 18.70)

Total polyunsaturated n-3 fatty acid 3.92 (3.24, 4.56)* 6.74 (1.99, 10.07)* 3.40 (2.81, 4.09)* 5.37 (3.45, 8.51)

Alpha-linolenic acid, C18:3n-3 0.66 (0.47, 0.86)* 0.56 (0.12, 1.13) 0.59 (0.36, 0.79) 0.67 (0.33, 0.95)

Eicosapentaenoic acid, C20:5n-3 0.31 (0.10, 0.56) 0.75 (0.21, 1.52)* 0.28 (0.00, 0.47) 0.27 (0.00, 1.80)

Docosahexaenoic acid, C22:6n-3 2.94 (2.33, 3.36)* 4.32 (1.16, 6.91) 2.50 (1.98, 3.12)* 3.66 (2.72, 5.92)

Total polyunsaturated n-6 fatty acid 45.70 (43.71, 48.00)* 46.51 (43.40, 50.40) 43.94 (41.11, 48.44) 45.85 (41.87, 48.23)

Linoleic acid, C18:2n-6 36.21 (33.33, 39.64)* 35.13 (30.12, 45.38)* 32.59 (29.13, 35.74) 32.52 (27.44, 36.37)

Gamma-linolenic acid, C18:3n-6 0.24 (0.09, 0.32) 0.12 (0.01, 0.34) 0.38 (0.11, 0.58) 0.12 (0.00, 0.54)

Dihomo-gamma-linolenic acid, C20:3n-6 1.39 (1.11, 1.77)* 1.29 (0.10, 2.12) 1.67 (1.19, 2.13) 1.64 (0.93, 2.58)

Arachidonic acid, C20:4n-6 7.66 (6.24, 9.19)* 8.04 (3.97, 11.93) 8.13 (6.33, 10.43) 9.21 (6.50, 11.48)

Desaturase activity

C20:4n-6/C20:3n-6 (D5D) 5.54 (4.39, 7.30) 5.92 (4.33, 8.41)* 5.09 (3.47, 7.78) 4.20 (2.66, 6.85)

C20:4n-6/C18:2n-6 (D6D) 0.22 (0.16, 0.26)* 0.23 (0.09, 0.39)* 0.24 (0.19, 0.34) 0.29 (0.19, 0.38)

C16:1/C16:0 (D9D-16) 0.03 (0.02, 0.05) 0.03 (0.01, 0.06) 0.04 (0.03, 0.06) 0.04 (0.03, 0.07)

C18:1n-9/C18:0(D9D-18)1 1.64 (1.39, 2.00)* 1.86 (1.56, 2.43) 1.73 (1.44, 2.06)* 1.95 (1.69, 2.32)

n-3/n-6 0.08 (0.07, 0.10)* 0.15 (0.04, 0.23)* 0.08 (0.06, 0.09)* 0.11 (0.07, 0.21)

http://dx.doi.org/10.1186/s12967-016-0834-8
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