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Abstract 

Background:  Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and 
cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of 
vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, 
EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. 
Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-
forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet 
aggregation.

Methods:  EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in 
conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional char‑
acteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface mark‑
ers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored 
in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells 
(HUVECs). The levels of the anti-platelet agents’ nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as 
well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were 
also assessed.

Results:  We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like pheno‑
type. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however 
ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and 
PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)—
and inducible (iNOS)—NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively 
express these NO and PGI2 producing enzymes.

Conclusion:  The different morphological, phenotypic and more importantly the release of the anti-aggregating 
agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be 
linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
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Background
Endothelial progenitor cells (EPCs) are believed to play 
a significant role in vascular biology through their impli-
cation in vascular repair, cell therapy, and regenerative 
medicine [1–4]. Definitive proof of the existence of cir-
culating EPCs was provided in 1997 [5], showing that 
human peripheral blood contains CD34+ and vascular 
endothelial growth factor receptor 2+ (VEGFR2+) pro-
genitor cells, which can attach to fibronectin, acquire 
certain characteristics of mature endothelial cells (ECs) 
in vitro, and contribute to neoangiogenesis in vivo. Since 
then, numerous cells have been employed to improve 
cardiovascular function, including EPCs, bone marrow 
mononuclear cells, myocardial stem cells, mesenchymal 
stem cells, and embryonic stem cells [6, 7]. Among these, 
EPCs have emerged as important modulators in vascu-
lar biology and hemostasis. However, controversies still 
exist as to their therapeutic and diagnostic use [8–10]. 
One important aspect of EPC biology is their interaction 
with vascular and blood cells, which can largely influence 
their functional properties. More specifically, the inter-
action of EPCs with platelets provides the critical signal 
to ensure their migration and homing at sites of vascular 
injury and their differentiation into ECs [11–17]. Con-
versely, EPCs affect platelet function [18–22] and modu-
late endothelial repair [23–27], which add new insights to 
the importance of EPCs in vascular hemostasis.

In our attempt to elucidate the functional impor-
tance of EPC interactions with platelets, we have previ-
ously shown that a heterogeneous population of EPCs, 
derived from PBMCs after 10 days of culture, modulates 
the function of platelets [18], through binding to plate-
lets via P-selectin [28]. This interaction impairs the func-
tion of platelets through an increase in cyclooxygenase-2 
(COX-2) expression and prostacyclin (PGI2) release. 
Recent experimental evidence has established that cells 
originally defined as EPCs and used for potential therapy 
are not true endothelial progenitors [8, 29–31]. Indeed, 
recent analyses have revealed that, depending on how 
EPCs are isolated and cultured, the EPC population 
can either consist of a minimally proliferative myeloid-
monocytic cell population (early EPCs, monocytic EPCs, 
EOCs, or cultured angiogenic cells) or consist primarily 
of a highly proliferative non-myeloid EC population (late 
EPCs, ECFCs, or late outgrowth cells) [9, 32–34]. In this 
regard, we have been characterizing and studying the 
well-defined EOC subtype and showed that they produce 
matrix metalloproteinase-9 and reactive oxygen species 
that influence their pro-angiogenic [23] and anti-platelet 
functions [19], respectively. On the other hand, ECFCs 
are considered highly proliferative cells that incorpo-
rate at sites of vascular lesions, differentiate into ECs 
and contribute to endothelial repair [9, 32, 33, 35]. Their 

anti-platelet properties could be of great importance in 
vascular hemostasis and repair. Accordingly, this study 
was designed to describe the characteristics of EOCs and 
ECFCs, and to compare their effect on platelet function 
by defining the underlying vasoactive substances impli-
cated in this process. The major findings are that ECFCs 
are more efficient in inhibiting platelet aggregation than 
EOCs. This was related to an increase in the production 
of the potent anti-platelet agents PGI2 and NO by ECFCs, 
which induce significantly stronger inhibitory effects of 
platelet aggregation.

Methods
Culture and characterization of human EOCs and ECFCs
This study was carried out according to a protocol 
accepted by the Montreal Heart Institute ethical com-
mittee in agreement with the Declaration of Helsinki. 
Informed consent was obtained from healthy volun-
teers aged between 20 and 60 years and medication free 
over 10 days prior to blood sampling. Ficoll–Paque (GE 
Healthcare, Piscataway, NJ, USA) density gradient cen-
trifugation was used to isolate peripheral blood mono-
nuclear cells (PBMCs) from 100 mL of peripheral blood, 
as previously described [18]. To generate EOCs, 1 × 106 
PBMCs per cm2 were seeded on 6-well fibronectin-
coated tissue culture plates (BD Biosciences, Mississauga, 
ON, Canada) in complete endothelial growth media 
EGM-2 (Lonza Inc., Burlington, ON, Canada) at 37  °C 
in an atmosphere of 5  % CO2. Following 3  days of cul-
ture, the medium was changed to remove non-adherent 
cells. Additional culturing of adherent cells up to 7 days 
was allowed to obtain EOCs [23, 36]. ECFCs were gener-
ated from PBMCs seeded at a density of 5 × 106 mono-
nuclear cells per cm2 in 6-well collagen-coated tissue 
culture plates (BD Biosciences). Culturing of ECFCs was 
performed in EGM-2 supplemented with 10 % FBS. The 
medium was changed daily for 7 days and every other day 
thereafter until the appearance of endothelial cell colo-
nies (2–4  weeks), which were cultured until the forma-
tion of a confluent monolayer of highly proliferative EPCs 
[36–38]. Cells were used between passages three and six. 
Characterization of EOCs and ECFCs was compared to 
mature human umbilical vein endothelial cells (HUVECs) 
(Lonza Inc.) cultured in complete EGM2 with 10 % FBS 
on 0.2 % gelatin-coated flasks.

Confocal microscopy
EOCs and ECFCs were incubated with DiI-labeled acety-
lated low density lipoprotein (DiI-Ac-LDL) (Invitrogen, 
Carlsbad, CA, USA) for 2  h followed by 4  % paraform-
aldehyde fixation and subsequent 1-hour incubation 
with FITC-labeled Ulex-lectin (Sigma-Aldrich, St-Louis, 
MO, USA). Nuclear staining was done with TO-PRO-3 
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(Invitrogen). Cells were visualized under an LSM 510 
confocal microscope (Zeiss, Oberkochen, Germany) at 
63× objective magnification [18].

Matrigel tube formation assay
EPC’s potential to form tube-like structures was com-
pared to that of HUVECs on Matrigel-coated 24-well 
plates [39]. Growth factor reduced Matrigel (BD Bio-
sciences) (200 μL) was incubated for 30 min at 37  °C in 
a 5 % CO2 atmosphere to allow polymerization and for-
mation of a gel-like surface. Cells were harvested with 
trypsin–EDTA 0.05  % (Gibco, Burlington, ON, Can-
ada), washed and resuspended in complete EGM-2 at 
200 ×  103 per 300  μL per well. Following 24-h incuba-
tion at 37 °C in a 5 % CO2 atmosphere, cells were viewed 
under an inverted microscope and images were taken at 
10× objective magnification.

Cell surface marker expression
Phenotypic characterization of EOCs and ECFCs was 
performed by flow cytometry and compared to PBMCs 
and HUVECs [18]. Cells were harvested by washing 
cells with phenol red-free and serum-free basal RPMI 
1640 medium followed by trypsinization with 0.05  % 
trypsin–EDTA (Gibco) for 15  min at 37  °C [38]. Cells 
were subsequently blocked with normal mouse serum 
for 15  min, washed and incubated for 30  min with PE-
labeled fluorescent human monoclonal antibodies 
against the monocytic marker CD14 (R&D Systems, 
Minneapolis, MN, USA), the leukocytic marker CD45 
(AbD Serotec, Oxford, UK), the progenitor marker CD34 
(BD Biosciences), the angiogenic marker VEGFR2 (R&D 
Systems), and the endothelial markers CD31 (BD Bio-
sciences) and CD144 (BD Biosciences). Cells were then 
fixed with paraformaldehyde for 30 min and analyzed on 
an Altra flow cytometer (Beckman Coulter, Mississauga, 
ON, Canada). Cells were gated by their characteristic for-
ward and side scatter properties.

Platelet aggregation
Platelets were isolated from 100  mL peripheral blood 
of healthy volunteers, as previously described [18, 19]. 
Washed platelets resuspended in HBSS–Hank’s buffer 
were then adjusted to 250 × 106/mL. Platelet aggregation 
was performed in a four-channel optical aggregometer 
(Chronolog Corp., Havertown, PA, USA) under shear 
(1000 rpm) at 37 °C. A volume of 400 μL of the washed 
platelet preparation was incubated with 100 μL of PBMC, 
EOC, and ECFC cells or their supernatants at 37  °C for 
5  min prior to the assay. Platelet aggregation was then 
induced with 1  μg/mL collagen (Chronolog Corp.), 
and traces were recorded until stabilization of plate-
let aggregation was reached. Controls were performed 

by incubating platelets with complete EGM-2 culture 
medium.

Western blot
EOCs and ECFCs were harvested using trypsin–EDTA 
0.05  % (Gibco), centrifuged at 500×g for 10  min then 
resuspended in PBS 1× and sonicated. Protein content 
was assessed by the Bradford assay method, mixed with 
the appropriated volume of 4× Laemmli loading buffer 
and heated for 5  min at 95  °C. Protein lysates (40  μg) 
were resolved by SDS-PAGE and transferred onto nitro-
cellulose membranes (Bio-Rad, Hercules, CA, USA). 
Membranes were blocked with 5 % non-fat milk in TBS-
Tween-20 for 1 h. Membranes were then incubated over-
night with primary antibodies (1:1000) against eNOS and 
iNOS (Cell Signaling, Beverly, MA, USA), and against 
COX-1 and COX-2 (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA). Following washing steps, membranes 
were labeled with horseradish peroxidase-conjugated 
secondary antibody for 1  h, washed and bound peroxi-
dase activity was detected by enhanced chemilumines-
cence (Perkin Elmer Life Sciences, Waltham, MA, USA).

PGI2 release assay
A commercial radioimmunoassay (RIA) PGI2 kit was 
used to assess prostacyclin release (Assay Designs, San 
Diego, CA, USA) according to manufacturer instruc-
tions. Levels of 6-keto-PGF1∝, the stable metabolite of 
PGI2, were assessed in EOC and ECFC culture superna-
tants and compared to PBMC and HUVEC supernatants.

NO release assay
A commercial fluorometric NO assay kit was used to 
assess nitric oxide release (Cayman Chemicals, Ann 
Arbor, MI, USA) according to manufacturer instructions. 
Levels of total nitrate and nitrite (NO2

− and NO3
−) were 

assessed in EOC and ECFC supernatants and net nitrate 
(NO2

−) concentrations were calculated and compared to 
PBMC and HUVEC supernatants.

Statistical analysis
Results are presented as mean ±  SEM of at least three 
independent experiments. Statistical comparisons were 
done using either paired student’s t test or a one-way 
ANOVA followed by a Dunnett’s-t-test for comparison 
against a single group. Data with p  <  0.05 were consid-
ered statistically significant.

Results
EOCs and ECFCs are morphologically and phenotypically 
different
Different culture techniques were required to generate 
each EPC subtype. EOCs were generated from PBMCs 
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cultured for 7 days on fibronectin-coated plates whereas 
ECFCs were obtained following longer culture periods 
(2–4  weeks) on collagen-coated plates. The morphol-
ogy observed for each cell subtype differs greatly. EOCs 
form a heterogeneous population of round and elon-
gated cells whereas ECFCs form a cobblestone-like mon-
olayer of homogenous appearance (Fig. 1a). EOCs display 
an immature endothelial cell character since they still 
resemble the PBMC population from which they derive 
following 7  days of culture. On the other hand, ECFCs 
seem to acquire an endothelial-like phenotype resem-
bling HUVECs. Furthermore, EOCs are short-lived cells 
which do not survive past 7  days whereas ECFCs are 
highly proliferative cells which can be passaged and kept 
in culture for months (data not shown). Both EOCs and 
ECFCs bind Ulex-lectin and internalize DiI-Ac-LDL, 
both endothelial cell characteristics (Fig. 1b).

EOCs and ECFC tube formation potential
We show that EOCs and ECFCs are also functionally dif-
ferent. EOCs do not form tube-like structures, whereas 
ECFCs, similarly to HUVECs, form well-structured tubes 
on Matrigel (Fig. 1c).

EOCs and ECFC cell surface marker expression
EOCs continue to express the leukocytic and mono-
cytic cell surface markers CD45 and CD14, respec-
tively, after 7  days of culture, whereas ECFCs lose 
these markers throughout their differentiation pro-
cess. Moreover, EOCs strongly express the angiogenic 
marker VEGFR2. Unlike EOCs, ECFCs express the 
progenitor cell marker CD34 and the endothelial cell 
marker CD144. All cell populations showed uniform 
expression of the platelet-endothelial cell adhesion 
molecule CD31 (Fig. 2).

Fig. 1  Characterization of PBMC-derived EOCs and ECFCs. a Representative optical microscopy images of EOCs and ECFCs taken at 10× magnifica‑
tion using an inverted light microscope. EOCs display a heterogeneous population of round and elongated cells on fibronectin following 7 days of 
culture. ECFCs show a homogeneous population forming a cobblestone-like monolayer on collagen following 21 days of culture. b Representative 
confocal microscopy images showing EOCs and ECFCs triple staining for DiI-Ac-LDL uptake (red), Ulex-lectin binding (green) and TO-PRO-3 nuclear 
staining (blue) taken at 63× magnification. c Representative optical microscopy images showing the tube-like structure formation potential of EOCs 
and ECFCs compared to HUVECs on a Matrigel surface taken at 10× magnification using an inverted microscope
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EOCs and ECFCs inhibit platelet aggregation
In order to better understand the influence of EPCs on 
platelets, we sought to investigate the effect of each EPC 
subtype on platelet aggregation. We show that both 

EOCs and ECFCs and their respective supernatants 
inhibit platelet aggregation, in comparison to PBMCs 
(Fig.  3). However, we noticed an increased efficiency of 
the supernatants in inhibiting platelet aggregation in 
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Fig. 3  Effect of PBMCs, EOCs and ECFCs on platelet aggregation. a Representative traces of platelet aggregation. Platelets were incubated with 
complete EGM-2 medium (control) or in the presence of 4 × 106/mL PBMC, EOC and ECFC cells or their respective supernatants for 5 min at 37 °C 
prior to aggregation initiation with 1 μg/mL of collagen. b Histogram represents the mean data of percent platelet aggregation ± SEM (n ≥ 3, ** 
p < 0.01 vs control)
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comparison to their respective cell samples for both 
EOCs and ECFCs. We suggest that this may be due to the 
release of vasoactive agents which play an important role 
in platelet aggregation. Furthermore, we demonstrated 
that ECFCs are more efficient at inhibiting platelet aggre-
gation than EOCs.

ECFCs release more NO and PGI2 than EOCs
To further understand the increased efficiency of ECFCs 
compared to EOCs in inhibiting platelet aggregation, 
we compared the NOS and COX expression profiles in 
EOCs, ECFCs, PBMCs, and HUVECs. We found that 
ECFCs, similarly to HUVECs, constitutively express 
eNOS, iNOS, and COX-1, but to a lesser extent COX-
2. In contrast, EOCs do not constitutively express these 
NO and PGI2 producing enzymes (Fig. 4a). Using radio-
immunoassay and fluorometric techniques, we assessed 
PGI2 and NO release, respectively. We found that EOCs 
release minimal amounts of NO (60  pmol) and PGI2 
(300  pg/mL) whereas ECFCs, similarly to HUVECs, 

release significantly higher levels of both NO (90  pmol) 
and PGI2 (5000 pg/mL) (Fig. 4b,c). The higher expression 
of NOS and COX enzymes in ECFCs account for the sig-
nificantly higher levels of NO and PGI2 released by these 
cells in comparison to EOCs.

Discussion
EPCs have gained much attention in the past decade for 
their therapeutic role; however, no clear consensus has 
been achieved to date as to the origin and specific func-
tion of these cells. Indeed, the term EPCs represents a 
complex assortment of progenitor cells that play different 
role on neoangiogenesis and vascular repair. The charac-
terization and critical re-evaluation of EPC phenotypes 
are therefore essential for their efficiency as therapeutic 
and diagnostic tools (for review Fadini et al. [9]). Differ-
ent conditions such as source, media, incubation times 
and culture surfaces have yielded different subtypes of 
EPCs. However, recent evidence suggests the existence of 
two subtypes of EPCs according to their time-dependent 
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appearance. Based on new findings and on standardized 
isolation and differentiation protocols [30, 34, 36–38], 
we have first successfully differentiated two subtypes of 
EPCs from PBMCs: EOCs and ECFCs, each distinct in 
their morphology, phenotype, and function. As it has 
previously been argued, we have found that EOCs and 
ECFCs differ in morphology and phenotype since EOCs 
possess monocytic-like characteristics, whereas ECFCs 
are rather endothelial-like cells. In addition, EOCs nei-
ther proliferate nor form tube-like structures, whereas 
ECFCs are highly proliferative and form structured and 
defined tubes on Matrigel. These data confirm previous 
studies showing that EOCs lack the ability to incorpo-
rate into the neovasculature, but rather influence neo-
vascularization through the release of paracrine factors, 
whereas ECFCs can be incorporated in new vessel forma-
tion [36, 40]. However, the two EPC subtypes seem to act 
synergistically in vascular repair [40–42]. Therefore, we 
aimed at studying the role of EOCs and ECFCs in platelet 
function as the former cannot form new vessels but may 
considerably influence platelets by releasing a multitude 
of vasoactive substances, whereas the latter may indi-
rectly influence platelet function while incorporating at 
sites of vascular lesions.

EPCs and platelet interactions occur at sites of vascular 
lesions in order to promote vascular repair. Being the first 
cells to be recruited at sites of vascular damage, platelets 
become activated to release a multitude of paracrine fac-
tors (SDF-1) and to express cell surface adhesion mol-
ecules (P-selectin), which allow for the recruitment and 
differentiation of EPCs [14, 15, 43]. In turn, EPCs also 
modulate the function of platelets by releasing paracrine 
factors [18, 19], such as PGI2 and NO, which are the two 
main endothelium-derived vasodilation substances that 
display potent anti-platelet properties [44]. In the pre-
sent study, we showed that both EOCs and ECFCs inhibit 
platelet aggregation. However, ECFCs are significantly 
more efficient than EOCs at inhibiting this process. Inter-
estingly, the supernatants from both EOCs and ECFCs 
inhibit platelet aggregation more efficiently than their 
respective cells. Next, we compared the levels of PGI2 
and NO released by EOCs and ECFCs, as these two sub-
stances are the major endothelium-derived vasodilation 
agents that play protective and antithrombotic roles in 
platelet reactivity. We showed that EOCs release smaller 
quantities of both PGI2 and NO in comparison to ECFCs. 
This could be related to the presence of a higher quan-
tity of NO and PGI2 in the supernatants, which accounts 
for their increased efficiency in inhibiting platelet func-
tion as compared to the cells. In this connection, COX-1 
and COX-2 are the enzymes involved in the production 
of prostaglandins, thromboxane and PGI2. Nitric oxide 
synthases (eNOS, iNOS and nNOS) are the enzymes 

involved in NO production, among which eNOS and 
iNOS are mainly responsible for NO production by the 
endothelium. Different levels of expression and regula-
tion of the COX and NOS enzymes determine the levels 
of PGI2 and NO released by different vascular cell types. 
Interestingly, we found that ECFCs, similarly to HUVECs, 
constitutively express eNOS, iNOS and COX-1, but to a 
lesser extent COX-2. Surprisingly, EOCs do not consti-
tutively express these NO and PGI2 producing enzymes. 
This could be related in part to a regulatory mechanism 
that occurs at this early stage of the differentiation pro-
cess, where EOCs, like other NO and PGI2 producing 
cells, need to be triggered to upregulate COX and NOS 
enzymes. However, further investigation is needed to 
clarify this issue. In the other hand, the pattern expres-
sion of COX and NOS in our ECFC population was close 
to those found in EPCs generated in our previous study 
[18]. This could explain why ECFCs release considerably 
higher amounts of the anti-aggregating agents PGI2 and 
NO than EOCs, thereby accounting for their enhanced 
capacity in inhibiting platelet aggregation. However, 
the mechanism by which EOCs and their supernatants 
inhibit platelet aggregation remains to be determined. 
In addition, further research is required to understand 
the intracellular mechanisms underlying the differential 
influence of EOCs and ECFCs on platelet function.

Conclusions
Endothelial progenitor cells are regarded as promising 
therapeutic tools for vascular repair, tissue engineer-
ing, and regenerative medicine. However, the clinical 
usefulness of these cells is hindered by the existence of 
diverse subtypes of EPCs which exert diverse therapeu-
tic potential. EPCs generated from the culture of PBMCs 
have been identified as EOCs and ECFCs depending on 
the culture conditions. In this study, we determined the 
characteristics of EOCs and ECFCs, and we defined their 
impact on platelet aggregation, the essential function in 
both vascular injury and vascular repair. We found that 
EOCs and ECFCs display distinct morphological, phe-
notypical, and functional characteristics. In addition, we 
demonstrated that both EOCs and ECFCs inhibit platelet 
aggregation, however; the inhibitory effect of ECFCs was 
more pronounced than EOCs. These inhibitory effects 
seem to be mediated by the secretion of the anti-aggre-
gating agents PGI2 and NO by EOCs and, to a greater 
extent by ECFCs, thus accounting for their enhanced 
capacity in inhibiting platelet aggregation. These find-
ings enforce our current understandings of different 
subsets of EPCs and provide novel insights into the dif-
ferential role played by EOCs and ECFCs in modulating 
platelet function during vascular repair. This knowledge 
would benefit the management of atherothrombosis 
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during acute coronary syndromes and following percu-
taneous coronary interventions. Ultimately, this may lead 
to the development of novel strategies for EPC-derived 
antithrombotic therapies and vascular regeneration in 
patients with cardiovascular disease.
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