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Abstract 

Background:  Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We per‑
formed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients 
(pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of 
a phase 2 non-randomized expansion cohort (NCT00940225).

Methods:  Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts 
with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured 
in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the 
association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue 
response according to RECIST.

Results:  A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant 
associations were found between any biomarker at any time point and either type of response. Plasma concentra‑
tions of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers 
CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma 
concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with 
caboznatinib.

Conclusions:  Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed 
alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozan‑
tinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches.
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Background
Many molecular and cellular adaptations take 
place within cancer cells and their immediate 

micro-environment throughout cancer progression to 
facilitate further proliferation and metastasis. These 
include adaptation to hypoxia in the tumour microenvi-
ronment, epithelial-to-mesenchymal transition (EMT), 
secretion of pro-inflammatory cytokines and the induc-
tion of signaling pathways related to cellular division 
and invasion [1]. Hypoxia has been recognized as an 
important poor prognostic factor in prostate cancer 
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[2, 3], associated with increased metastasis formation 
and chemo-resistance. One of the main mediators of 
the hypoxic response is the transcription factor HIF-1α 
[4] that initiates a hypoxia-induced transcriptional pro-
gram and the subsequent activation of the VEGF-VEGFR 
pathway (reviewed in [5]). It also leads to expression of 
carbonic anhydrase-IX (CA9), a membrane-bound pro-
tein that maintains intra-cellular pH by catalyzing the 
extra-cellular conversion of CO2 to H+ and HCO3− [6]. 
In addition, the receptor tyrosine kinase c-MET, known 
to exert a major role in tumor formation and progres-
sion, has been shown to be induced in hypoxic cancers 
in general [7], and in advanced or androgen-receptor-
independent prostate cancer in particular [8], especially 
in bone metastases [9]. MET and VEGFR2 were recently 
shown to dimerize [10], and VEGF blockade was shown 
to restore and increase MET activity in GBM cells in a 
hypoxia-independent manner, while inducing a program 
reminiscent of EMT [10]. These observations suggest 
that co-targeting of these receptors may be necessary in 
order to abrogate their effects on the tumour.

Despite the increase in the armamentarium of active 
drugs in mCRPC, the disease remains incurable and more 
therapeutic strategies are needed. Cabozantinib was 
developed as a dual inhibitor of both MET and VEGFR2 
and generated significant interest in the oncology com-
munity after it was shown to significantly improve bone 
scans and alleviate pain in patients with bone-metastatic 
prostate cancer in a randomized phase II trial, lead-
ing to the early termination of the randomization phase 
of the study [11]. Seventy-two percent of patients had 
regression in soft tissue lesions, whereas 68  % of evalu-
able patients had improvement on bone scan, including 
complete resolution in 12 %. The results of an expansion 
cohort of the phase II trial (NCT00940225) were recently 
published [12]. Of 144 patients sequentially enrolled in 
either a 100-mg (n = 93) or 40-mg (n = 51) study cohort, 
91 patients (63 %) had a bone scan response. A reduction 
in measurable soft tissue disease was also observed in 10 
out of 54 patients (19 %).

Here our primary aim was to study the association 
between plasma concentrations of known markers of 
hypoxia, cell signaling, inflammation, bone metabolism, 
chemo-attraction and EMT and response to cabozantinib 
in a cohort of pts who received the drug at 100 mg daily 
as part of the non-randomized expansion cohort. Our sec-
ondary aim was to study the changes that occur in the lev-
els of these markers on treatment, irrespective of response.

Methods
Patients, study design and study assessments
A full description of the patient population, study design, 
drug administration and study assessments can be found 

in the manuscript reporting the results of this expansion 
cohort [12]. Briefly, eligible patients had CRPC and bone 
metastases on bone scan, all underwent previous treat-
ment with docetaxel and had disease progression during 
or within 6 months of their most recent standard treat-
ment with a taxane or abiraterone-containing regimen. 
The clinical study was conducted in compliance with the 
Declaration of Helsinki and approved by the institutional 
review boards of participating institutions. Consent 
for biomarker analysis was obtained from all patients 
reported herein.

The current post hoc biomarker analysis was per-
formed on blood samples obtained from 81 patients out 
of the 93 patients of the 100-mg cohort [12], of which 33 
had measurable disease (according to RECIST version 
1.1) at baseline and at least one post-baseline assessment. 
We chose to focus on the 100-mg cohort as it was larger, 
and the responses observed in this cohort were more 
robust.

Whole-body bone scans and CT scans were acquired 
at baseline and every 6 weeks until drug cessation. A 
computer-aided detection system (IBIS, MedQIA, Los 
Angeles, CA) was used to objectively identify and quan-
tify bone metastases as explained in [13]. After image 
normalization, the software automatically identified and 
marked all candidate lesions and calculated the bone-
scan lesion area (BSLA). Bone scan response (BSR) was 
defined as  ≥30  % reduction in BSLA between a time 
point and baseline scan (the full calculation method is 
described in [13]). For patients with measurable dis-
ease, response was assessed using the Response Evalua-
tion Criteria In Solid Tumors (RECIST 1.1), and percent 
change at each time-point to baseline was calculated. The 
time of best response was defined individually for either 
type of response as the time point in which the maximal 
negative change in percentage was observed or the mini-
mal positive change in percentage was observed.

Blood samples and biomarker analysis
Blood samples for biomarker analysis were drawn from 
pts on the trial at baseline and every 6 weeks until either 
drug cessation or 24  weeks (whichever occurred first). 
Plasma samples were shipped on dry ice to AssayGate 
(Ijamsville, MD), and 300 ul of each sample was used 
for multiplex enzyme-linked immunoabsorbent assay 
(ELISA) using standard protocols. The experiment 
was performed in duplicates and the reliability of the 
duplicate was checked using Pearson correlation. The 
biomarkers assessed in our current analysis were cho-
sen based on our working hypotheses and/or reported 
evidence/rationale and included the hypoxia-related 
markers: Carbonic anhydrase 9 (CA9), GLUT1, Clus-
terin, Caveolin, Osteopontin; the receptor-ligand pairs: 
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vascular endothelial growth factor (VEGF)-A, VEGF 
receptor 2 (VEGFR2), hepatocyte growth factor (HGF), 
c-MET, Fms-related tyrosine kinase 3 (FLT3), FLT3 
ligand (FLT3L), insulin-like-growth-factor (IGF) 1 recep-
tor (IGF1R), IGFI, IGFII, AXL, Gas6, stem cell factor 
(SCF); the inflammation-related markers: c-reactive pro-
tein (CRP), interleukin-6 (IL6); the bone-related markers: 
bone-specific alkaline phosphate (BSAP), Semaphorin-
3C (SEMA3C), tartrate-resistant-acid-phopsphatase 
5b (Trap5b); and the micro-environment/angiogenesis 
related markers: tissue inhibitor of matrix metallopro-
tease 2 (TIMP-2), interlekin-8 (IL-8), thrombospondin-1, 
angiopoietin-2 (ANG2) and TIE2 (Table  1). Biomarker 
analysis was performed at baseline, at 6 weeks and at time 
of best response for each of the two response parameters. 
If the best response occurred after 24  weeks, the blood 
sample as 24 weeks was taken instead.

Statistical analysis
Our primary aim was to determine if associations exist 
between the best BSR or soft tissue response to any of 
the 5 following variables: biomarker level at baseline; 
biomarker level 6 weeks; biomarker level at time of best 
response; change in biomarker level from baseline to 
6  weeks or change in biomarker level from baseline to 
time of best response. For each biomarker at each time 
point, two repeats were averaged. The associations 
between the markers or their change from baseline and 
the response were evaluated based on the Spearman cor-
relation coefficients.

The changes of the markers over time were explored by 
applying the mixed effect models to account for the pos-
sible correlations between the measurements of the same 
patient. For these models the outcome was the mark-
ers, the covariate was the time and the patient was the 
random effect. The residuals were inspected from any 
departure from normality. When the residuals appeared 
skewed, a transformation was applied to the outcome 
variable (the marker), which was either log or square 

root transformation, depending on which made the dis-
tribution of the residuals closer to the normal distribu-
tion. The type of transformation applied is supplied in the 
Table 3.

Results
Patients and responses
The median age of pts included in our study was 67, all 
had an ECOG PS of 0 or 1, all had metastatic disease to 
the bone, and all were previously treated with docetaxel, 
whereas a third were also treated with either enzaluta-
mide, abiraterone or both, and a quarter received prior 
cabazitaxel. Almost half of the patients had a pain score 
of 4 or higher (using to the standard 1-10 numeric rat-
ing scale). The waterfall plot of the bone scan response of 
the 81 patients included in this analysis and the soft tis-
sue response of the 33 patients with measurable disease 
are depicted in Fig.  1, showing that 66 of 81 pts (81  %) 
had a decrease in BSLA of more than 30 %, and 6 of 33 
pts (18 %) had a partial soft tissue response according to 
RECIST.

Reliability of measurements
All markers except TIMP2 were reliably measured, with 
the Pearson correlation coefficient between the two 
repeats ranging between 0.80 and 0.99. The correlation 
was lower for TIMP2 at 0.68 (results not shown).

Correlation of markers with activity
No significant correlation was observed between BSR 
and marker levels at baseline, 6  weeks or time of best 
response or the change of the markers from baseline to 
either 6  weeks or time of best response. The Spearman 
correlation coefficients ranged between −0.37 and 0.25 
(results not shown). When using the Bonferroni p value 
correction for multiple comparison, no significant cor-
relations were observed between the soft tissue response 
and marker levels at any time point or the change in 
marker levels. The Spearman correlation coefficients 

Table 1  Plasma markers assessed in the post hoc analysis

Hypoxia-related  
markers

Signaling pathways Inflammation Bone-related  
markers

Micro-environment/angio-
genesis

Marker Ref. Marker Ref. Marker Ref. Marker Ref. Marker Ref.

CA9 [34] VEGFA-VEGFR2 [14] CRP [35] BSAP [12] TIMP-2 [36]

GLUT1 [37] HGF-
c-MET

[7, 10, 16] IL-6 [38] SEMA3C [39] IL-8 [40, 41]

Clusterin [42] FLT3-FLT3L [18] Trap5B [43] Thrombo-spondin-1 [44]

Caveolin [45] IGF1R-IGFI/IGFII [20, 46, 47] ANG2-TIE2 [48, 18]

Osteopontin [49] AXL-GAS6 [30, 10, 16]

SCF [18]
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ranged between: −0.4 and 0.5. The Spearman correlation 
coefficients with an absolute value of 0.4 or higher (with 
their corresponding non-corrected p values) are given in 
Table 2.

Correlation with treatment course
We then assessed trends in marker levels on treatment 
irrespective of response. Fourteen out of 27 markers 
showed a significant change in their expression levels 
throughout treatment, using an alpha level for signifi-
cance of 0.0018 according to the Bonferroni correction 
for 27 comparisons (Table 3). The plasma concentration 
of soluble VEGFR2 was significantly decreased during 
treatment with cabozantinib, and the plasma levels of 
VEGF-A were significantly increased, in keeping with the 

well-characterized biomarker ‘signature’ of VEGFR inhi-
bition [14].

The plasma concentrations of the soluble forms of 
the RTKs c-MET and AXL significantly increased upon 
treatment with cabozantinib. The plasma concentrations 
of Gas6, FLT3L, Bone-specific alkaline phosphatase and 
IL-8 also significantly increased upon treatment with 
cabozantinib irrespective of response. In addition, the 
plasma concentrations of CA9, a known hypoxia-related 
marker, and clusterin, a hypoxia-related anti-apoptotic 
protein, were both significantly increased upon treatment 
with cabozantinib irrespective of response. In contrast, 
the plasma concentration of Trap5b, ANG-2, TIMP-2 
and TIE2 all significantly decreased following treatment 
with cabozantinib. A schematic depiction of the altera-
tions in plasma biomarkers during cabozantinib treat-
ment is shown in Fig. 2.

Discussion
Tyrosine kinase inhibitors have been routinely used in the 
clinic for treatment of solid and hematological cancers 
for almost a decade. Tyrosine kinase inhibitors of VEGFR 
have been used in a variety of solid cancers including 
kidney, thyroid, liver and recently gastro-intestinal [15]; 
yet despite much research effort along many years and 
across many research groups, no predictive biomarkers 
of response to VEGFR-inhibition have been described 
to date. Our primary underlying hypothesis in this study 
was that hypoxia-related markers would be associated 
with response to cabozantinib; but similar to others, we 
did not find any significant associations between plasma 
biomarkers at any time point or their change through-
out treatment and either bone scan response or soft tis-
sue response to cabozantinib. A major limitation of our 
study is the small cohort of patients with measurable 
disease (n =  33), of which only six patients had a par-
tial response. This cohort size would have allowed only 
very strong associations between markers and response 
to reach statistical significance. Our data cannot, at this 
point, rule out associations of lesser strength that would 
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Fig. 1  Waterfall plots of a BSR and b RECIST response of patients 
treated with cabozantinib at 100 mg a day and were included in this 
post hoc analysis

Table 2  Spearman correlation co-efficients associated with soft tissue response for each of the variables

Variable Biomarker Spearman correlation  
co-efficient

P value  
(not corrected)

Level of biomarker at baseline Trap5b 0.45 0.007

Level of biomarker at 6 weeks Trap5b 0.5 0.002

Level of biomarker at time of best response or earlier IGF-II −0.4 0.02

BoneAP 0.46 0.006

Trapb5 0.47 0.006

Change in biomarker from baseline to 6 weeks None

Change in biomarker from baseline to best response or earlier TIMP2 0.41 0.02
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have become statistically significant with a bigger cohort. 
Moreover, as the most common type of soft tissue lesion 
is lymph node metastasis, it is unlikely that a response in 
lymph nodes would significantly contribute to a change 
in a serum biomarker. Further work is thus needed in 
order to elucidate which molecular, clinical or pathologi-
cal variables determine responsiveness to cabozantinib in 
prostate cancer.

Our current work does, however, point to significant 
alterations that occur within the plasma following treat-
ment with cabozantinib irrespective of response. Cabo-
zantinib was rationally designed to inhibit the RTKs 

VEGFR2 and c-MET. The biological rationale to com-
bine VEGFR2 inhibition with c-MET inhibition is sup-
ported by reports describing increased expression or 
activity of the c-MET tyrosine kinase following inhibi-
tion of VEGFR2 [16]. Cabozantinib was shown to result 
in more extensive anti-tumor activity in animal models 
than a multi-kinase inhibitor targeting VEGFR2 with-
out c-MET inhibition [17], and to suppress metastasis, 
angiogenesis and tumor growth across a variety of tumor 
xenograft models [18]. Our observation of decreased sol-
uble VEGFR2 on treatment with cabozantinib, concomi-
tant with an increase in VEGF-A, is in keeping with the 

Table 3  Change in biomarkers on treatment

Transformation Trend Estimates based on the model p value (not  
corrected)

Bonferroni 
adjusted  
p valueBaseline Week 6 Week 12 Week 18 Week 24

Hypoxia-related makers

 CA9 Square root Increase 8.39 13.77 15.43 17.22 13.96 0 <0.0001

 Clusterin Log 5.08 5.29 5.18 5.24 5.49 0.00042 0.0088

 GLUT1 Log No significant 
change

3.9 3.86 3.87 3.87 3.77 0.013 0.35

 Caveolin Square root 2.65 2.51 2.55 2.53 2.27 0.55 >0.99

 OPN Log 4.43 4.23 4.18 4.25 4.49 0.27 >0.99

Signaling pathways

 VEGFA Log Increase 3.82 4.94 4.96 4.98 4.7 0 <0.0001

 FLT3L Log 5.31 6.62 6.78 6.51 6.41 0 <0.0001

 AXL None 5452.58 7689.79 7603.41 7055.92 7348.19 0 <0.0001

 Gas6 Square root 38.54 55.03 50.85 45.67 52.88 0 <0.0001

 c-MET None 106.04 147.79 142.02 124.13 155.28 7.8E-09 <0.0001

 VEGFR Log Decrease 7.32 6.66 6.37 6.37 7.02 1.7E-12 <0.0001

 FLT3 Log No significant 
change

3.98 3.71 3.75 3.91 3.84 0.003 0.081

 SCF Log 4.45 4.36 4.3 4.19 4.72 0.071 >0.99

IGF1R Log 5.43 5.58 5.6 5.64 5.57 0.035 0.95

 IGFI None 48,276.42 49,765.76 38,327.24 46,418.15 47,612.38 0.034 0.92

 IGFII None 149.85 168.03 151.46 147.71 146.22 0.34 >0.99

 HGF Square root 22.19 18.72 19.45 18.37 22.34 0.06 >0.99

Inflammation

 CRP Square root No significant 
change

91.13 89.21 89.95 94.68 75.03 0.83 >0.99

 IL6 Log 2.93 2.9 2.95 2.97 2.99 0.98 >0.99

Bone-related markers

 BSAP None Increase 153.54 179.84 175.52 141.5 164.09 0.00024 0.0065

 Trap5b Log Decrease 1.44 1.16 1.2 1.16 1.31 0.00002 0.0005

 SEMA3C Log No significant 
change

4.23 4.45 4.35 3.78 3.8 0.22 >0.99

Micro-environment/angiogenesis

 IL8 Log Increase 2.18 2.49 2.68 2.68 2.78 1.5E-12 <0.0001

 ANG2 Log Decrease 6.95 6.47 6.48 6.6 6.3 2.5E-08 <0.0001

 TIMP2 None 72.28 65.65 66.34 65.08 62.28 1.2E-06 <0.0001

 TIE2 Log 8.62 8.25 8.1 7.89 8.43 0.00002 0.0005

 Thrombo  
spondin

Square root No significant 
change

64.49 61.72 64.22 49.68 71.9 0.055 >0.99
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well-characterized biological signature of VEGFR inhibi-
tion [14]. In contrast, soluble c-MET and AXL levels were 
increased on treatment with cabozantinib in our cohort.

A similar pattern of c-MET increase was also reported 
in patients with progressive/recurrent glioblastoma 
treated with cabozantinib in a phase 2 trial [19] and in 
a single-institution subset of patients from this mCRPC 
patient cohort [20]. The biological significance of the 
increase in soluble c-MET seen on treatment is cur-
rently unclear. In preclinical models, both complete and 
partial inhibition of c-MET phosphorylation in  vivo by 
cabozantinib has been described [16, 18, 21–24]. A cor-
relative biomarker analysis of patients treated with cabo-
zantinib across several clinical trials showed decreases 
in phosphorylation of c-Met, AKT and ERK in surro-
gate hair tissue on drug [25]. In addition, in the single-
institution subset of patients from this mCRPC patient 
cohort described above, phosphorylation of c-MET in 
metastatic bone lesions was decreased at 6 weeks in 5 of 
9 (56 %) patients who had detectable phosphorylation at 
baseline [20]. The median reduction in phospho-c-MET 
in that study was 30 %, indicating that the receptor may 
have been re-phosphorylated and potentially re-activated 
at 6 weeks. Additional investigations using a subcutane-
ous CRPC xenograft model in mice revealed that inhibi-
tion of c-MET phosphorylation occurred early following 
the administration of cabozantinib, but was followed by 
an increase in the phospho-c-MET signal at a later time 
point, perhaps as a result of non-ligand induced re-
phosphorylation of the receptor [26]. Further research is 
clearly needed to fully characterize the nature, extent and 
duration of the effect of cabozantinib on c-MET phos-
phorylation and/or signaling in prostate cancer in vivo.

The hypoxia-related markers CA-9 and clusterin sig-
nificantly increased following treatment with cabozan-
tinib, suggesting modulation of tumour hypoxia or the 
response thereto in the presence of cabozantinib. This 
is in line with the recent observation that cabozantinib 

increases hypoxia in medullary thyroid cancer cells by 
modulating HIF1 [27]. Our analysis did not reveal a sta-
tistically significant association between the increase 
in hypoxia-related markers and response, but it is cur-
rently unknown whether there is a significant associa-
tion between cabozantinib-induced-hypoxia and time to 
tumor progression. The crosstalk between RTK inhibi-
tion, the induction of micro-environmental hypoxia and 
tumour evolution should be further studied.

In addition to VEGFR2 and c-MET inhibition, cabo-
zantinib also inhibits other RTKs in  vitro, including 
RET, KIT, AXL and FLT3 [18, 28]. FLT3 levels non-
significantly decreased on treatment and FLT3L levels 
significantly increased on treatment, similar to the pat-
tern observed for the VEGFR2-VEGF-A pair. In con-
trast, both the levels of soluble AXL receptor and the 
AXL ligand Gas6A significantly increased on treatment. 
AXL was shown to be highly expressed in metastatic 
prostate cancer and its interaction with Gas6 was sug-
gested to play a role in establishing tumor dormancy 
in the bone marrow microenvironment [29]. AXL pro-
motes migration and invasion of prostate cancer cells 
in  vitro and regulates expression of genes involved in 
EMT. Gas6 negatively regulates AXL expression lev-
els in general, but not in hypoxic environments such as 
in a tumor or in bone [30]. It is tempting to speculate 
that the observed increase, rather than the expected 
decrease, in soluble plasma AXL levels is a manifestation 
of its increased expression in cancer cells that is in turn a 
result of cabozantinib-induced-hypoxia. This may imply 
that the potential beneficial effects of AXL inhibition by 
cabozantinib are mitigated by the concomitant increase 
in hypoxia. In medullary thyroid cancer, inhibition of 
cabonzatinib-induced hypoxia by the HIF-1 inhibitor 
2-methoxyestradiol enhanced the drug’s efficacy in vitro 
and in vivo [27]. Clearly more work is needed in order to 
study the effects of caboznatinib on hypoxia and on the 
Gas6-AXL pathway, and the relationship of both to pros-
tate cancer progression.

Additional alterations were shown to occur following 
treatment with cabozantinib. The levels of TIMP2 and 
TIE2 were decreased on cabozantinib; this is in line with 
the observed decrease in their levels in patients with renal 
cell carcinoma treated with the multi-VEGFR-PDGFR 
inhibitor regorafenib [31], demonstrating a consistent 
change in micro-environment-related and angiogenesis-
related biomarkers on treatment with VEGFR TKI.

Recently, the results of the phase III trials of cabozan-
tinib in mCRPC were presented, failing to demonstrate a 
statistically significant overall survival benefit vs. placebo, 
or a palliative benefit for cabozantinib vs. mitoxantrone/
prednisone in heavily pre-treated mCRPC patients ([32] 
and [33], respectively). The promising response rates 

Cabozan�nib 
treatment

Decrease in soluble forms of RTKs:
VEGFR2*, FLT3

Increase in 
hypoxia markers: 
CA9*, clusterin*

Increase in RTK 
ligands: VEGFA*, 
FLT3L*, Gas6A*

bone and micro-environment:
Increase in IL-8*, Bone AP*;
Decrease in ANG2*, TIE2*, 

TIMP*, Trap5B*, GLUT1

Increase in 
soluble forms of 

RTKs: Met*, AXL*, 
IGF1R 

Fig. 2  Schematic representation of the significant alterations in 
plasma biomarkers during treatment with cabozantinib. Asterisk 
signifies a corrected p value (based on the Bonferroni correction for 
multiple comparisons) <0.05
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observed in the phase II trials therefore did not translate 
into an OS benefit for the entire cabozantinib-treated 
population. Indeed, concerns have been raised that the 
dramatic bone scan response seen following treatment 
with caboznatinib are the result of non-specific effects 
on bone turnover rather than a true anti-neoplastic effect 
within that niche [50].

The results presented here show that cabozantinib 
induces significant changes in several plasma biomark-
ers known to be linked to hypoxia, tumor micro-envi-
ronment and RTK signaling. It will be interesting to see 
if these significant alterations are associated with other 
endpoints of clinical importance such as time to progres-
sion and overall survival. Further basic, translational and 
clinical research on these alterations may enhance our 
understanding of the mechanism of action and of cabo-
zantinib as well as mechanisms of drug resistance and 
may point to potential co-targeting approaches. Our cur-
rent work may thus inform ongoing approved and emerg-
ing indications for cabozantinib.

Conclusions
Whereas our work did not find plasma biomarkers asso-
ciated with response to cabonzatinib in mCRPC, it does 
point to plasma biomarkers that are significantly altered 
upon treatment with the drug. These include the receptor 
ligand pairs MET-HGF, VEGFR2-VEGF-A, FLT3-FLT3L 
and AXL-GAS6, the hypoxia-related markers CA-9 and 
clusterin and the micro-environmental factors TIMP2 
and TIE2, suggesting that these molecular players and 
pathways play a role in the tumor, the micro-environ-
ment and the systemic response to cabozantinib. Further 
research on the relationship between the alteration in 
these signaling pathways, response/resistance to cabo-
zantinib and tumor progression is clearly warranted.
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mCRPC: metastatic castration resistant prostate cancer; RECIST: response 
evaluation criteria in solid tumors; SEMA3C: semaphorin-3C; SCF: stem cell fac‑
tor; Trap5b: tartrate-resistant-acid-phopsphatase 5b; TIMP-2: tissue inhibitor of 
matrix metalloprotease 2; VEGFA: vascular endothelial growth factor A; VEGFR: 
vascular endothelial growth factor recptor 2.
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