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Abstract 

Fibroblasts are known as critical stromal cells in wound healing by synthesizing extracellular matrix and collagen. A 
subpopulation of them is called cancer-associated fibroblasts (CAFs), because their production of proteins partici-
pated in various biological activities including tumor cell proliferation, invasion and metastasis. Currently some studies 
shed light on their role in esophageal cancer which was an aggressive cancer with a dismal survival and high rate of 
metastasis. Thus, to find cures for it relies on elucidating the epithelial-fibroblasts crosstalk. Herein, we reviewed the 
present knowledge of the CAFs’ role in esophageal premalignant condition, cancer initiation, progression, metastasis 
and prognosis prediction and further provided some insights into its clinical application.
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Background
More than 450,000 people worldwide are inflicted with 
esophageal cancer featuring early metastatic spread and 
poor prognosis every year, whose overall 5-year survival 
ranged between 15 and 25 % [1]. The poor outcomes are 
not only related to the tumor-cell but also impacted by 
the stromal fibroblasts [2]. Previously, the investigations 
of fibroblasts usually focused on wounds healing. Acti-
vated fibroblasts with high-proliferation and high-secre-
tion phenotype generate extracellular matrix (ECM) and 
regulate inflammation. Once the wounds are healed, the 
number of activated fibroblasts is greatly reduced and 
the quiescent fibroblasts are restored [3]. Currently, some 
studies concentrated on the role of perpetually activated 
fibroblasts in the microenvironment of various types of 
cancers including esophageal cancer [3, 4]. And these 
activated fibroblasts are known as cancer-associated 
fibroblasts (CAFs).

It becomes clear that CAFs are prominent regulators 
involved in the entire course of cancer development. They 
provide esophageal cancer cells with a suitable environ-
ment for carcinogenesis, proliferation, angiogenesis and 

invasion via secreting factors [2, 5–10]. Thus, the aims 
of the study were to summarize CAFs’ role in esophageal 
cancer and to provide some insights into its future clini-
cal application.

The origins of CAFs
To better understand the impact of CAFs on esophageal 
cancer development, the first step is to know their diverse 
origins, which included normal fibroblasts (NFs), bone 
marrow-derived cells (BMDCs), endothelial cells, hemat-
opoietic stem cells (HSCs), epithelial cells, pericytes and 
adipocytes [11] (Fig. 1).

NFs in esophageal cancer were reported to be a source 
of CAFs in response to the paracrine of cancer cells. 
Nouraee et  al. [12] co-cultured NFs with esophageal 
carcinoma cells and observed CAF markers were up-
regulated. It was suggested that some microRNAs may 
got involved in this process. The transformation may be 
attributed to the elevated release of microRNA-21 from 
esophageal squamous cell carcinoma cells (KYSE-30). In 
addition, microRNA-27 was also observed to manipulate 
the transformation of NFs into CAFs [13]. Transform-
ing growth factor beta (TGFβ) also was promoter of this 
process [14]. BMDCs were another source of esophageal 
activated fibroblasts. Hutchinson et al. [15] transplanted 
mice with bone marrow expressing beta galactosidase. 
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Then the mice suffered Barrett’s metaplasia, in which 
authors found activated fibroblasts labeled with not only 
their specific marker α smooth muscle actin (SMA), but 
also beta galactosidase. It implicated they were derived 
from BMDCs. In vivo, authors found BMDCs-derived 
CAFs in a patient with esophageal adenocarcinoma 
(EAC) [15]. In this research, a male patient was diagnosed 
as EAC 10 years after bone marrow transplantation from 
a female donor. Through X/Y fluorescent in situ hybridi-
zation and anti-α-SMA staining, they discovered 12.57 % 
CAFs were originated from the donor bone marrow [15]. 
However, the small sample size was the limitation of this 
study. It should be verified in more patients. In other 
cancers, endothelial cells, HSCs, epithelial cells, peri-
cytes and adipocytes were proved as CAFs resources [11, 
16–20], but they remained unclear in esophageal cancer, 
which needed further researches.

The role of fibroblasts in esophageal premalignant 
condition
Reflux esophagitis is stimulated by gastric acid and bile 
reflux. Chronic exposure to gastroesophageal reflux will 
transform esophageal squamous epithelium to colum-
nar epithelium, which is known as Barrett’s esophagus 
(BE). It is the precancerous lesion of esophageal cancer 
[21]. Therefore, in order to investigate the whole course 

of cancer development, some studies focused on the rela-
tionship between fibroblasts and precancerous disease.

Interleukin (IL)-1β and IL-6 were found in mucosal 
specimens of reflux esophagitis patients. In the study 
of Rieder et  al. [22], treatment of IL-1β on human 
esophageal fibroblasts induced increased produc-
tion of IL-6 which was the critical proinflammatory 
cytokines.

BE metaplasia could be induced by fibroblasts-derived 
factors. In esophageal mucosal biopsy specimens from 
reflux esophagitis patients, Farzana et  al. [5] found that 
heparin-binding EGF-like factor (HB-EGF) was robustly 
expressed in fibroblasts. Additionally, in  vitro stimula-
tion of normal esophageal squamous epithelial cell with 
HB-EGF enhanced expression of the malignant mark-
ers including Cdx2, cytokeratin 7 and villin. Cdx2 was 
involved in intestinal metaplasia [23, 24]. Cytokeratin 7 
and villin were columnar cells markers. Proliferation of 
BE was also promoted by fibroblasts. In Barrett’s esopha-
geal fibroblast culture, the crucial enzyme of prostaglan-
dins E2 (PGE2) cyclooxygenase (COX)-2 was detected. 
Adding COX-2 inhibitor into epithelial cell cultures sup-
pressed its proliferation, while PGE2 treatment rescued 
the Barrett’s esophageal epithelial cell proliferation [25]. 
Taken together, proteins from fibroblasts were responsi-
ble for BE’s inducement and proliferation.

Fig. 1  Origin of CAFs. CAFs can derive from a variety of cells, including normal fibroblasts (NFs), bone marrow-derived cells (BMDCs), endothelial 
cells, hematopoietic stem cells (HSCs), epithelial cells, pericytes and adipocytes. Previerous studies showed their nature to transform to CAF pheno-
type. TGF-β and microRNAs were reported as the drivers of this transformation



Page 3 of 7Wang et al. J Transl Med  (2016) 14:30 

The role of CAFs in esophageal carcinogenesis
Esophageal squamous cell carcinoma (ESCC) initiation 
is commonly attributed to hot drinks and alcohol intake 
[26]. Whereas, EAC carcinogenesis is reported to closely 
correlate to BE [25]. Many factors participating in car-
cinogenesis were investigated. And CAFs was just one of 
them.

In ESCC tissues, transforming growth factor β1 
(TGFβ1) and hepatocyte growth factor (HGF) were 
stained in fibroblasts. Their levels were increased gradu-
ally from low-and high-grade intraepithelial neoplasia to 
carcinoma in  situ and ESCC groups [27]. So fibroblasts 
were speculated to promote carcinogenesis of ESCC 
through TGFβ1 and HGF. However, no further studies 
investigated the mechanism.

Inflammatory factors produced by CAFs got involved 
in ESCC carcinogenesis as well. Achyut et al. [28] deleted 
TGFβ receptor 2 (TβRII) stromal fibroblasts in the mice 
forestomach. As a result, adjacent epithelial cells showed 
little expression of cyclin-dependent kinase inhibi-
tor (CKI), high-level COX2, increased proliferation and 
decreased apoptosis. Then, in human ESCC specimens, 
they found that TβRII was downregulated in CAFs, 
inflammatory factors COX2 and DNA damaging indi-
cators were enhanced and CKIs were decreased or even 
lost. Because squamous cell carcinoma of mouse fores-
tomach was similar to human ESCC, so authors assumed 
CAFs of ESCC led to DNA damage, unlimited cell prolif-
eration and malignant transformation. However, the limi-
tation of the research is obvious. The cell source of mouse 
fore stomach led to faint conclusion, which needed 
robust investigation in ESCC cells.

Verbeek et  al. [29] reported that CAF-derived Toll-
like receptor-4 (TLR-4) (an innate immune system 
activator) was involved in the progression from BE 
to EAC. Expression of TLR-4 progressively increased 
from reflux esophagitis patients, patients with BE, to 
those with EAC. It was found to boost COX-2 level in 
BE,which was critical in EAC carcinogenesis, because 
it owned anti-apoptotic potential in  vitro [30] and its 
inhibitor had ability to reduce incidence of esophageal 
cancer in vivo [31]. So authors supposed TLR-4 played 
its role in neoplastic progression in BE through facilitat-
ing COX-2 expression.

The role of CAFs in the proliferation and angiogenesis 
of esophageal cancer
Fibroblast growth factor (FGF) and HGF were involved 
in many biological activities including proliferation, dif-
ferentiation, and cellular motility and morphogenesis 
[32, 33]. In ESCC, they could be expressed in CAFs and 
promoted tumor cells proliferation via HGF/MET and 

FGF/FGF receptors (FGFR) pathways. Shin et  al. [6] 
observed that ESCC cells proliferation was boosted when 
they were cultured with FGF and HGF. And this process 
could be blocked by MET inhibitor and FGFR inhibitor. 
FGFR2-positive CAFs supported ESCC proliferation by 
creating a suitable microenvironment. A study conducted 
by Chunyu et al. [2] compared different expression of 126 
genes between CAFs from esophageal tumor tissues and 
NFs, and revealed that FGFR2 was one of the most dif-
ferently expressed genes. Cancer cells grew rapidly when 
cultured in conditioned medium from FGFR2-positive 
CAFs. The medium was detected to contain growth fac-
tors and transcription factors, such as FGF, transcription 
factor AP-2α and AP-2γ, all of which were suitable for 
esophageal cancer cell proliferation.

Wingless-type MMTV integration site family mem-
ber 2 (Wnt2) was a member of Wnt signaling pathways 
which played multiple roles in regulating cellular behav-
ior. It was revealed that Wnt2 secreted by CAFs was 
able to mediate tumor cell growth. Fu et al. [34] investi-
gated tumor tissues from 51 primary ESCC patients by 
immunohistochemical staining and found that Wnt2 was 
detectable in 82.4 % cases. The majority of Wnt2-positive 
cells were located around tumor nest. Moreover, Wnt2 
and the fibroblast marker vimentin were verified to co-
express in the same cells. Thus, the authors considered 
Wnt2-positive cells as CAFs. It was further demonstrated 
that the proliferation rate of ESCC cells was higher in 
conditioned medium containing secreted Wnt2 than that 
of control group.

Vascular endothelial growth factor (VEGF) could stim-
ulate angiogenesis and anti-VEGF therapies were crucial 
in some cancer treatments [35]. Noma et al. [14] created 
a novel 3D model to study angiogenesis in ESCC. It was 
reported angiogenesis and high-level VEGF existed in 
the model but not in that without CAFs. To further test 
the role of CAFs in angiogenesis, the authors suppressed 
their activation by adding TGFβ inhibitors. As a result, 
VEGF and vascular network formation were hardly 
detected. In contrast, both of them were rescued when 
the suppression was removed. Therefore, CAFs were 
indispensable in angiogenesis.

Additionally, CAFs were able to accelerate EAC growth. 
Underwood et  al. [9] respectively injected OE33 (EAC 
cell line), OE33+NFs and OE33+CAFs into three groups 
of mice. The tumor volume of the mice injected by EAC 
cells plus CAFs reached 500 mm3 earliest. The trend was 
verified by another EAC cell line OANC1. Another study 
[36] revealed that CAFs expressed VEGF to facilitate 
angiogenesis during tumor growth. This provided evi-
dence for the similar involvement of CAFs in angiogen-
esis in ESCC and EAC.
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The role of CAFs in esophageal cancer invasion 
and metastasis
Invasion and metastasis were the most common causes 
of cancer-related death, which were related to some fac-
tors from CAFs including HGF, transforming growth fac-
tor beta-induced protein (TGFβI), Wnt2, periostin and 
podoplanin [7–10].

HGF was an invasiveness-promoting factor in ESCC. 
This was supported by Grugan et  al. [10] who revealed 
invasive epithelial cells were induced by the stimulation 
of CAF-derived HGF. And the process could be blocked 
by MET (known as the receptor of HGF) inhibitor and be 
enhanced by MET activation.

TGFβI exhibited different role in cancer progression. 
For example, it promoted colon cancer cells metastasis 
and suppressed mesothelioma progression [37, 38]. In 
ESCC, TGFβI was a promoter which was mainly detected 
in fibroblasts. Authors verified it by wound healing and 
invasion assays. Compared with control group, migra-
tion and invasion abilities of ESCC cells were suppressed 
dramatically when they were cocultured with TGFβI-
downregulated fibroblasts [8].

Epithelial-mesenchymal transition (EMT) was a pro-
cess in which the epithelium-origin tumor cells lost the 
polarity and intercellular adhesion, and gained a propen-
sity for migration and invasion to become mesenchymal 
cells. CAF-derived Wnt2 could enhance motility and 
invasiveness of esophageal cancer cells via EMT. Incu-
bated in medium containing Wnt2, ESCC cells showed 
down-regulated epithelial markers, up-regulated mes-
enchymal markers and enhanced capacity to invade 
through extracellular matrix by up to 75 % [34].

In terms of EAC cells invasiveness, Underwood et  al. 
[9] demonstrated two EAC cell lines FLO-1 and OE33 
showed a more than twofold increasing invasion in 
Transwell invasion assays when exposed in conditioned 
medium from CAFs compared with that from NFs. This 
trend was in accordance with results of the organic cul-
ture. They measured the average tumor invasion depth, 
the number and area of invading tumor islands as the 
parameters of cancer cells invasiveness. Strengthened 
invasion of FLO-1 and OE33 cells was observed in CAFs-
containing gels. In order to clarify its mechanism, authors 
examined the CAFs and NFs conditioned medium and 
found more periostin in the former one. Periostin is cru-
cial for cell adhesion and migration. Then, they respec-
tively eliminated periostin in RNA and protein level from 
two groups of CAFs-conditioned medium. Neither did 
the medium support EAC invasion in Transwell assay 
nor in the organic culture. This was restored through 
periostin addition. In addition, authors found PI3k–Akt 
pathway activated by periostin was involved in the pro-
cess. This supported the notion that EAC invasiveness 

was fueled by periostin secretion by CAFs. Except for 
periostin, the lymphatic endothelium marker podoplanin 
expressed in CAFs correlated with the EAC lymphovas-
cular invasion and lymph node metastasis [39].

A majority of studies merely focused on ESCC or EAC 
alone, but there were a few studies investigating proteins 
in both of them, showing the histological-specific fea-
ture. For example, the stromal podoplanin and carbonic 
anhydrase IX (CA IX) which were associated with lymph 
node metastasis in EAC did not make the same impact 
on ESCC [39–41]. Notably, the association of CA IX with 
CAFs was verified in EAC rather than ESCC [41]. Further 
study should clarify its source in ESCC.

CAFs and esophageal cancer prognosis
As a highly lethal disease, it is significant to identify prog-
nosis indicators of esophageal cancer, which impacts the 
treatment options. Besides their role in carcinogenesis, 
proliferation, angiogenesis, invasion and metastasis, pro-
teins of CAFs were reported as prognosis markers for 
esophageal cancer patients. Studies revealed that imma-
ture CAF phenotype and CAF indicator α-SMA was 
respectively related to the poor survival of ESCC and 
EAC patients [9, 42].

In ESCC patients, CD10 was expressed in CAFs. 
Authors found the CD10 overexpressing was correlated 
with decreased tumor differentiation, poor overall sur-
vival (OS) and disease free survival (DFS) [43]. Fu et al. 
[34] examined 51 tumor specimens from ESCC patients 
who received operation alone without preoperative treat-
ment. CAFs-derived Wnt2 showed significant association 
with lymph node metastasis and short median survival 
time (Wnt2-positive ESCC vs Wnt2-negative ESCC, 
16 vs. 51  months). Ozawa et  al. [8] observed strong 
expression of TGFβI in fibroblasts. Its expression was 
an independent predictor of OS. Thus, all the literatures 
reviewed above led to the conclusion that some pro-
ductions of CAFs were a potential prognostic marker in 
ESCC.

In EAC patients, CAF-originated periostin also served 
as a survival predictor. Periostin was detected where 
there was high α-SMA expression. This suggested that 
periostin was released from CAFs. Further study dem-
onstrated that patients with periostin-positive in tumor 
had worse prognosis than those periostin-negative 
patients in OS (46.80 vs. 76.45 months) and DFS (47.45 
vs. 80.67 months), respectively [9]. The transmembrane 
sialoglycoprotein podoplanin exhibited its prognostic 
value in EAC patients as well. Schoppmann et  al. [39] 
investigated EAC patients who underwent operation and 
found that podoplanin-expressing CAFs were positively 
associated short OS (42 vs. 105 months) and mean DFS 
(42 vs. 89  months). So no matter what disease patients 
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suffered, high level of these proteins predicted poor 
prognosis.

Future clinical application of CAFs in esophageal cancer 
treatment
Despite comprehensive treatment, the prognosis of 
esophageal cancer remains dismal. Present therapies such 
as chemotherapy, radiotherapy and targeted-treatment 
emphasized elimination cancer cells per se. However, 
according to the present review, carcinogenesis, cancer 
angiogenesis, metastasis and prognosis were all remark-
ably affected by stromal microenvironment. Thus, we 
believed blocking epithelial-fibroblasts crosstalk may be a 
promising therapeutic management of esophageal cancer.

Currently, studies concerning clinical CAFs-targeted 
treatment were limited to in  vitro studies and animal 
models. In the study of Shin et al. [6], ESCC cells prolif-
eration was increased when they were incubated in CAFs 
supernatants. This could be impaired by MET inhibi-
tor PHA-665752 and FGFR inhibitor PD-173074. Ach-
yut et  al. [28] deleted TβRII in fibroblasts. They found 
inflammation and squamous cell carcinoma developed in 
the forestomach of the mouse. When mouse were treated 
with anti-inflammation celecoxib, the tumor mass was 

decreased and their life expectancy increased from 28 
to 49 days. The authors believed this model in forestom-
ach could represent ESCC due to similar histology and 
functional behavior. Although studies on MET inhibitor, 
FGFR inhibitor and anti-inflammation treatment in can-
cer suppression were limited, they may provide a poten-
tial treatment method for further investigation.

Precisely predicting prognosis of esophageal cancer 
had long been a focus in clinical practice, for it may affect 
treatment choice. As was mentioned above, some factors 
from CAFs may serve as potential biomarkers for prog-
nostic prediction, though few of them were used in clinic 
by far. Obstacles for its clinical use may be that the detec-
tion process is time-consuming and costly. Thus, further 
investigation was needed.

Conclusion
CAFs are a subtype of activated fibroblast and originate 
from numerous types of cells. They have pleiotropic 
functions in esophageal carcinogenesis, proliferation, 
angiogenesis, metastasis and prognosis prediction. We 
reviewed CAFs sources and summarized the role of 
CAFs-derived proteins in each step of esophageal cancer 
development, the details of which were shown in Table 1. 

Table 1  The role cancer-associated fibroblasts play in esophageal cancer

Through secreting factors, CAFs exerted an influence on esophageal cancer development

RE reflux esophagitis, BE Barrett’s esophagus, IL interleukin, HB-EGF heparin-binding EGF-like factor, (COX)-2 cyclooxygenase, TGFβ1 transforming growth factor β1, 
HGF hepatocyte growth factor, TβRII TGFβ receptor 2, TLR-4 toll-like receptor-4, FGF fibroblast growth factors, FGFR fibroblast growth factors receptor, Wnt2 wingless-
type MMTV integration site family member 2, VEGF vascular endothelial growth factor, TGFβI transforming growth factor beta-induced protein, CA IX carbonic 
anhydrase IX, PGE prostaglandin E, MAPK mitogen-activated protein kinases, EMT epithelial-mesenchymal transition
a   postulated mechanism

Stages during esophageal 
cancer development

Functional factors 
expressed by CAFs

In RE/BE/ 
ESCC/EAC

Positive/negative  
function

Mechanism or postulated 
mechanisma

References

Premalignant condition IL-6 RE + Promoting inflammation [22]

HB-EGF BE + Promoting metaplasia [5]

COX2 BE + Promoting proliferation  
through PGE

[25]

Carcinogenesis TGFβ1 and HGF ESCC + Unknown [27]

TβRII ESCC − TGF-β signaling pathway [28]

TLR-4 EAC + COX-2/MAPK pathwaya [29]

Proliferation and angiogenesis FGF ESCC + FGF/FGFR pathways [6]

HGF ESCC + HGF/MET pathways [6]

FGFR2 ESCC + Creating suitable environment 
for cancer cells proliferation

[2]

Wnt2 ESCC + Wnt/β-catenin signaling 
pathway

[34]

VEGF ESCC + Promoting angiogenesis [14]

VEGF EAC + Promoting angiogenesis [36]

Invasion and metastasis HGF ESCC + HGF/MET signaling pathway [10]

TGFβI ESCC + Promoting migration and  
invasion

[8]

Wnt2 ESCC + Promoting EMT of cancer cells [34]

Periostin EAC + PI3k–Akt pathway [9]
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Podoplanin and CA IX exerted different impact on ESCC 
and EAC, while VEGF exerted same impact. Given stud-
ies elucidating interaction between CAFs and tumor 
cells, many clinical investigations were conducted. It was 
commonly suggested factors derived from CAFs served 
as negative prognosis predictor. Additionally, a few explo-
rations of preclinical treatment targeting the proteins 
have already been made. Though further researches were 
needed, we believe interpretation of CAFs in esophageal 
cancer will increase our knowledge of esophageal cancer 
and favor future clinical practice.
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