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REVIEW

Obesity and colorectal cancer: molecular 
features of adipose tissue
Javier Martinez‑Useros* and Jesus Garcia‑Foncillas

Abstract 

The huge part of population in developed countries is overweight or obese. Obesity is often determined by body 
mass index (BMI) but new accurate methods and ratios have recently appeared to measure body fat or fat located in 
the intestines. Early diagnosis of obesity is crucial since it is considered an increasing colorectal cancer risk factor. On 
the one hand, colorectal cancer has been strongly associated with lifestyle factors. A diet rich in red and processed 
meats may increase colorectal cancer risk; however, high-fiber diets (grains, cereals and fruits) have been associated 
with a decreased risk of colorectal cancer. Other life-style factors associated with obesity that also increase colorectal 
cancer risk are physical inactivity, smoking and high alcohol intake. Cutting-edge studies reported that high-risk trans‑
formation ability of adipose tissue is due to production of different pro-inflammatory cytokines like IL-8, IL-6 or IL-2 
and other enzymes like lactate dehydrogenase (LDH) and tumour necrosis factor alpha (TNFα). Furthermore, oxidative 
stress produces fatty-acid peroxidation whose metabolites possess very high toxicities and mutagenic properties. 
4-hydroxy-2-nonenal (4-HNE) is an active compounds that upregulates prostaglandin E2 which is directly associated 
with high proliferative colorectal cancer. Moreover, 4-HNE deregulates cell proliferation, cell survival, differentiation, 
autophagy, senescence, apoptosis and necrosis via mitogen-activated protein kinase (MAPK), phosphoinositide 
3-kinase (PIK3CA)—AKT and protein kinase C pathways. Other product of lipid peroxidation is malondialdehyde 
(MDA) being able to regulate insulin through WNT-pathway as well as having demonstrated its mutagenic capability. 
Accumulation of point mutation enables genomic evolution of colorectal cancer described in the model of Fearon 
and Vogelstein. In this review, we will summarize different determination methods and techniques to assess a truth‑
fully diagnosis and we will explain some of the capabilities that performs adipocytes as the largest endocrine organ.
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Background
In western countries a huge part of population is over-
weight or obese, for example in the US more than 30 % of 
the population belong to this group [1]. In the UK obesity 
is considered the second cancer risk-factor after smoking 
[2]. Obesity refers a disorder that involves excessive accu-
mulation of body fat and thereof, raising the risk of met-
abolic syndrome. Obesity is one of the risk factors such 
as gender, race, dietary habits or smoking history that 
has been linked to the most relevant cancers like breast 
[3], gynaecological [4], liver [5] and colorectal cancer 
(CRC) [6]. Colorectal cancer is one of the most common 

gastrointestinal malignant tumours in the world and pre-
sents one of the highest rates of morbidity and mortal-
ity worldwide [7]. In addition, colorectal cancer-obesity 
relationship is reinforced by the importance of nutri-
tion in this cancer. Thus, colon cancer has been associ-
ated with red and processed meat intake [8]. Moreover, 
a dietary pattern based on high-carbohydrate intake, 
and high-sugar content beverages after colorectal cancer 
diagnosis may increase risk of recurrence and mortality 
after colorectal cancer diagnosis [9, 10]. Besides, folate 
deficiency in diet induce tumourigenesis and MTHFR 
(methylenetetrahydrofolate reductase) gene depletion 
produces a defect in DNA repair [11, 12]. Another fac-
tor that indirectly influences colon cancer is smoking 
[13–15]. Cigarette smoke induces prostaglandin E2 syn-
thesis [16] and in high concentrations are considered 

Open Access

Journal of 
Translational Medicine

*Correspondence:  javier.museros@oncohealth.eu 
Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion 
Jimenez Diaz, Av. Reyes Catolicos 2, 28040 Madrid, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-016-0772-5&domain=pdf


Page 2 of 12Martinez‑Useros and Garcia‑Foncillas ﻿J Transl Med  (2016) 14:21 

a high-risk factor for colon cancer [17, 18]. Moreover, 
high levels of prostaglandin E2 in rectal mucosa has been 
directly correlated with high body mass index (BMI) [19]. 
Also high BMI was associated with a significantly high-
risk of CRC with no or weak expression of fatty acid syn-
thase [20] and β-catenin-negative colonic tumours [21]. 
Above all determination methods to diagnose obesity 
BMI are widespread used. Body mass index has been pro-
posed as a ratio to predict high-risk colorectal neoplasias 
[22]. This association may be due to the large spectrum 
of cytokines and metabolites produced by adipose tissue 
which exhibit pro-inflammatory and cancer prone char-
acteristics. In fact, cytokines produced by adipose tissue 
triggers insulin resistance [23] and mediates prolifera-
tion, migration, angiogenesis [24] and induction of oxida-
tive stress [25]. The more influential products of oxidative 
stress are 4-hydroxy-2-nonenal (4-HNE) and malondial-
dehyde (MDA). Both compounds produced in the adi-
pose tissue have an extraordinary effect on whole body 
metabolism. In this review we will highlight the rela-
tionship between obesity and CRC and the importance 
to consider obesity in the standard of care dealing with 
colorectal cancer patients.

Review
Methods to determine obesity in their connection 
with CRC
Some reports have proposed waist circumference instead 
of height [26, 27] for the determination of some obesity 
ratios. This is the case of waist-to-hip ratio [28], that 
seems to achieve significance with a higher CRC risk in 
men but not in women [29]. Other ratios are recently 
used to determine obesity and correlate with CRC, like 
impedance analysis [30], visceral fat tissue amount (VAT) 
[31–33] or visceral-to-subcutaneous fat ratio [34–36] 
(Table 1). Nevertheless, the most common ratio to diag-
nose obesity is by using BMI that must be 30  kg/m2 or 
greater. Still, abdominal visceral and subcutaneous adi-
pose tissue is considered more accurate and pathogenic 
than BMI [37].

BMI
Body mass index, also called Quetelet index, is expressed 
as weight in kilograms/height in meter square [38]. A 
large number of studies have reported an association 
between high BMI and colorectal cancer. For example, a 
study conducted by the American Cancer Society [39] the 
risk associated with high BMI (above 30 kg/m2) was 1.8 
for men and 1.2 for women compared with a BMI below 
25  kg/m2. Other reports found a stronger association 
between BMI and colorectal cancer in different countries 
[40–43], but this association was rather controversial 
according to sex in other studies [44, 45]. Early life body 

fatness would be associated with a higher risk of develop-
ing colorectal cancer. Here, the relative risks comparing 
BMI categories ≥27.5–<19  kg/m2 were 1.44 (1.06–1.95, 
at age 18; P = 0.009) for women and 1.18 (0.84–1.65, at 
age 21; P = 0.57) for men [46].

The association between colorectal cancer risk and 
BMI is, in general, stronger for cancers localised in the 
distal colon than other localizations [43–45, 47]. Con-
cerning rectal cancer some studies have shown scarce 
evidence for a connection with BMI [41, 45]. Body mass 
index was also related to higher risk of colon polyps or 
adenomas specially in male population [48].

VAT
Visceral adipose tissue (VAT) could be easily quantified 
by computerized tomography [31], and has been identi-
fied as a risk factor for colorectal adenomas [49] and car-
cinomas [32, 50].

Although not always VAT was associated with risk of 
colon adenomas [51], in other studies high VAT showed 
a statistical significant association between proximal, 
multiple and advanced adenomas (p  <  0.05) [49]. These 
findings related VAT index with the development and 
progression of colorectal adenoma, and it turned out to 
be a more appropriate obesity index for colorectal ade-
noma than BMI in both sexes [49]. Compared to sub-
cutaneous adipose tissue, VAT revealed high levels of 
markers of inflammatory lipid metabolism and some of 
them associated with CRC tumour stage [50]. Concern-
ing chemotherapy resistance VAT has been considered 
a poor prognostic marker in CRC receiving adjuvant 
chemotherapy [52]. Patients with high VAT had a signifi-
cantly lower overall survival (54.8 vs 87.1 %, P  =   0.004) 
and disease-free survival (48.4 vs 77.4  %, P  =   0.007) if 
compared to patients with low VAT. Furthermore, VAT 
was independently associated to a reduced overall sur-
vival (HR  =   7.0; 95 % CI 2.0–24.6; p  =   0.002) [52]. But 
it is not always the case, other authors support low VAT 
could be poor prognosis marker during chemotherapy 
administration because it could lead to nutritional supply 
impairment and a subsequent malnutrition [53, 54].

However, VAT has been acknowledged to be more 
pathogenic than BMI [55].

Biologic performances of obesity
Obesity as a mutagenic factor for CRC
There are multiple molecular pathways to metabolize 
fat in the adipocytes. One of the mechanisms to process 
that fat is by peroxidation [56]. However, when cell has to 
manage with medium or high rates of lipid peroxidation 
reaction turns into toxic conditions and oxidative stress 
abate DNA repair capability, and then cells induce apop-
tosis that leads to disease [57, 58]. Two of the products of 
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lipid peroxidation are 4-hydroxy-2-nonenal (4-HNE) and 
malondialdehyde (MDA). While MDA is a highly muta-
genic compound, 4-HNE is basically toxic and functions 
as deregulators of different molecular pathways [59, 60].

4-hydroxy-2-nonenal is nowadays considered as the 
major bioactive marker of lipid peroxidation and a signal-
ing molecule involved in the regulation of several tran-
scription factors sensible to stress [61]. Some of these 
factors are activating protein-1 (AP-1), NF-κB, and 
peroxisome-proliferator-activated receptors (PPAR). 
Activating protein-1 transcription factor control cell pro-
liferation, survival, and death. Growth factors, cytokines, 
cellular stress, and many other stimuli activate AP-1 [62]. 
NF-κB induce gene transcription of genes involved in the 
regulation of inflammation [63]. Peroxisome-prolifera-
tor-activated receptors act as key transcriptional regula-
tors of lipid metabolism, mitochondrial biogenesis, and 
antioxidant defence [64]. 4-hydroxy-2-nonenal increase 
PPAR gene expression and accelerate adiponectin protein 
degradation in adipocytes [65]. Peroxisome-proliferator-
activated receptors has been also reported to arrest colo-
rectal cancer proliferation [66, 67], however it has also 
been linked to poor outcome in metastatic colorectal 

cancer (mCRC) [68]. 4-hydroxy-2-nonenal also upregu-
lates prostaglandin E2 [69] and cyclooxygenase-2 (COX-
2) [70], two factors associated with high proliferative 
colorectal cancer [71].

Furthermore, 4-HNE is involved in cell proliferation, 
differentiation, cell survival, autophagy, senescence, 
apoptosis and necrosis via activation of mitogen-acti-
vated protein kinases (MAPK), PIK3CA—AKT path-
ways, and protein kinase C. Some of the factors included 
in the MAPK pathway are ERK, P38, and JUN. Mitogen-
activated protein kinases signaling pathway has been one 
of the most altered molecular mechanism in CRC [72, 
73]. Interestingly, RAS/RAF mutations are the most com-
monly found alteration in colorectal cancers [74, 75].

In oxidative stress conditions, an important cellular 
response is the activation of the PIK3CA—AKT pathway 
that involves the oxidation and subsequent inactivation 
of PTEN, a tumour suppressor gene [76]. Both molecu-
lar pathways are connected by EGFR that has improved 
colorectal cancer classification and treatment [77].

Protein kinases C (PKCs) are a family of multifunc-
tional enzymes that play crucial roles in the transduc-
tion of many cellular signals such as control of cell 

Table 1  Methods and ratios more commonly used to determine obesity

Index Range Ref.

Body mass index (kg/m2) Underweight < 18.5 [38]

18.5 < Normal <24.9

25 < Overweight <29.9

30 < Obesity

Visceral adiposity ratio Moderate Severe [31]

 <30 years 2.59–2.73 >2.73

 ≥30 < 42 years 2.54–3.12 >3.12

 ≥42 < 52 years 2.17–2.77 >2.77

 ≥52 < 66 years 2.32–3.25 >3.25

 ≥66 years 2.42–3.17 >3.17

Waist-to-hip ratio Women Men [28]

Normal < 0.8 Normal < 0.9

0.81 < Overweight < 0.84 0.91 < Overweight < 0.99

0.85 < Obesity 1.00 < Obesity

Waist-to-height ratio Women Men [26, 27]

Extremely slim < 0.34 Extremely slim < 0.34

0.35 < Slim < 0.41 0.35 < Slim < 0.42

0.42 < Healthy < 0.48 0.43 < Healthy < 0.52

0.49 < Overweight < 0.53 0.53 < Overweight < 0.57

0.54 < Obesity 0.58 < Obesity

Biolectrical impedance (% fat) Women Men [30]

28.3 ± 5.1 Normal 18.0 ± 4.5 Normal

35.7 ± 2.8 Overweight 23.3 ± 4.2 Overweight

41.6 ± 3.9 Obese 31.2 ± 5.1 Obese

Visceral-to-subcutaneous fat ratio Healthy (gynoid fat) < 0,4 < Risk (android fat) [34–36]
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proliferation, survival, and transformation by phospho-
rylating various targets. Protein kinases C can also be 
activated by oxidative stress [78]. Moreover, oxidative 
stress produces a wide range of DNA mutations [79] by 
exogenous oxidative stimuli like high levels of alkylating 
agents [80], radiation [81], antioxidant depletion [82] or 
during inflammation process [83].

Malondialdehyde has shown to be a highly mutagenic 
agent in eukaryotic cells [84] and also has tumourigenic 
properties [85]. MDA regulated islet glucose-stimulated 
insulin secretion through WNT pathway [86]. Under 
stress conditions MDA has high ability to react with 
proteins or DNA that leads to the formation of adducts 
[87], and its aberrant expression has been associated 
with different pathologies [88–91]. This fact is due to 
the capability of MDA to react physiologically with sev-
eral nucleosides (deoxy-guanosine and cytidine) to form 
adducts to deoxyguanosine and deoxyadenosine, result-
ing in pyrimido(1,2-a)purin-10(3H-)one (M1-dG) [84, 
92]. In contrast, vitamins intake was associated with 
reduced levels of M1-dG [93] that supports the role of 
vitamins as a protective factor against cancer.

Accumulation of mutation in crucial factors enable the 
genetic process of CRC described initially by Fearon and 
Vogelstein and updated with experts recommendations 
by Rex et  al. (Fig.  1) [94, 95]. Here, serrated CRC arise 
from adenomas in a process that in most people takes 
at least 10  years. The initiation of CRC involves several 
genetic alterations that begins with chromosomal insta-
bility (CIN), which causes numerous changes in chromo-
somal structure and copy number [96]. Chromosomal 
instability is an efficient mechanism that causes the loss 
of a wild-type copy of tumour-suppressor genes, such as 

APC, TP53 or SMAD family member 4 (SMAD4) [97]. 
Other key event in colorectal cancer initiation is the 
induction of COX-2, throughout EGFR pathway [98], 
that mediates the synthesis of prostaglandin E2, an agent 
strongly associated with colorectal cancer development, 
stem cell expansion and metastasis [99, 100]. The most 
commonly found mutation in colorectal cancer involves 
the APC protein that leads its inactivation. In the absence 
of functional APC, oncogenic WNT—Catenin beta 1 
(CTNNB1) pathway is activated [97, 101]. APC muta-
tions is associated to familial adenomatous polyposis 
[102, 103]. MLH1 confers a lifetime risk of colorectal 
cancer of about 80  % and the methylation status is an 
effective biomarker for Lynch Syndrome [104–106]. Mis-
match-repair deficiency (MMR) leads the inactivation of 
some anti-tumour factors [107, 108] such as transform-
ing growth factor β (TGF-β) receptor type II (TGFBR2) 
[109], BCL2-associated X protein (BAX), Caspase-5 and 
TP53 [110–113]. Furthermore, the microsatellite instabil-
ity (MSI) pathway, crucial for cancer progression, is initi-
ated by MMR mutation or by MLH1 methylation [114]. 
Interestingly, MSI status in colonic tumours has been 
associated to obesity, cigarette smoking, refined carbohy-
drate, and red meat consumption [115–117].

Several oncogenes promote colorectal cancer devel-
opment. Oncogenic mutations of RAS (including NRAS 
and KRAS) and BRAF, which activate the MAPK signal-
ing pathway, occur in 37 and 13 % of colorectal cancers, 
respectively [118–120]. Brändstedt et  al. reported statis-
tically significant association between high waist-to-hip 
(WHR) ratio and BMI with an increased risk of KRAS-
mutated colorectal tumours in men. However, in women 
only high WHR was significantly associated with an 
increased risk of KRAS-mutated colorectal cancers [121]. 
In addition, 33  % of colorectal cancers carry activating 
somatic mutations in PIK3CA, which encodes the cata-
lytic subunit of phosphatidylinositol 3-kinase [122]. Other 
alterations involve loss of PTEN [123, 124]. EGFR is essen-
tial for CRC initiation and development which triggers 
MAPK and PIK3CA—AKT signaling pathway [125–128].

On the other hand, adipose tissue produces biochemi-
cal compounds involved in deregulation of whole-body 
metabolism and affect evolution of CRC.

Obesity promotes deregulation of metabolism
Obesity leads co-morbidities like diabetes, impairment 
in lipid metabolism and endocrinologic changes that 
allow cancer progression (Fig. 2) [129]. For example, the 
regulation of aromatase in mammary fat-tissues is inter-
esting for clinical practise specially dealing with breast 
hormone-dependent cancers [130, 131]. Adipose tissues 
have long been identified as significant sites for steroid 
hormone transformation and action [132]. In addition, 

Fig. 1  Transformation model of CRC. Ingoing arrows concern onco‑
genic effectors that are turned on in the cancer progression. Outgoing 
arrows highlight tumour suppressor factors that become inactivated 
in colon cancer
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obese patients commonly present deregulation of insu-
lin and/or insulin growth factor 1 (IGF1) that has also 
been linked to cancer [133] because insulin is considered 
a strong mitogen factor and stimulates DNA synthesis 
[134]. In fact, glucose and insulin levels exhibited sta-
tistically significant associations with colorectal cancer 
[135, 136] because their ability to increase the proportion 
of cells with metabolically active mitochondria [137]. In 
respect to IGF1, different studies support the role of this 
factor in colorectal carcinogenesis [138–140], chemore-
sistance [141], metastasis [142, 143] and prevention from 
apoptosis [144, 145].

Other obesity proteins are directly related to CRC. This 
is the case of adiponectin, leptin and endotrophin. High 
serum levels of adiponectin was inversely associated with 
lower BMI and waist circumference [146]. Furthermore, 
high level of adiponectin was significantly associated 
with lower risk of both colorectal adenoma and carci-
noma [147]. Adiponectin (OR  =   0.50; CI: 0.3–0.8) and 
the soluble receptor for advanced glycation end products 
(sRAGE, OR  =  0.4, CI: 0.3–0.7) were inversely related to 
the presence of diverticulosis [148].

Leptin, also called obese gene product, regulates body 
weight and fat deposition through effects on metabo-
lism, and increases appetite [149, 150]. Hyperleptinemia 
is characteristic of obese patients and leptin has been 
reported to promote colon carcinogenesis [151]. In fact, 
in  vitro models of leptin stimulation showed not only 
increased proliferation of CRC cell lines [152] but also 
angiogenesis and production of other cytokines like IL-6 
[153]. In humans patients, high leptin levels have been 
associated with higher risk to develop adenoma in obese 
individuals (BMI  >  30) compared to lean individuals 
(BMI < 25) [154]. In contrast, other approaches suggest 

that leptin may be associated with risk of colorectal ade-
nomas in men, however it does not correlate in women 
[155]. High leptin levels were also positively associated 
with diverticulosis (OR  =   5.5, CI: 2.0–14.7) [148]. Some 
genes that regulate the WNT—β-catenin pathway such 
as MDM2, PIK3R1, and RB1 were upregulated by leptin. 
Importantly, leptin supplementation induced expression 
of IGF-mediated pathway genes and their products such 
as IGFBP-6, IGF1, and Crim1 [153]. On the contrary, 
other factors were downregulated like IGFBP-2, IGFBP-
3, IGFBP-4, IGFBP-5, and Nov [153].

Endotrophin is the result of cleaved form of C5 frag-
ment of the collagen type VI alpha 3 chain (COL6A3) 
[156]. It seems that it acts as a signaling molecule modu-
lating several effects in the tumour-stromal environment 
like epithelial-mesenchymal transition of cancer cells, 
fibrosis, angiogenesis and immune cell infiltrations [156], 
especially observed in breast cancer [157].

Thus, obesity changes the stability and homeosta-
sis of adipocytes and produces different hormones and 
cytokines leading to inflammation, a process that joins 
obesity and CRC initiation and progression.

Obesity and inflammation: a direct link with CRC
Obesity is a state of low-grade chronic inflammation 
and is closed linked to cancer (Fig.  2) [158]. It is prob-
ably because the largest endocrine organ in the body is 
the adipose tissue and it stimulates secretion of several 
signaling cytokines. Some of the cytokines produced by 
adipose tissue are IL-8, IL-6, IL-2, lactate dehydrogenase 
(LDH), tumour necrosis factor alpha (TNFα), as well as 
IL-2 receptor alpha (IL-2ra) (Fig. 2). These cytokines have 
been reported to play a role not only in both tumour ini-
tiation and progression [159–161] but also in promot-
ing epithelial mesenchymal transition and metastasis in 
obese patients [162, 163].

For example, high levels of LDH, IL-2ra and IL-8 are 
considered poor prognostic factors in obese metastasic 
CRC patients [164]. Other cytokines like PDGF, TGF-β, 
FGF and VEGF have been found to be upregulated in the 
mammary-associated fat in humans [24].

IL-6 family of cytokines is highly upregulated in many 
cancers and it is considered as one of the most important 
cytokine families during tumourigenesis and metasta-
sis [165]. Tumour necrosis factor alpha promote insulin 
resistance in the liver and other metabolism-controlling 
organs with the subsequent cancer promotion [24].

Also proinflammatory factors, like interferon 
gamma-inducible protein-10 (IP-10), function as 
chemo-attractant to enhance local inflammation [166]. 
Interestingly, IP-10 expression was significantly asso-
ciated with increased likelihood to develop adenomas 
while TNFα showed a trend (P = 0.09) [146].

Fig. 2  Schematic diagram of biochemical features of obesity. Up and 
down arrows denote up- or downregulation respectively
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On the other hand, when tumour is initiated it may 
arrest inflammation to escape of immune cells. One 
mechanism to assess this is by decreasing the inflamma-
tion signal of adipose tissue through the regulation of 
macrophages phenotype. Other cytokines are involved 
in such process like interferon gamma (IFN-γ) and IL-10 
that are produced by tumour microenvironment [167]. 
This cytokines keep M2 polarization of macrophages 
and those with M1 phenotype are converted into M2 
[168]. M2 macrophages are those activated under lean 
conditions [169] and associated to tumour progres-
sion [170]. Some B cells (B1) could also induce mac-
rophages phenotypic change [171–173]. Moreover, in 
response to upregulation of IFN-γ and IL-10, cells from 
tumour microenvironment like antigen presenting cells 
(APCs), tumour associated myeloid derived suppressor 
cells (MDSC), and M2 macrophages are able to produce 
indolamine 2,3-dioxygenase (IDO). This compound pro-
motes anti-inflammatory phenotype by suppression of 
T and NK cell activity which enables immune escape of 
cancer, angiogenesis and metastasis [174–176].

Discussion
Over the past few decades, obesity has emerged as a 
global epidemic. A cross-sectional survey conducted in 
2003–2004 revealed that 66.2  % of United States adults 
who averaged 20-and-74  years old were either over-
weight or obese [177]. Nowadays, in the US more than 
30 % of the population is obese [1] and a thin line sepa-
rates obesity and colorectal neoplasia. The most common 
ratio to classify individuals according anthropometric 
measures is BMI [178]. Wu et  al. reported that obese 
patients appear to have worse overall survival than nor-
mal-weight patients with CRC [145]. Studies concerning 
chemotherapy resistance are rather controversial, on the 
one hand, it is showed an association between high BMI 
and VAT with reduced time-to-progression after receiv-
ing first-line anti-angiogenic therapy [179]. On the other, 
anthropometric measures are considered poor outcome 
markers since it reveals a nutritional impairment dur-
ing chemotherapy administration [53, 54]. Other study 
associated BMI with CRC-related mortality in pre-diag-
nosis men [6] however BMI association with CRC out-
come according to sexes is rather disputed. Therefore, 
the standard use of BMI as indicator of obesity may be 
examined. The National Health and Nutrition Examina-
tion Survey (NHANES) reported >50  % of individuals 
with high body fat content would be classified as being 
normal of just overweight [180]. It seems that correla-
tion between cancer and BMI is far to be linear because 
not all obese patients might eventually develop colorec-
tal cancer. However, a recent report highlights BMI as an 
independent predictor for overall survival dealing with 

overweight and obese patients with mCRC treated with 
Bevacizumab [181]. Additionally, the association of obe-
sity with survival of CRC patients is likely to be affected 
by the timing of BMI measurement [182]. An obese pre-
diagnostic measured by BMI months–years before pres-
entation of CRC has been consistently linked to worse 
survival [6, 183]. All these results suggest that perhaps 
BMI has enough limitations to be considered as the best 
marker of obesity, particularly individuals in the inter-
mediate BMI ranges, men and the elderly. Therefore, in 
the near future, find a marker to highlight obesity to tai-
lor screening practices for CRC will be a challenge in this 
field.

There are several factors that influence weight gain but 
are mostly diet and physical activity. A diet based on dif-
ferent meats, poultry, fish and eggs was associated with 
a 50  % increase in risk among men [184]. Moreover, it 
has been reported how high fat content diet, increase 
intestinal cancer in genetically susceptible mice [185]. By 
contrast, vegetable fiber intake has been demonstrated 
to offer a protective effect on CRC [186]. Thus, a die-
tary habits change becomes a crucial element to reduce 
potential risk.

The link between physical activity and cancer is con-
troversial. Although it has been estimated in US that 
13–14 % of colon cancer may be attributable to physical 
inactivity [184], other reports showed body weigh loss 
was not enough to reduce cancer risk [187]. The lack of 
physical activity can lead to adipose tissue accumula-
tion and the subsequent stimulation of inflammatory 
cytokines that could promote CRC [188].

Other crucial factor to consider is gut microbiota. 
Colonic tumours revealed enrichment in fusobacteria 
what has been visualized by FISH and detected by PCR 
[189, 190]. Moreover, this kind of microorganisms have 
been related to those CRC carrying MSI, TP53 wild-
type, CIMP positive, MLH1 positive methylation status, 
and CHD7/8 mutation positive [191]. Other authors 
demonstrate involvement of fusobacterium with high-
grade dysplasia [190] and recently with poor prognosis 
CRC [192]. Fusobacterium also promotes downregula-
tion of antitumour CD3  +  T cell–mediated adaptive 
immunity [193].

Other factors play an essential role in hematopoietic 
and chemotactic functions to promote tumour initiation, 
growth and metastasis and may limit survival in patients 
with CRC [194–196]. Elevated levels of some inflam-
matory cytokines contributed to poor survival rates in 
mCRC, especially interleukin 8 (IL-8), and LDH [197]. 
The association between IL-8 and LDH levels and risk 
of death is higher in obese mCRC patients than in non-
obese mCRC patients. On the other hand, high levels of 
adiponectin present low-risk of CRC [198].
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The chronic low-grade inflammation state produced by 
obesity leads the induction of oxidative stress factors. The 
major bioactive product of lipid peroxidation is 4-HNE 
and it is responsible of deregulation of multiple pathways 
involved in cell proliferation differentiation, cell sur-
vival, autophagy, senescence, apoptosis and necrosis. The 
molecular pathways mainly altered by 4-HNE includes 
MAPK, PIK3CA—AKT and NF-κB, in addition to accel-
erating adiponectin degradation and upregulation of 
prostaglandin E2, all them related to CRC development. 
Moreover, accumulation of DNA mutations, as in APC, 
KRAS, NRAS, BRAF, or PIK3CA, and insulin secretion 
sets obesity as a multifactor phenomenon involved in 
CRC initiation and aggressive development. These events 
may be fostered by MDA, the other bioreactive and 
mutagenic product of lipid metabolism. To dissect how 
outer effects affect transformation, initiation, and pro-
gression of CRC, a new field has emerged called “molecu-
lar pathologic epidemiology”. This domain will provide 
future scientific explanations of tumorigenesis related to 
life style, diet and other environmental factors, in order 
to bring new prevention strategies [199, 200].

These facts point out the strong involvement between 
obesity and CRC, even if it seems to be higher for colon 
than for rectal neoplasias [201].

Conclusions
As we have seen, one of the main diseases in western 
countries is obesity. Over the last decade several studies 
found a close connection between obesity and develop-
ment of colorectal neoplasias. Then, biochemical studies 
revealed that oxidative stress conducted by lipid per-
oxidation produce secondary metabolites with highly 
mutagenic and toxic properties. These products lead the 
initiation of pathological disorders by accumulation of 
genomic aberrations. Development of CRC and evolu-
tion to malignant phenotype is allowed by accumulation 
of additional genomic aberrations that may be assisted 
by these high mutagenic products. Therefore, obesity 
performs a complex biological activity regulation like 
cytokines production leading insulin resistance or dereg-
ulation of IGF1 and immune system among others. Then, 
obesity must be diagnosed and controlled not only to 
prevent comorbidities like high blood pressure, high lev-
els of triglycerides, cholesterol or elevated fasting plasma 
glucose, but also obesity must be considered as an early 
warning for a potential pre-neoplasic lesions.
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