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Abstract 

Background:  Solid pseudopapillary neoplasms (SPN) are pancreatic tumors with low malignant potential and good 
prognosis. However, differential diagnosis between SPN and pancreatic malignancies including pancreatic neuroen-
docrine tumor (PanNET) and ductal adenocarcinoma (PDAC) is difficult. This study tried to identify candidate biomark-
ers for the distinction between SPN and the two malignant pancreatic tumors by examining the gene regulatory 
network of SPN.

Methods:  The gene regulatory network for SPN was constructed by a co-expression model. Genes that have been 
reported to be correlated with SPN were used as the clues to hunt more SPN-related genes in the network according 
to a shortest path approach. By means of the K-nearest neighbor algorithm (KNN) classifier evaluated by the jackknife 
test, sets of genes to distinguish SPN and malignant pancreatic tumors were determined.

Results:  We took a new strategy to identify candidate biomarkers for differentiating SPN from the two malignant 
pancreatic tumors PanNET and PDAC by analyzing shortest paths among SPN-related genes in the gene regulatory 
network. 43 new SPN-relevant genes were discovered, among which, we found hsa-miR-194 and hsa-miR-7 along 
with 7 transcription factors (TFs) such as SOX11, SMAD3 and SOX4 etc. could correctly differentiate SPN from PanNET, 
while hsa-miR-204 and 4 TFs such as SOX9, TCF7 and PPARD etc. were demonstrated as the potential markers for SPN 
versus PDAC. 14 genes were demonstrated to serve as the candidate biomarkers for distinguishing SPN from PanNET 
and PDAC when considering them as malignant pancreatic tumors together.

Conclusion:  This study provides new candidate genes related to SPN and the potential biomarkers to differentiate 
SPN from PanNET and PDAC, which may help to diagnose patients with SPN in clinical setting. Furthermore, candidate 
biomarkers such as SOX11 and hsa-miR-204 which could cause cell proliferation but inhibit invasion or metastasis 
may be of importance in understanding the molecular mechanism of pancreatic oncogenesis and could be possible 
therapeutic targets for malignant pancreatic tumors.
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Background
Solid pseudopapillary neoplasms (SPN) [1] are uncom-
mon tumors that account for 0.2–2.7  % of all pan-
creatic tumors and are predominantly seen in young 
female patients for as-yet-unknown reasons [2]. The 
fact that SPNs occur predominantly in young women 
led to the study of gender hormonal receptors by several 
authors without any evidence of estrogen receptors in 
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pathogenesis of the tumor [3]. Most patients are asymp-
tomatic at diagnosis, and abdominal pain is the most 
common symptom [3]. SPN shows low-grade malignancy 
and local surgical excision is usually with a cure rate of 
greater than 95  % [4, 5]. It is important to distinguish 
SPN from pancreatic neuroendocrine tumor (PanNET) 
or pancreatic ductal adenocarcinoma (PDAC) so as to 
treat them differently, because the treatment of PanNET 
is usually a selection or combination of surgery, hormone 
therapy, radiation therapy, and chemotherapy. Similarly, 
less than 20 % of PDAC patients are suitable for surgery, 
the gemcitabine or gemcitabine in combination with 
other chemotherapy agents is thus the main therapeutic 
measure for PDAC patients [6]. Preoperative diagnosis of 
SPN will minimize the extent of unnecessary treatment 
compared with that required for more malignant pancre-
atic lesions [7, 8]. However, correct diagnosis of SPN is a 
big challenge because many of the SPN features resem-
bles other types of pancreatic malignant tumors. For 
example, SPNs are most commonly confused with Pan-
NETs which could occur at pancreatic tail, body and head 
like SPNs. The difficulty in diagnosis lies in that the two 
kinds of tumors have histological commonalities, includ-
ing small- to medium-sized uniform cells with scanty 
cytoplasm, indiscernible nucleoli, hyaline globules, and 
numerous small blood vessels with hyalinized walls [9] 
and both of them behave monomorphous growth and 
rosette-like structures in morphology [7, 10]. Moreover, 
both of them can express some neuroendocrine markers, 
such as CDH1, MME, VIM and CD56 [11]. PDACs which 
mainly occur at pancreatic head (67 %) with the remain-
ing 33.3 % occur in the body is another type of pancreatic 
malignancy that has similar radiological features [7, 12] 
and immunophenotypes to SPN [13].

Recent efforts are devoted to distinguish SPN from 
other pancreatic tumors at the molecular level and several 
SPN-related transcription factors (TFs) and other protein-
coding genes were exposed. For example, the accumula-
tion of CTNNB1 in nuclear and loss of CDH1 were found 
to be the characteristic features of SPN. So, immunohis-
tochemical staining of the two proteins could be useful 
for differentiating SPN from PanNET and PDAC [14, 15]. 
However, the aberrant behaviors of CTNNB1 and CDH1 
in SPN were also observed in some PanNET cases [15, 
16]. Similarly, nuclear staining of CTNNB1 and reducing 
staining of CDH1 could also be positive in some patients 
with PDAC [13, 17]. Although nearly 30 genes were 
reported to be SPN related, there have been no genes 
serving as the gold standard to effectively distinct SPN 
from malignant tumors in clinical setting.

MicroRNAs (miRNAs) were discovered as a new type 
of potential biomarker as well as therapeutic targets for 
diseases in recent years [18]. For example, miR-10b was 

proposed to be a good diagnostic biomarker for PDAC for 
its overexpression in the cancer cells [19]. Similarly, upreg-
ulation of miR-21 and downregulation of both miR-148a 
and miR-375 were observed in PDAC relative to adjacent 
normal tissue and the study therefore proposed that these 
miRNAs may be used as biomarkers for detecting pan-
creatic cancer [20]. These small miRNAs encoded by the 
genome are of about 21nt in length and negatively regu-
late gene expression by binding to the 3′ UTR of target 
mRNA and are involved in diverse biological processes, 
such as differentiation, proliferation, apoptosis etc. [21]. A 
couple of cancers including colon cancer [22], aggressive 
B cell lymphoma [23], gastric cancer and invasive endo-
metrial cancer [24] were reported to be associated with 
specific miRNAs. Park et al. [25] integrated the expression 
profiles of mRNAs and miRNAs to study the pathogenesis 
of SPN for the first time. Both mRNAs and miRNAs were 
shown to be differentially expressed between SPN and 
PanNET/PDAC. In addition, they found SPN were char-
acterized by three activated pathways, the Wnt/β-catenin, 
Hedgehog and androgen receptor signaling pathway, with 
which 17 differently expressed miRNAs were identified to 
be closely associated by target prediction. However, this 
work was mainly concerned with the correlation between 
miRNAs and the pathogenesis of SPNs. It did not elabo-
rate whether miRNAs could be used as biomarkers when 
discriminating SPNs and the two other pancreatic tumors 
mentioned above.

Gene regulation is a biological process intertwined by 
TFs, miRNAs and their target genes, and is vital in con-
trolling gene expression. Abnormal state for certain regu-
lators may affect subsequent regulatory events and thus 
lead to aberrant cell behaviors. For such a complex sys-
tem, network has been successfully used as a universal 
framework to model the biological process in searching 
genes contributing to the pathogenesis of cancers [26, 27].

In this study, we tried to discover high-quality can-
didate genes (protein-coding genes and miRNAs) that 
could diagnose SPN from other malignant pancreatic 
tumors with the help of the gene regulatory network. 
The gene regulatory network (GRN) defined here con-
tains three kinds of nodes, including TF, non-TF gene 
and miRNA. TFs regulate the expression of protein 
coding genes and miRNAs at the transcriptional level. 
While miRNAs normally act as negative gene regulators 
by binding to the 3′UTR of target mRNAs through base 
pairing, which results in the cleavage of target mRNAs 
or translation inhibition at the posttranscriptional level. 
We firstly constructed a GRN by the method that we pre-
viously developed and applied to hepatocellular carci-
noma [28]. Then we collected the candidate genes related 
to SPN by searching shortest paths between any pair of 
known SPN-related genes in the GRN based on the idea 
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that genes interacted together conduct the similar func-
tions [29]. The candidate biomarkers that distinguish 
SPN from malignant pancreatic tumors were filtered 
independently from the set of candidate genes by apply-
ing K-nearest neighbor algorithm (KNN) on the expres-
sion profiles of patient samples. Finally, we evaluated 
the predictions by the jackknife test. 14 genes including 
TFs and miRNAs were demonstrated to well separate 
SPN from PanNET and PDAC samples. The expression 
patterns of other gene sets were shown to be able to dis-
tinguish between SPN and PanNET or SPN and PDAC 
specifically. So these genes could serve as the potential 
biomarkers for clinical application. Meanwhile, the dis-
covery of these potential biomarkers may also provide 
clues to understand the molecular bases of pancreatic 
tumorigenesis and development as these genes character-
ize the difference between SPN and PanNET or PDAC.

Methods
Microarray data
The mRNA and miRNA expression data were from the 
SPN study of Park et  al. [25] that contained 14 SPN, 6 
PanNET, 6 PDAC and 5 non-neoplastic pancreatic sam-
ples. We retrieved the data from GEO database [30] with 
the accession number of GSE 43797. For mRNA, the 
gene expression profile was obtained using an Illumina 
HumanHT-12 V4.0 expression beadchip (San Diego, CA). 
The miRNA data was generated by the Agilent-031181 
Unrestricted_Human_miRNA_V16.0_Microarray 
030840. Both datasets for mRNA and miRNA expression 
were log2-transformed and quantile-normalized using 
the Bioconductor package in R.

Network construction
We applied a two-step integration method [28] to con-
struct the GRN for SPN, which was previously reported 
for hepatocellular carcinoma network analysis. The 
overall procedure for constructing the GRN is briefed 
as follows. Firstly, a candidate network was obtained 
through the following steps: (1) predicting target genes 
for TFs and miRNAs using bioinformatics algorithms, 
i.e. MATCH [31] for TFs and TargetScan [32] for miR-
NAs; (2) obtaining experimentally-validated regulations 
for TFs to targets from ChEA [33] and TransmiR 1.2 
[34], miRNAs to targets from TarBase 7.0 [35]; (3) inte-
grating all the predicted regulations and experimentally-
validated regulations. Since this step produced a lot of 
noise and was not restricted to the specific tissue, the 
co-expression model together with the gene expression 
profile data was then introduced to pick out the regula-
tory relationships for the corresponding tissue among the 
candidate network. The Pearson correlation coefficient 
for each pair of regulation was calculated at this step and 

the thresholds (cut-off) were determined according to the 
power law fitness of the degree distribution to result in a 
scale-free network [36]. That is, the fraction p(k) of nodes 
having k connections to other nodes decreases exponen-
tially to k as shown in formula 1. In scale-free networks, 
a minority of nodes dominates most of the connections. 
The rationality for the selection of threshold is that many 
studies have shown the biological networks including 
protein–protein interaction network [37], metabolic net-
work [38] and regulatory network [39] are of hierarchical 
scale-free nature. So, the network obtained through this 
filtration is biologically-meaningful.

where λ is a parameter that typically takes the value of 
2 < λ < 3.

Identifying differentially expressed genes
The two integrated statistical methods: (1) Student’s 
t-test; (2) median-ratio fold change were used to iden-
tify differentially expressed genes for SPN, PanNET and 
PDAC versus non-neoplastic pancreas samples respec-
tively, SPN versus PanNET and SPN versus PDAC sam-
ples. Genes with P value of  <0.01 (t-test) and a fold 
change  ≥  2 or  ≤  0.5 were recognized as differentially 
expressed genes.

Previously reported SPN genes and shortest path 
calculation
Based on the previous studies of immunohistochemi-
cal staining, we manually collected genes that have been 
validated to exhibit abnormal behaviors in SPN using the 
Polysearch [40], a biomedical text mining tool for extract-
ing relationships between human diseases and genes. 
After identifying the SPN genes, we calculated the short-
est paths for each pair of these genes in the GRN using 
Dijkstra’s algorithm [41], which was developed to con-
struct shortest paths in weighted networks. In our study, 
the weight of edges was calculated based on Pearson cor-
relation coefficient, α. For convenience, the parameter 
β = 1−|α| was taken in the study, so that the smaller the 
β, the stronger the regulation between two genes.

Prediction algorithm
The KNN [42, 43] is widely used in computational biology 
and bioinformatics for its apparent efficiency and easy-
to-use features [44, 45]. In the KNN classifier, the query 
sample should be allocated to the subset represented 
by majority of its K nearest neighbors. In this study, the 
KNN classifier was adopted to predict the performance 
of shortest path genes to classify the three kinds of pan-
creatic tumors mentioned before, and Euclidean distance 
was used to measure the locality of samples based on 

(1)p(k) = k−�
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gene expression profiles. As mentioned above, the KNN 
classifier contains a parameter K that could affect the 
prediction result. In other words, different K values may 
assign the query sample to a distinct subset. The one-
dimensional method proposed by Kuo-Chen Chou [46] 
was used to solve this problem. In this method, all sam-
ples were classified into M subsets where each subset Sm 
(m = 1, 2, …, M) is composed of the same attribute cat-
egory and its size (the number of samples) is Nm. Given 
a query sample S, it is predicted to belong to the subset 
Sm with which its score of the following equation is the 
highest.

where

Performance validation
In statistical predictions, three kinds of cross-validation 
methods are widely used to exam the effectiveness of the 
classifier: the independent dataset test, sub-sampling 
test (such as fivefold or tenfold cross-validation), and the 
jackknife test (also called leave-one-out cross-validation) 
[47]. As demonstrated by Chou.et al. [47], the jackknife 
test is the least arbitrary and therefore is widely used to 
examine the performance of various predictors [48–50]. 
The jackknife test was utilized to evaluate the quality of 
the prediction model in our study. The prediction accu-
racy is defined by the percentage of the number of correct 
prediction events for all classes divided by the number of 
total prediction events, as follows:

Results
To identify high-quality candidate biomarkers that could 
diagnose SPN from PaNET and PDAC, we firstly con-
structed the candidate regulatory network by integrated 
all the predicted regulations and experimentally-vali-
dated regulations involving TFs and miRNAs as regula-
tors. Then a tissue-specific GRN for SPN was constructed 
by integrating co-expression model together with the 
gene expression profile data. Meanwhile we acquired 
previously reported SPN gene list (protein coding genes 
and miRNAs) by Polysearch tool [40] and mapped the 
members of the list to GRN. By linking the members 
through shortest path method, we obtained new candi-
date SPN genes which are on the shortest paths. Finally, 
the candidate biomarkers that could distinguish SPN 

(2)Y(S) =

∑

k=1

[m(K,S), Sm](m = 1, 2, . . . , M)

[m(K, S), Sm] =

{

1, if m(K, S) ∈ Sm
0, otherwise

}

(3)

Accuracy =

Total number of correct prediction number events

The number of prediction events
%.

from malignant pancreatic tumors were filtered from the 
set of candidate genes by applying KNN classifier on the 
expression profiles of patient samples. The workflow is 
shown in Fig. 1.

Regulatory network for SPN
To uncover new genes implicated in the pathogenesis of 
SPN, we constructed the GRN for SPN [28]. The can-
didate network was firstly constructed by collecting all 
the regulations of TFs and miRNAs predicted by bio-
informatics tools. Then, the co-expression model was 
applied to this network. In general, the GRN for SPN is 
constructed by collecting the regulatory interactions 
between any pair of genes that are co-expressed (see 
“Methods” section) in SPN. The cut-off parameter used 
to decide whether there exists a co-expression relation-
ship between specific gene pairs is basically determined 
by whether the GRN shows a good power-law behav-
ior in degree distribution (Additional file 1). It is shown 
that the power-law fitness (see R2 in Fig. 2a, e) of the in-
degree distribution for either miRNA or TF in the GRN 
of SPN rises as the cut-off for co-expression increases. 
This means the GRN of SPN approaches the scale-free 
network when the criterion for co-expression goes strict. 
However, the strictness of the co-expression criterion 
also affects the size of the GRN. As seen in Fig.  2b, f, 
the size of GRN decreases as the co-expression cut-off 
increases. To avoid losing too many effective regulatory 
interactions, we set the cut-offs for both TF and miRNA 
regulation at 0.8 for compromising their impact on the 
power-law fitness and the size of GRN. It is notable that 
the SPN analyses based on GRN was basically robust 
when cut-off varied from 0.6 to 0.8. The final GRN con-
tained 7215 nodes (including 180 TFs and 164 miRNAs) 
and 86,084 interactions, which comprised 11,351 regula-
tions from miRNAs to protein coding genes, 1013 regula-
tions from TFs to miRNAs and 73,720 regulations from 
TFs to protein coding genes. Among the GRN, 1182 reg-
ulations were experimentally validated. The entire GRN 
is detailed in Additional file 2.

Candidate genes that are closely related to SPN
We firstly acquired genes which have been reported to 
be deregulated in SPN by text mining. Previous studies 
of SPN were mainly conducted by immunohistochemical 
staining and have identified various SPN-relevant genes 
such as FLI1 and CCND1 [51], LEF1 [52] and CTNND1 
[53], and CTNNB1 and CDH1 in association with the 
Wnt signaling pathway [25, 54]. A list of 26 previously 
reported genes including 4 TFs, 7 miRNAs (Additional 
file 3: Table S1) were manually extracted by using Poly-
search tool [40].
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To discover more candidate genes involved in SPN, 
we conducted a search in the GRN of SPN based on the 
“guilt-by-association” rule [29] which has been widely 
used to predict gene functions in many biological net-
works [55, 56]. The rule regarded the neighbors of a given 
gene as to have similar biological functions. Accord-
ing to such a rule, it can be further inferred that genes 
in the shortest paths [57] between two known SPN genes 
(i.e. the path with minimal length between two SPN 
genes) may have features in common with SPN genes. 
The shortest paths between each pair of the 26 original 
SPN-related genes were calculated by the algorithm of 
Dijkstra [41]. A total of 216 shortest paths were obtained 
(Additional file  3: Table S2), and 43 genes containing 
33 TFs and 10 miRNAs were found to be located in the 
paths (Additional file 3: Table S3) in addition to those 26 
known SPN genes. The 216 shortest paths formed a sub-
network (Fig. 3, 25 known genes were shown in the fig-
ure, as there was no shortest path between CCDN1 and 
the other known genes) in which, transcription informa-
tion is transmitted among known SPN-related regulators 
and 43 path genes. These 43 genes were believed to be 
new candidates implicated in the tumorigenesis of SPN 
according to “guilt-by-association” rule.

Functional analysis for candidate SPN genes
Functional analyses were made to testify whether the 
new candidate genes were truly correlated with SPN. 
Firstly, we performed function enrichment analysis on 
the candidate TFs. KEGG pathway enrichment analysis 
demonstrated that all of the candidate TFs were involved 
in classic cancer-related pathways, such as non-small cell 
lung cancer, and colorectal cancer (Table  1). Specially, 
some of genes were enriched in the Wnt signaling path-
way whose activation has been reported to be the essen-
tial characteristics for the pathogenesis of SPN [13, 25, 
51]. Figure  4 illustrates the genes deregulated in Wnt 
signaling pathway, where SMAD3, c-MYC and c-JUN 
which participated in cell cycle were found aberrantly 
expressed in SPN when comparing to non-neoplastic 
pancreas samples.

In addition, the functions of 10 candidate miRNAs 
were annotated by the tool TAM [58], a web-accessi-
ble program which could mine the potential biologi-
cal processes that a set of miRNAs could be involved in. 
The results showed miRNA-associated functions were 
enriched in apoptosis, cell differentiation and epithelial-
mesenchymal transition (EMT) (P  <  0.05). All of these 
functions are also closely related to the tumorigenesis.

Fig. 1  The workflow. I The candidate regulatory network was constructed by integrating all the predicted regulations and experimentally-validated 
regulations conducted by TFs and miRNAs. The bioinformatics tools were listed alongside. II To construct the tissue-specific GRN for SPN. III Identify-
ing the potential biomarkers by shortest network paths and KNN classifier
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Candidate genes were enriched in differentially expressed 
genes
Basically, the genes that contribute to the pathogen-
esis and development of the disease are prone to be dif-
ferentially expressed in SPN comparing to the normal 
state. We checked the expression value of all the candi-
date genes in both SPN and normal condition and found 
that most of the candidate genes (TFs and miRNAs) 
were differentially-expressed (20 out of 33 TFs, 6 out of 
10 miRNAs, Tables 2, 3). Taking the 48/41 TFs/miRNAs 
(see “Methods” section and Additional file 4) that are dif-
ferentially expressed in SPN as background, the Fisher’s 
exact test showed that both the candidate TFs and miR-
NAs are significantly enriched in differentially-expressed 
genes (P < 0.05). This suggests that the candidate genes 
identified by the shortest-path method are generally 
essential to the pathogenesis of SPN.

Candidate biomarkers to differentially diagnose SPN 
and malignant pancreatic tumors
The candidate biomarkers that could separate SPN from 
malignant pancreatic tumors (including PanNET and 

PDAC) were searched in the 69 SPN-related genes, i.e. 
the 26 known genes collected from literatures and the 43 
new candidate genes that were predicted in this study. 
The procedure is as following: (1) the KNN classifier was 
applied on gene expression profiles of the 69 SPN-related 
genes to find out the gene set that could independently 
distinguish SPN and malignant pancreatic tumors; (2) the 
quality of the KNN classifier was evaluated by jackknife 
test (see Method). 14 genes were found to discriminate 
SPN from pancreatic malignancies with 100 % accuracy 
(Fig. 5a, b) when taking PanNET and PDAC as a whole, 
among which 8 genes were downregulated in SPN while 
6 other genes were upregulated compared with PanNET 
as well as PDAC. Three genes, TCF7, PPARD and miR-
194, were newly found in this study (Additional file  5: 
Table S6). Obviously, the expression patterns of the genes 
found here represent the difference between SPN and the 
other two malignant cancers and may help to understand 
the molecular mechanisms between benign neoplasms 
like SPN and malignant tumors.

Particularly, we searched the candidate biomarkers for 
discriminating SPN from PanNET or PDAC respectively 

Fig. 2  Power-law model fitness to select correlation coefficient thresholds for construction of a GRN in SPN based on the candidate network. The 
cut-off refers to the absolute value of the correlation coefficient ranging from 0 to 1. The first row represents the sub-GRN where only miRNAs are 
regulators. The second row represents sub-GRN where only TFs are regulators. a, e Plot the results of power law fitting of in-degrees for different cut-
off values. The larger R2 value, the better power-law fitness. b, f Number of targets for different cut-off values. c, g Represent the power-law model 
of out-degree. d, h Number of regulators for different cut-off values
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among the 69 SPN-related genes following the same pro-
cedure. 17 genes were identified to separate SPN from 
PanNET with 100  % accuracy (Fig.  6a, b) and 7/10 of 

them decreased/increased in SPN when comparing with 
PanNET. The same number of genes and accuracy were 
obtained for SPN versus PDAC (Fig. 7a, b) with 8/9 genes 

Fig. 3  Sub-network constructed by shortest paths. Red rectangles represent genes that have already been reported to be related with SPN. Yellow 
rectangles are newly discovered potential SPN-related genes through shortest paths among red ones
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decreased/increased in SPN compared to PDAC. For the 
distinction of SPN from PanNET, 9 genes were newly 
predicted; while for the distinction of SPN from PDAC, 
5 genes are newly found (Additional file 5: Table S7/S8). 
Comparing the two sets of 17 candidate biomarkers, it is 
found that TCF7 and PPARD are the common members 
(Figs. 6b, 7b) and both of them were upregulated in SPN 
compared with PanNET and PDAC (Additional file 5).

Discussion
In this study, we conducted a first investigation to iden-
tify the potential biomarkers for differentially diagnos-
ing SPN from malignant pancreatic tumors, PanNET 

and PDAC, via a network approach. The shortest paths 
among 26 previously-reported SPN-related genes in the 
network were calculated and 43 new candidate genes 
were identified. Genes from this analysis together with 
the previously reported SPN-related genes may poten-
tially contribute to the pathogenesis of SPN and help 
to the precise diagnosis of SPN which is important to 
improve the prognosis. Thus, we further explored can-
didate biomarkers for the differentiation of SPN from 
malignant pancreatic tumors using a nearest neighbor 
algorithm that was evaluated by the jackknife test.

When considering PanNET and PDAC collectively as 
malignant pancreatic cancers, PPARD, TCF7 and miR-
194 were found to have excellent capabilities to separate 
SPN from malignant cases. More interestingly, miR-194 
was down-regulated in SPN (−2.76-fold, P  <  0.01), but 
was up-regulated in both PanNET (2.06-fold, P  <  0.01) 
and PDAC (2.97-fold, P  <  0.01) when all classes were 
compared with non-neoplastic pancreatic cases. A recent 
study revealed that up-regulation of miR-194 in PDAC 
was correlated with increased tumor growth and pro-
gression [59], which supports our results.

For SPN versus PanNET, we uncovered a set of 17 
genes including 9 new candidate genes and 8 previously-
reported genes that could correctly separate the two 
groups of samples (14 SPN and 6 PanNET). Of the path 
genes, sex-determining region Y-box 11 (SOX11; 5.62-
fold versus normal, 5.02-fold versus PanNET, P  <  0.01), 
which has an out-degree of 690 in the network was 
reported to be implicated in embryonic development 

Table 1  KEGG enrichment analysis for  33 new candidate 
TFs

Term Genes p value Benjamini

hsa05200: Pathways in 
cancer

E2F3, TCF7, PPARD,
JUN, RXRA, SMAD3,
RARB, GLI2, MYC

5.88E−07 2.29E−05

hsa05223: Non-small cell 
lung cancer

E2F3, RXRA, RARB,
FOXO3

3.79E−04 0.007373

hsa04310: Wnt signaling 
pathway

TCF7, PPARD, JUN,
SMAD3, MYC

5.93E−04 0.00768

hsa05210: Colorectal  
cancer

TCF7, JUN, SMAD3,
MYC

0.001388 0.013451

hsa05222: Small cell lung 
cancer

E2F3, RXRA, RARB,
MYC

0.001388 0.013451

hsa05216: Thyroid cancer TCF7, RXRA, MYC 0.002739 0.021169

Fig. 4  Wnt signaling pathway involved in SPN. Genes in box were found to be deregulated in the Wnt signaling pathway
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and tissue remodeling [60]. In this study, SOX11 was 
found to serve as a candidate biomarker to confer a dif-
ferential diagnosis between SPN and PanNET. SOX11 
was also found to be exclusively overexpressed in SPN 
when the gene expression profiles of SPN with non-neo-
plastic samples, PanNET with non-neoplastic samples, 
and PDAC with non-neoplastic samples were compared. 
Interestingly, in epithelia ovarian cancer (EOC), SOX11 
was revealed to be overexpressed when compared with 
normal ovarian tissues, but loss of expression of SOX11 
protein was associated with a more aggressive phenotype 
[61]. The hypothesis that SOX11 expression in EOC may 
lead to the aberrant regulation of genes associated with 
cell survival/death which could promote a pro-apoptotic 
and less aggressive phenotype was thus postulated in 
that report. It has also been reported that the overex-
pression of SOX11 strongly suppresses cell migration/
invasion in  vitro and in  vivo but does not inhibit cell 
proliferation in gastric cancer [62]. Given these facts, we 
speculated that overexpression of SOX11 may contrib-
ute to the tumorigenesis but less malignant behaviours 
of SPN, although the detailed mechanisms need further 
investigation.

Another set of 17 genes consisting of five new candi-
date genes and 12 reported genes were found to success-
fully differentiate SPN from PDAC. Of the path genes, 
sex-determining region Y (SRY) box 9 (SOX9) has an 
out-degree of 2030 in the network. SOX9 is an impor-
tant transcription factor required for development and 
has been implicated in several types of cancer. SOX9 
decreased in SPN as compared with PDAC (−12.62-fold, 
P < 0.01) and non-neoplastic pancreatic tissues (−10.73-
fold, P  <  0.01), which was consistent with the previous 
immunohistochemistry data that the detection of SOX9 

was observed in the majority (89  %) of PDACs samples 
but not in SPN (0 %) [63]. Furthermore, SOX9 was also 
found to be critical for PDAC initiation and involved in 
their tumorigenesis by regulating the ERBB pathway [64]. 
These facts implied that SOX9 could act as a candidate 
biomarker in differentiating SPN and PDAC.

Another path gene that could successfully differentiate 
SPN from PDAC was miR-204, which increased in SPN 
compared with PDAC (10.86-fold, P  <  0.01) and non-
neoplastic pancreatic tissues (5.65-fold, P  <  0.01). MiR-
204 has been reported to be down-regulated in several 
human cancers, including gastric cancers, ovarian can-
cers, breast cancers, malignant peripheral nerve sheath 
tumors as well as endometrial cancers, and associated 
with the promotion of tumor invasion and metastasis 
[65]. Additionally, overexpression of miR-204 dramati-
cally suppressed intrahepatic cholangiocarcinoma cell 
migration and invasion, as well as the EMT process [66]. 
Aberrant EMT activation is an important step towards 
tumor cell invasion and metastasis [67, 68]. From these 
discoveries, we inferred that miR-204 may be a vital fac-
tor to maintain SPN in a low malignant state, and this 
mechanism requires further study of course. Since miR-
204 was down-regulated in PDAC compared with non-
neoplastic pancreatic tissues (−2.01-fold, P  <  0.01), we 
speculated whether miR-204 could be of therapeutic 
usage to suppress tumor metastasis in PDAC. In fact, 
over-expression of miR-204 was found to cause cell death 
in malignant pancreatic cancer [69].

The strategy we proposed to discover candidate bio-
markers to discriminate SPN from PanNET or PDAC was 
to search for the candidate SPN-related genes through 
SPN gene regulatory network firstly, and then to analyze 
the expression profiles by focusing on the resulted SPN 
genes in order to decrease the noise that most of the cur-
rent large scale gene expression analysis are confronted 
with. The strategy worked well with 100  % accuracy for 
the dataset available so far. However, it should be noted 
that more samples should be included to further quan-
tify the importance of each marker gene in the future. 
Despite the shortage of the amount of samples, the 
effectiveness of this approach has been demonstrated 
by showing the biological relevance of the candidate 
biomarkers as well as the experimental evidence from 
literatures for certain genes. The potential biomarkers 
including miRNAs and TFs proposed here need further 
validation by qRT-PCR, immunohistochemical staining 
and Western blotting, etc. In fact, mRNA level of one 
candidate biomarker, androgen receptor (AR) has been 
verified by qRT-PCR in patient samples [25]. Moreover, 
both western blotting and immunohistochemical staining 
analyses revealed that AR was increased in SPN compar-
ing to PanNET and PDAC by Park et  al. [25]. Once the 

Table 2  Overlap for  differentially-expressed TFs and  can-
didate TFs

Fisher’s exact test (P < 0.05)

DET differentially-expressed TFs

DETs Non-DETs Total

Path TFs 20 13 33

Background TFs 48 132 180

Table 3  Overlap for  differentially-expressed miRNAs 
and candidate miRNAs

Fisher’s exact test (P < 0.05)

DEM differentially-expressed miRNAs

DEMs Non-DEMs Total

Path miRNAs 6 4 10

Background miRNAs 41 881 992
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potential biomarkers are confirmed, they may be adapted 
to clinical setting for differential diagnosis between SPN 
and PanNET/PDAC in which tumor tissue section will be 
used and the expression level of potential marker genes 
be checked.

Conclusions
In conclusion, this study provides new insights into the 
identification of new potential biomarkers to differentiate 
SPN from PanNET as well as PDAC by a network-based 
study. 43 new candidate genes involved in the tumo-
rigenesis of SPN were found by using the shortest path 

Fig. 5  Biomarkers for SPN and malignant cancers. a Plot of the KNN classification accuracy for 69 genes independently in differentiating SPN 
from malignant cancers. b Heatmap of expression profiles of potential biomarkers for SPN and malignant cancers. Rows correspond to genes and 
columns correspond to samples. Color bar gradient represents log2 expression
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analysis among 26 reported SPN-related genes. With the 
help of KNN classifier and jackknife test, 14 genes were 
found to discriminate SPN from pancreatic malignan-
cies with 100 % accuracy, and three genes, TCF7, PPARD 

and miR-194 were newly found in this study. For SPN 
versus PanNET, 17 genes including SOX11, SMAD3 
and miR-194 etc. were identified to separate the two 
diseases, among which nine were newly discovered. The 

Fig. 6  Biomarkers for SPN versus PanNET/PDAC. a Plot of the KNN classification accuracy for 69 genes independently in differentiating SPN from 
PanNET. b Heatmap of expression profiles of biomarkers for SPN and PanNET. Rows correspond to genes and columns correspond to samples, color 
bar gradient represents log2 expression
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same number of genes and accuracy were obtained for 
the distinction of SPN from PDAC, with five genes con-
taining SOX9 and miR-204 etc. were newly predicted. 
Genes obtained from this study may provide clues to fur-
ther understanding of the gene regulation mechanism of 

SPN as well as PanNET and PDAC. Some potential bio-
markers, e.g. SOX11 and miR-204 which could cause cell 
proliferation but inhibit invasion or metastasis could be 
potential therapeutic targets for malignant pancreatic 
tumors to lighten their malignant degree.

Fig. 7  Biomarkers for SPN versus PanNET/PDAC. a KNN classification accuracy for 69 genes independently in differentiating SPN from PDAC. b 
Heatmap of expression profiles of potential biomarkers for SPN and PDAC
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