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membrane as the basis for small molecule
hormone and peptide regulation of cellular
and nuclear function
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Abstract

Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and
lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved
biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been fur-
ther discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and
peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear
function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated
Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation
(Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum
External Cationomodulation (=3+ — 14); which are with respect to acute CM receptor-stabilizing effects of small
biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pres-
suromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect
2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS
14), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cati-
onomodulation: 24) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic
Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of
small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease
CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracel-
lular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small
molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to
simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms,
secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67
(359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth
factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM
receptors (>3+ — 14) results in cationic extracellular interaction (>3+) with extracellular matrix heparan sulfates
(>3+ — 1+4) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular,
and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide inter-
actions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable
translationally applicable knowledge.
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Background

The specificity of the biological interactions of small
molecule hydrophiles and lipophiles can be predicted
on the basis of their conserved biophysical properties,
which are relative hydrophilicity or lipophilicity in con-
text of molecular size and the distribution of charge over
molecular space [1]. Based on these observations, it can
be stated that small biomolecules with either cationic
or anionic charge are relatively or absolutely restricted
to permeation across capillary barriers with restrictive
inter-cellular junctional pore complexes [1], as well as
excluded from permeation across cell membrane (CM)
protein channel aqueous pores in their charged forms
in the absence of voltage gating required to increase the
channel’s physiologic upper limit of pore size [2, 3], with
excess divalent cation, Ca 24, auto-vesicularizng into
the endogolgi smooth endoplasmic reticulum (SER) [4,
5]. In the case of anionic small biomolecule hydrophiles
with polyvalent or divalent anionicity such as glutamate,
these are impermeant to CM protein channel pores in
their polyvalent or divalent anionic forms, closely associ-
ate with excess divalent cation, Ca2+, and in association
with, also auto-endocytose vesiculize into cell mem-
branes [6], as do cationic small biomolecules such as epi-
nephrine and dopamine due to sufficient poly-univalent
cationicity in molecular space (2+ cationicity equivalent:
1+ insufficient separation (IS) 1+), while small biomol-
ecules with charge only traverse CM protein channel
pores (i.e. Ca2+ channel pores) across looser channel
aqueous pores during voltage gating or oxidative stress,
as molecular size permits their passage in these specific
instances, which is the case of excess Lactate (1—) gener-
ated during metabolic acidosis.

In the case of the endogenous steriods, these include
the corticosteroids and sex steroids, the corticosteroids
being small molecules of lipophilic character with van
der Waals diameters (vdWDs) of ~0.87 nm (nm) and the
sex steroid hormones being small molecules of lipophilic
character with vdWDs of ~0.80 nm, which permeate
across inter-epithelial junction pore complexes via diffu-
sion, while both are restricted to permeation across tight
junction vascular/microvascular capillary endothelium
[1, 7]. At the individual cell level, the small molecule hor-
mone steroids by being molecular size restricted at CM
aqueous pores do not permeate across CM pores, and

also do not associate to any significant degree with CM
phospholipids, since corticosteroids (cortisol, aldoster-
one) are asymmetrically polyhydroxylated/carbonylated
hormones and the sex steroids (estradiol, progesterone,
testosterone, androstenedione) are symmetrically di-
hydroxylated/di-carbonylated hormones, with molecular
structures favorable to association with CM alpha helix
protein receptors in the context of sufficient incorpo-
rating lipophilicity for size to do so [8]. As a result of
remaining at the cell membrane-to-aqueous interface,
the steroids exert their molecular effects at the alpha
helix-based CM receptors, whereby, the endogenous cor-
ticosteroids primarily exert their effects at the juxtaposed
classical GR (97 kDa) and MR (110 kDa) (MR-classical
GR complex) [9], by binding to the Mineralocorticoid
Receptor (MR) portion of the classical glucocorticoid
cum mineralocorticoid receptor complex for which por-
tion they have greater binding affinities [9, 10], while the
endogenous sex steroids bind to the Estrogen Receptor
(ER) (65 kDa), progestorone receptor (PR) and androgen
receptor (AR), in order of greatest to least potency steroid
receptor respectively (MR-classical GR > ER > PR > AR)
[11, 12]. Moreover, the molecular arrangement of hydro-
philic groups attached directly to the immediate steroid
backbone is insufficient to induce endocytosis of the
respective hormone-receptor complexes, therefore, both
classes of steroids are CM receptor pressuromodulators
for the specific cell types expressing their receptors vis
a vis ligand-bound receptor pressuromodulation of the
specific receptor’s microtubular network (MR-classical
GR, ER, PR or AR)-linked to the receptor’s nuclear chro-
matin DNA (MR-classical GR, ER, PR or AR) at the level
of the nuclear membrane (NM) [13]: The intracellular
microtubular network is immobile [14], as opposed to the
intracellular F-Actin network, which mobilizes [14], in
response to CM receptor-mediated pressuromodulation.

As the chromatin DNA is located along the NM [13],
CM pressuromodulation-mediated pressure loading of
the specific receptor’s microtubular network-linked to
the nuclear membrane (NM)-associated histone-wound
DNA chromatin, temporarily unwinds the histone-
wound DNA chromatin for transcription, that which
upregulates the specific receptor’s expression on the NM-
to-RER-to-CM receptor, and importantly, also decreases
whole cell cum nuclear compliance, that which results in
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the immediate exocytosis of, other peptides, both pre-
synthesized vesicular Golgi peptide and small molecule
forms as well as CM-destined nuclear-to-RER receptor
proteins, and concomitantly, simultaneously increases
the likelihood of the transcription of higher molecular
weight protein forms, secretory and CM receptor, mito-
chondrial and nuclear, including the highest molecu-
lar weight mitogenesis cell division-associated nuclear
proteins, Ki67 (359 kDa) and separase (230 kDa): Thus,
CM pressuromodulation of whole cell compliance is
analogous to mechanical pressure-mediated decreases
in whole cell compliance to the biological upper limit of
increased intracellular tension [15, 16], for which there
must be an upper limit of decreased whole cell compli-
ance required to induce mitogenesis and cell division,
and in corollary, that which must be equivalent for all
cells, whereby, less compliant cells reach the upper limit
faster, while more compliant cells reach the upper limit
slower, and, in context of local microenvironment stiff-
ness [17, 18].

As a generalization, the overall character of cell
response to direct CM receptor-mediated pressuromod-
ulation is dependent on receptor binding potential (BP), a
product of the receptor density (Bmax) and 1/Kd, and in
the case of endogenous small molecule hormones, only in
the case of corticosteriod, aldosterone, does the half life
at the receptor (t;;, @ receptor) begin to be a significant
determinant of pressuromodulation effect, which binds
to the MR portion of the MR-classical GR with a sub-nM
Kd, in the decimolar (dM) range, whereby, aldosterone’s
t,» @ receptor is 140 min, which makes it a significant
CM pressuromodulator [4, 19-27], despite the fact that
only ~170 receptors (MR-Classical GR) are expressed
for it on most cell membranes [28—30]; whereas, in the
case of the peptides, the half life at the receptor (t;,, @
receptor) stands be a significant determinant of pres-
suromodulation effect for the monomeric, dimeric or
trimeric peptides that bind to polymeric receptors/recep-
tor subunits (IGF-1/II for example [31-35]), those which
bind with sub-nM Kd affinities irrespective of the recep-
tor density.

Based this recent knowledge on the conserved deter-
minants of biological function of small biomolecules in
the physiologic state, it can be stated that the biologi-
cal determinants underlying peptide and factor interac-
tions are just as conserved at the individual cell CM level,
which, in turn, regulate cellular, and thus, the nuclear
function of a cell. In the commentary, this unifying
hypothesis is further explored for the spectrum of small
molecule hormones and peptide hormones, including
immunomodulatory peptide factors, supported by the
findings of published studies, on the structures and func-
tions, of the same.
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Commentary

Small molecule regulation of intracellular function vis a vis
interaction at the cell membrane (CM) receptor

The small biomolecules (<0.5 to 1 nm) include the: (1) small
molecule hydrophiles (neutral hydrophiles, neutral cation-
oneutral hydrophiles, cationic-anionic hydrophiles, anionic
cationoneutral hydrophiles, cationic hydrophiles); (2) small
molecule hydro-lipophiles (simple cationic hydro-lipophiles,
circumferentially polyhydroxylated/carbonylated hydro-
lipophile [non-compact (>CM pore size)], circumferentially
polyhydroxylated/carbonylated hydro-lipophile + exterior
cationicity [non-compact (>CM pore size)]); and (3) small
molecule lipophiles (small lipophiles, asymmetric unihy-
droxylated lipophiles (stable), asymmetric unihydroxylated
lipophiles (unstable), asymmetric polyhydroxylated lipo-
philes (unstable), asymmetric unicarboxylated lipophiles
(stable), asymmetric unicarboxylated lipophiles (stable),
asymmetric unicarboxylated lipophiles (unstable), asym-
metric polyhydroxylated sterols, symmetric dihydroxy-
lated or trihydroxylated/dicarbonylated sterols, symmetric
dihydroxylated lipophiles, polyhydroxylated/carbonylated
lipophiles (compact), circumferentially polyhydroxylated/
carbonylated lipophiles [non-compact (>CM pore size)], cir-
cumferentially polyhydroxylated/carbonylated/etheroylated
lipophiles [non-compact (>CM pore size)] (Table 1; Addi-
tional file 1: Table S1; Additional file 2: Figure S2; Additional
file 3: Figure S3; Additional file 4: Figure S4; Additional file 5:
Complete Table 1 in Supplemental File Format).

The specific roles that small molecules play in the bio-
logical system is determinable on the basis of an assess-
ment of conserved biophysical properties, relative
hydrophilicity or lipophilicity in context of molecular
size, as per the predicted octanol-to-water partition coef-
ficient (OWPC)-to-van der Waals diameter (vdWD) ratio
(nm~!) in context of the predicted vdWD (nm) [1] (Addi-
tional file 1: Table S1).

Neurotransmitter small molecule hydrophile

and hydro-lipophile regulation of intracellular function vis
a vis interaction at the cell membrane (CM) receptor

The small molecule hydrophiles include the cationic neu-
rotransmitters acetylcholine (14) and norepinephrine
(14), which are (pure) hydrophiles due to the presence of
singular cationicity (1+) cum hydroxylated hydrophilic-
ity in the absence of cell membrane (CM) receptor protein
binding lipophilicity. These, being singularly cationic (pure)
hydrophiles are internal cationomodulators that cause cell
membrane depolarization via the insertion of 14 cationic-
ity into protein receptor channel aqueous pores (Table 1;
Additional file 1: Table S1; Additional file 2: Figure S2;
Additional file 5: Complete Table 1 in Supplemental File
Format) and potentiate the circumferential propagation of
current in effector cell membranes, that which in the case
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of smooth and cardiac muscle cells results in contraction,
and that which in the case of adrenal medulla cells results
in depolarization-coupled exocytosis of epinephrine.

The small molecule cationic hydro-lipophile neuro-
transmitters dopamine (1+) and seratonin (1+), being
hydro-lipophiles due to the combinatory presence of sin-
gular cationicity (1+), hydroxylated hydrophilicity and
receptor protein binding lipophilicity, in contrast to the
small molecule cationic hydrophile neurotransmitters (i.e.
norepinephrine, acetylcholine), function as mild external
cationomodulators, via lipophilic incorporation into CM
receptor hydrophobic cores of commensurate lipophilic-
ity on the basis of the incorporating lipophilicity for size
of their non-cationic and non-hydroxylated portion, and
thus, non-insert positive charge, that which results in
non-depolarization of the CM (Table 1; Additional file 1:
Table S1; Additional file 3: Figure S3; Additional file 5:
Complete Table 1 in Supplemental File Format): Inter-
action with neuronal CM receptors in such a manner,
results in decreased post-synaptic depolarization and
contribute significantly towards regulating the tonicity of
upper motor neuron-to-lower motor neuron meshwork
of inter-neuronal connections [36, 37], and furthermore,
in the case of pituitary lactotrophs results in inhibition
of prolactin secretion [38], most likely due to competi-
tive antagonism of prolactin releasing hormone (PRL), the
shift pressuromodulator of lactotroph CM PRL receptors.

In the case of both the cationic hydrophile internal
cationomodulators (acetylcholine and norepinephrine)
and the cationic hydro-lipophile mild external cationo-
modulators (i.e. dopamine and seratonin), both classes
with singular cationicity (1+), in the absence of pro-
tein channel aqueous pores and receptors to insert into
(former) or bind to (latter), such (pure) hydrophiles and
hydro-lipophiles, respectively, are reactively endocytosed
by pre-synaptic neuronal cell membranes and vesicular-
ize for subsequent re-release due to the concentration
of poly 14 charges per unit volume (Table 1; Additional
file 5: Complete Table 1 in Supplemental File Format).

Non-neurotransmitter hydro-lipophile regulation

of intracellular function vis a vis interaction at the cell
membrane (CM) receptor

The non-neurotransmitter small molecule hydro-lipo-
philes include circumferentially polyhydroxylated/car-
bonylated hydro-lipophiles [non-compact (>pore size)]
such as ouabain (Na+/K+ ATPase receptor channel),
and circumferentially polyhydroxylated/carbonylated
hydro-lipophiles + exterior cationicity [non-compact
(>pore size)] such as doxorubicin (Na+/K+4 ATPase
receptor channel), which are circumferentially hydroxy-
lated and/or carbonylated hydrophiles with core lipophi-
licity, and therefore, pro-endocytic hydro-lipophiles [39,
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40] via receptor hydroxymodulation/carbonylomodula-
tion of receptor channel pores (Table 1; Additional file 1:
Table S1; Additional file 3: Figure S3; Additional file 5:
Complete Table 1 in Supplemental File Format).

The potential for the non-neurotransmitter small mole-
cule hydro-lipophiles to be pro-endocytic at CM receptor
channels is attributable to the presence of incorporating
lipophilicity, in the concomitant presence of interacting
polyhydroxylated/carbonylated hydrophilicity. As such,
both of the circumferentially hydroxylated weak hydro-
philes with core lipophilicity, ouabain and doxorubicin,
interact with CM protein receptor alpha helix cum alpha
helix isophilic aqueous pores, for example, such as those
of the Na+/K+ ATPase, they de-stabilize the CM inter-
action of the multialpha helix constructs of such trans-
membrane proteins with internal isophilic aqueous
pores, that which results in ligand-bound CM protein
endocytosis.

Upon endocytosis, ouabain and doxorubicin, differ-
entially modulate intracellular function: ouabain func-
tions as a indirect (pseudo) 3ary CM receptor-mediated
shift pressuromodulator (receptor endocytic hydroxy-
locarbonyloetheroylomodulation: 0) to decrease whole
cell compliance significantly, that which results in the
increased exocytosis of the pre-synthesized Golgi pep-
tides as well as RER receptor proteins to the CM, and
concomitantly, in the increased protein transcription
of additional highest molecular weight (MW) forms
(i.e. fibronectin: 240 kDa), including that of the high-
est molecular weight nuclear proteins, Ki67 (359 kDa)
and separase (230 kDa), that which results in mitogen-
esis, in the concomitant presence of serum [41] [indirect
(pseudo) 3ary CM receptor-mediated shift pressuromod-
ulation (receptor endocytic hydroxylocarbonyloetheroy-
lomodulation: 0)] (Additional file 1: Table S1; Additional
file 3: Figure S3).

In contrast to ouabain, and importantly in contrast,
doxorubicin, with greater interior lipophilicity sufficient
to stably associate with the internal little alpha helix of
the mitochondrial membrane (MM) voltage-dependent
anion channel (VDAC) [42] in context of the concomi-
tant presence of 14 cationicity, functions more as a
chemoxenobiotic hydro-lipophile, by virtue of its ability
to anchor mitochondria via non-recruitment of gamma-
Tubulin to the MM VDAC [43], that which results in
MM disruption and liberation of MM apoptosis induc-
ing factor (AIF), which binds X-linked inhibitor of apop-
tosis factor (XIAF), freeing XIAF from its association
with Caspace-3, the cumulative effect of intracellularly
endocytosed doxorubicin, mitochondrial dissolution-
mediated cytotoxic cell death [40] (receptor endocytic
cationohydroxylocarbonyloetheroylomodulation: 1+)
(Additional file 1: Table S1; Additional file 3: Figure S3).
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Polyhydroxylated small molecule sterol regulation

of intracellular function vis a vis interaction at the cell
membrane (CM) receptor

The polyhydroxylated small molecule lipophile sterols
include the: (1) asymmetrically polyhydroxylated sterols,
the corticosteroids, aldosterone and cortisol, which are
asymmetrically hydroxylated sterols (Table 1; Additional
file 1: Table S1; Additional file 4: Figure S4; Additional
file 5: Complete Table 1 in Supplemental File Format) [8];
and (2) symmetrically di/trihydroxylated sterols, the sex
steroids, testosterone, estrogen and progesterone, which
are symmetrically dipolarly di/trihydroxylated sterols
(Table 1; Additional file 1: Table S1; Additional file 4: Fig-
ure S4; Additional file 5: Complete Table 1 in Supplemen-
tal File Format) [8].

The polyhydroxylated small molecule lipophile ster-
ols have the potential to associate with cell membrane
protein receptors of commensurate lipophilcity, on the
basis of the incorporating lipophilicity for size of the
non-hydroxylated portion, which is of lipophilic char-
acter, and interacts with the CM receptor protein itself,
while the hydroxylated hydrophilicity of the hydroxylated
portion, which is of hydrophilic character, interacts with
the hydrophilicity of exteriorly hydrophilic microenvi-
ronment [10], both of which [8, 40], in concert, are co-
determinants of the binding affinity, and importantly,
character of the polyhydroxylated small biomolecule
interaction with its respective receptor. As such, the
asymmetrically hydroxylated lipophiles (corticoster-
oids) and the symmetrically dipolarly di/trihydroxylated
sterols (sex steroids), both being polyhydroxylated small
biomolecules with greater incorporating lipophilicity-
to-interacting hydroxylated hydrophilicity ratios (corti-
costeroid and sex steroid hormones) are anti-endocytic
for their hormone-receptor complexes and direct CM
receptor stabilizing pressuromodulators [8, 11, 20, 22,
23, 44-50] (direct CM receptor-mediated stabilizing shift
pressuromodulation: 0) (Table 1; Additional file 1: Table
S1; Additional file 3: Figure S3; Additional file 4: Figure
S4; Additional file 5: Complete Table 1 in Supplemental
File Format).

Polyhydroxylated/carbonlylated/etheroylated small
molecule non-sterol lipophile regulation of intracellular
function vis a vis Interaction at the cell membrane (CM)
receptor

The polyhydroxylated small molecule non-sterol lipo-
philes include the: (1) circumferentially polyhydroxy-
lated/carbonylated lipophiles [non-compact (>pore
size)] such as forskolin, and (2) circumferentially poly-
hydroxylated/carbonylated/etheroylated lipophiles
[non-compact (>pore size)] such as paclitaxel (taxol)
and colchicine, which are circumferentially hydroxylated
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and/or carbonylated hydrophiles with core lipophilic-
ity, and therefore, pro-endocytic lipophiles (Table 1;
Additional file 1: Table S1; Additional file 4: Figure S4;
Additional file 5: Complete Table 1 in Supplemental File
Format), via CM protein receptor hydroxymodulation/
carbonylomodulation/etheroylation.

The potential for polyhydroxylated small molecule non-
sterol lipophiles to be pro-endocytic at the CM receptor
is attributable to the presence of incorporating lipophi-
licity in the concomitant presence of interacting polyhy-
droxylated/carbonylated/etheroylated hydrophilicity, as
is the case for the non-neurotransmitter small molecule
hydro-lipophiles (Additional file 1: Table S1; Additional
file 3: Figure S3). However, the important distinction
between the two categories, is that in the case of the pol-
yhydroxylated small molecule non-sterol lipophiles, there
is the presence of greater incorporating lipophilicity rela-
tive to the interacting hydroxylated hydrophilicity; while
the presence of the greater incorporating lipophilicity
makes these biomolecules, small molecule Lipophiles, the
similar amount of circumferential hydrophilicity enables
interaction with CM protein receptor alpha helixes cum
alpha helix isophilic aqueous pores (Additional file 1:
Table S1; Additional file 4: Figure S4), sufficient enough
to de-stabilize the CM interaction of the multialpha helix
constructs of such trans-membrane proteins, that which
results in ligand-bound CM protein endocytosis.

Upon endocytosis, forskolin and paclitaxel/colchicine,
diffferentially modulate intracellular function: Forskolin
functions as a indirect (pseudo) 3ary CM receptor-medi-
ated shift pressuromodulator to decrease whole cell com-
pliance significantly, that which results in the increased
exocytosis of the pre-synthesized Golgi peptides as well
as RER receptor proteins to the CM, and concomitantly,
in the increased protein transcription of additional high-
est molecular weight forms (i.e. fibronectin: 240 kDa)
[51], including that of the highest molecular weight
nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa),
resulting in mitogenesis and cell division, in the concomi-
tant presence of serum [52] [indirect (pseudo) 3ary CM
receptor-mediated shift pressuromodulation (receptor
endocytic hydroxylocarbonyloetheroylomodulation: 0)]
(Additional file 1: Table S1; Additional file 4: Figure S4).

In contrast to forskolin, and importantly in contrast
to, both paclitaxel (Taxol) (0) and colchicine (0), func-
tion more as cytotoxic lipophiles, due to the presence of
greater incorporating lipophilicity than that of Forskolin,
in the absence of cationicity, and therefore, the further
ability to associate with the intracellular microtubular
network forming protein, tubulin beta [53], both pacli-
taxel and colchicine, are not (pseudo) 3ary CM receptor
shift pressuromodulators: instead, by inhibition of tubu-
lin polymerization re-polymerization, both paclitaxel
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(taxol) and Colchicine exert significant mitochondrial
membrane (MM) oxidative stress, via mitochondria
anchorage during attempted movement [54, 55], that
which results in MM disruption and in cytotoxic cell
death via mitochondrial dissolution [40] (receptor endo-
cytic hydroxylocarbonyloetheroylomodulation: 0) (Addi-
tional file 1: Table S1; Additional file 4: Figure S4).

Unihydroxylated and dihydroxylated small molecule
lipophile regulation of intracellular function vis a vis
interaction directly within the cell membrane (CM)

The asymmetric unihydroxylated small molecule
lipophiles include, the cholesterols, 3beta-hydroxy-
cholesterol, and the vitamin D form, cholecalciferol
(3-hydroxyvitamin D3), which are unipolarly hydroxy-
lated lipophiles, and directly incorporate into cell mem-
brane (CM) phospholipid layers due to commensurate
lipophilcity for size to that of the phospholipid fatty
acid-ester moieties, and function as CM stabilizing
incorporopressuromodulators that maintain the base-
line compliance state of all cell membranes [56] (Table 1;
Additional file 1: Table S1; Additional file 4: Figure S4;
Additional file 5: Complete Table 1 in Supplemental File
Format).

The symmetric di-hydroxylated non-sterols constitute
unstable sterol forms such as calcifediol (1, 25-dihy-
droxyvitamin D3), which neither stably associate with
CM proteins or CM bilayers; instead, such unstable small
molecule lipophile forms tend to perturb cell membrane
lipid layers, and function as CM perturbomodulators,
first, by increasing CM compliance slightly, enough to
cause the non-exocytosis and intracellular build-up of
pre-synthesized Golgi reservoir non-collagenase (MMP)-
higher molecular weight protein forms (i.e. fibronec-
tin: 240 kDa; tyrosinase containing-melanosomes) that
remain intracellular, secondary to which, whole cell
compliance decreases significantly, then resulting in
the increased exocytosis of the pre-synthesized Golgi
peptides (i.e. fibronectin: 240 kDa) and nuclear-to-RER
receptor proteins to the CM, as well as in the increased
protein transcription of the spectrum of synthesizable
proteins, including in the increased synthesis of the low-
est molecular weight protein forms (i.e. osteocalcin:
6 kDa) [57] [1ary indirect shift pressuromodulation (per-
turbomodulation)] (Table 1; Additional file 1: Table S1;
Additional file 4: Figure S4; Additional file 5: Complete
Table 1 in Supplemental File Format).

Other notable lary indirect CM-mediated shift pres-
suromodulators are the other unstable phospholipid layer
non-incorporating small molecule lipophile forms, the
asymmetrically polyhydroxylated forms such as phor-
bol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)
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[51] and the similar phorbol esters with fatty acid-ester
tails (i.e. phorbol 12,13-dibutyrate) [58], the asymmetri-
cally unihydroxylated forms such as Retinol and asym-
metrically unicarboxylated Retinoic Acid [59, 60], the
asymmetrically dihydroxylated/carbonylated forms such
as blebbistatin [61], as well as the compact polyhydroxy-
lated and/or carbonylated forms such as isobutylmethyl
xanthine (IBMX) [62] [lary indirect shift pressuromodu-
lation (perturbomodulation)] (Table 1; Additional file 1:
Table S1; Additional file 4: Figure S4; Additional file 5:
Complete Table 1 in Supplemental File Format).

Along these lines, the other types of lary indirect
shift pressuromodulation (perturbomodulation) include
mild primary hypoxia [63, 64] due to primary decreases
the rates of mitochondrial oxidative phosphorylation,
as well as mild secondary hypoxia due to the secondary
decreases the rates of mitochondrial oxidative phospho-
rylation viz a viz the intracellular effects of small lipophile
toxins/toxicants such as benzene and diethyl ether, which
due to small molecular sizes also interact non-selectively
with the sub-cellular mitochondrial membrane (MM)
electron transport chain (ETS) proteins resulting in sec-
ondary whole cell ATP deficiency: In both cases of mild
hypoxia, primary and secondary, the overall initial effect
is an increase in CM compliance due to mild ATP defi-
ciency-mediated decreases in CM protein subunit and
CM cohesiveness, that which results in intra-cellular
protein build-up towards a decrease in whole cell com-
pliance, and upon acclimatization/recovery, the overall
effect being the lary indirect CM-mediated shift pres-
suromodulation effect (perturbomodulation) (Table 1;
Additional file 1: Table S1; Additional file 4: Figure S4;
Additional file 5: Complete Table 1 in Supplemental File
Format).

Non-small molecule non-peptide regulation of intracellular
function vis a vis interaction at the cell membrane (CM)
receptor

The non-small molecule non-peptide biomolecules
include bacterial cell wall lipopolysaccharide (LPS) com-
prised of lipid A (phospholipid fatty acid-ester-glycerol
moiety equivalent), inner core (phosphorylated poly/
monosaccharide phospholipid head phosphotidylcho-
line/ehtanolamine/serine equivalent) and outer core-to-
'O Antigen’ (short-to-long polysaccharide) in series, with
the molecular weight of the rough core LPS beginning
in the range of 2-5 kDa [65]: LPS is a potent lary indi-
rect shift pressuromodulator of the CM, by interdigitat-
ing insertion association of its LPS Lipid A component
into cell membrane phospholipid layer, which, by first
increasing CM compliance slightly, enough to cause the
non-exocytosis intracellular build-up of pre-synthesized
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Golgi reservoir non-collagenase (MMP)-higher molecu-
lar weight protein forms (i.e. fibronectin: 240 kDa), and
upon a significant decrease in whole cell compliance, sec-
ondarily, causes the increased exocytosis of the pre-syn-
thesized Golgi peptides (i.e. fibronectin: 240 kDa) as well
as RER receptor proteins to the CM [66], and concomi-
tantly, in the chromatin DNA transcription of the lower
and higher molecular weight protein forms, both mito-
chondrial and nuclear, including the highest molecular
weight nuclear proteins, Ki67 (359 kDa) and separase
(230 kDa), with the ability to induce mitogenesis and cell
division [67, 68] [lary indirect CM-mediated shift pres-
suromodulation effect (perturbomodulation)] (Table 1;
Additional file 5: Complete Table 1 in Supplemental File
Format).

Small (non-alpha non-beta helix) peptide regulation

of intracellular function vis a vis interaction at the cell
membrane (CM) receptor

The small (non-alpha non-beta) peptides include the low
molecular weight peptides [1-1.6 kDa; 9-14 amino acids
(AAs)], without and with tertiary structure intramo-
lecular disulfide bonds, that bind to so-called G protein-
coupled receptors (GPRCs), which are multiple alpha
helix-based CM receptor constructs that do not dimer-
ize in response to small (non-alpha non-beta) peptide
ligand binding, but may co-exist as juxtaposed dimers on
the CM [69, 70] (direct CM receptor-mediated stabilizing
shift pressuromodulation: 0) (Table 1; Additional file 5:
Complete Table 1 in Supplemental File Format).

The small (non-alpha non-beta) di-cationic (14 IS 14)
peptides include bradykinin (1+ IS 14+ SS 1+) [71] and
atrial natriuretic peptide (1+ IS 1+) [72-74] and func-
tion as transient pressuromodulators cum external cati-
onomodulators, which incorporate into CM receptor
hydrophobic cores of commensurate lipophilcity on the
basis of the incorporating lipophilicity for size of their
non-cationic portion in the concomitant presence of ter-
tiary structure 14 cationicity insufficiently separated (IS)
in molecular space (14 IS 1+4); thus, via external interac-
tion with the cell membrane phospholipid heads, cause
CM and CM receptor endocytosis and vesiculo-vacuoli-
zation-through-and-through diaphragmed fenestration
of endothelial cells resulting in microvascular capillary
hyperpermeability [75], in which case the external cati-
onomodulation-mediated endocytic transformation pro-
cess decreases endothelial cell compliance significantly,
that which, not only results in an almost immediate sig-
nificant increase in the exocytosis of RER endothelial
NOS (eNOS) to the CM and increased nitric oxide (NO)
[76], a potent competitive antagonist of smooth mus-
cle cell O, at the electron transport chain (ETS) and in
endothelial cell-mediated smooth muscle relaxation and
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vascular-microvascular vasodilation [71, 72, 75], but
also in a significant increase in protein transcription of
the entire spectrum of synthesizable proteins, impor-
tantly, the highest molecular weight nuclear proteins,
Ki67 (359 kDa) and Separase (230 kDa), and in mitogen-
esis and endothelial cell division [77] [indirect 3ary CM
receptor-mediated shift pressuromodulation (single or
dual) receptor endocytic external cationomodulation:
2+)] (Table 1; Additional file 5: Complete Table 1 in Sup-
plemental File Format).

The mono-cationic (1+) and non-cationic small (non-
alpha non-beta) peptides such as vasopressin arginine
(1+) (anti-diuretic hormone), neurotensin (1+) [78],
angiotensin II [47, 79], Ps4 thyrotropin releasing hormone
[80, 81], somatostatin (growth hormone release inhibit-
ing peptide) and oxytocin incorporate into CM receptor
hydrophobic cores of commensurate lipophilcity, thus,
via insertion, stabilize receptor G protein-coupled pro-
tein receptor monomers and shift pressuromodulate cell
membranes by decreasing CM compliance sufficiently
enough to cause the increased synthesis and exocytosis
of the higher molecular proteins, but not yet the lower
molecular weight proteins, and therefore, masquerade
as release inhibiting peptides (direct CM receptor-medi-
ated stabilizing shift pressuromodulation: 1+) (Table 1;
Additional file 5: Complete Table 1 in Supplemental File
Format).

Monoalpha helix peptide and loop-interconnected dual/
poly monoalpha helix peptide regulation of intracellular
function vis a vis interaction at the cell membrane (CM)
receptor(s)

The monoalpha helix peptides are the singular short and
long alpha helix (monoalpha helix) peptides, the singu-
lar alpha helix peptides with a short 2-way beta helix tail
peptides (monoalpha helix-loop-short 2-way beta helix),
and the peptides with loop-interconnected two or more
singular alpha helixes (short monoalpha helix-loop-short
monoalpha helix, short monoalpha helix-loop-short
monoalpha helix-loop-short monoalpha helix), which are
of greater molecular weights than the small (non-alpha
non-beta) peptides (>1.6 to <14 kDa) without tertiary
structure disulfide bonds, which, like the low molecular
weight peptides (<1.5 to 2 kDa) (Table 1; Additional file 5:
Complete Table 1 in Supplemental File Format).

The short and long monoalpha helix peptides include
glucagon and parathyroid hormone (PTH)/PTH releasing
peptide (PTHrP) [82—84] that bind to the multiple alpha
helix-based Class A GPCRs, which do not dimerize in
response to monoalpha helix peptide ligand binding, but
provide greater stability to the ligand-receptor complex
than the low molecular weight peptides (<1.5 to 2 kDa),
and also to bind to alpha helix cum 2-way-X-2-way beta
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helix-based Class B GPRCs [83], which can dimerize in
response to monoalpha helix peptide ligand binding; in
comparison the small (non-alpha non-beta) peptides
(Neural or 14), are more effective CM receptor and CM
pressuromodulators than the low molecular weight pep-
tides, longer monoalpha helix peptides (PTH/PTHrP)
[85, 86] more effective than shorter monoalpha helix
peptides (Glucagon) [87] (direct CM receptor-mediated
stabilizing shift pressuromodulation) (Table 1; Additional
file 5: Complete Table 1 in Supplemental File Format).

The short and long monoalpha helix-loop-short 2-way
beta helix peptides such as adrenocorticotropic hormone
(ACTH) [88-91] and pro-ACTH pro-opiomelanocortin
(POMC) [92], respectively, which, in contrast to the short
and long monoalpha helix peptides (without 2-way beta
helix tails), bind to one G protein-coupled receptor via
the singular alpha helix motif with the potential to dimer-
ize another G protein-coupled receptor via the 2-way
beta helix tail, which are known to be expressed on cell
membranes in close proximity to one another [70], and
thus, provide greater stability to the ligand-receptor com-
plex than the short and long monoalpha helix peptides
(without the 2-way beta helix tail) that engage only one G
protein-coupled receptor, therefore, in comparison, more
effective CM receptor, and CM, pressuromodulators
(direct CM receptor-mediated stabilizing shift pressuro-
modulation) (Table 1; Additional file 5: Complete Table 1
in Supplemental File Format).

The short monoalpha helix-loop-short monoalpha
helix peptides include adrenocorticotrophin releasing
hormone/factor (CRH/F) [78] and insulin [31, 93-102],
and the short monoalpha helix-loop-short monoal-
pha helix-loop-short monoalpha helix peptides include
osteocalcin [103], insulin-like growth factor-1 (IGF1/
II; somatomedin C) [31, 34, 35, 93, 104, 105], prolactin
(PRL) releasing hormone/factor (PRLRH/factor) [106],
growth hormone releasing hormone/factor (GHRH/F)
[107] and gonadotropin releasing hormone/factor
(GnRH/F), which, in contrast to the short and long mon-
oalpha helix peptides (glucagon, PTH) and the short and
long monoalpha helix-loop-short 2-way beta helix mon-
oalpha helix peptides (ACTH, POMC), bind to mixed
alpha cum beta helix-construct non-G protein-coupled
tyrosine kinase type receptors that homodimerize in
response to loop-interconnected dual/poly singular
alpha helix peptide binding and adopting a condensed
globular conformation, which therefore, function as
more effective shift pressuromodulators at the cell mem-
brane than the monoalpha helix peptides (direct CM
receptor-mediated stabilizing shift pressuromodulation)
(Table 1; Additional file 5: Complete Table 1 in Supple-
mental File Format).
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Aligned multialpha helix peptide and semi-aligned
multialpha helix peptide regulation of intracellular
function vis a vis interaction at the cell membrane (CM)
receptor(s)

The mulialpha helix peptides are the aligned multi-
ple alpha helix peptides (aligned multialpha helix), the
semi-aligned multiple alpha helix peptides (semi-aligned
multialpha helix cum short monoalpha helix), the semi-
aligned multiple alpha helix with a short singular beta
2-way helix peptides (semi-aligned multialpha helix cum
short monobeta 2-way helix), the semi-aligned multiple
alpha helix with a short singular alpha helix and short
end-loop (semi-aligned multialpha helix cum short mon-
oalpha helix cum short loop), and the peptides with a
loop-interconnected semi-aligned multiple alpha helix,
short singular alpha helix and short singular beta 2-way
helix (semi-aligned multialpha helix-loop-short monoal-
pha helix-loop-short monobeta 2-way helix) (<30 kDa in
monomeric form) (Table 1; Additional file 5: Complete
Table 1 in Supplemental File Format).

The aligned multialpha helix peptides include inter-
leukin-3 (IL-3) [108], interleukin-7 (IL-7) [109], inter-
leukin-12 (IL-12) [110, 111], interleukin-23 (IL-23)
[112], prolactin (PRL) [113, 114], growth hormone (GH)
[115-121] and erythropoietin (Ep) monomers, which
function as dual CM receptor stabilizing shift pressuro-
modulators by stabilizing heteromeric amorphous loop
cum beta helix-rich receptor subunits (2 su: 2 su), as well
as Interferon gamma (INF-g) homodimer (25 kDa x 2)
[122-131], which function as dual-to-tri CM receptor
stabilizing shift pressuromodulators by stabilizing het-
eromeric amorphous loop cum beta helix-rich receptor
subunits (3 su: 3 su: <3 su>), and of the aligned multi-
alpha helix peptides, interferon gamma (INF-g) being a
homodimer with the potential for receptor trimerization,
functions as a more effective pressuromodulator, that
which stimulates increased protein transcription of the
higher molecular weight proteins including the highest
molecular weight, secreted, Fibronectin (240 kDa) [128,
129], as well as nuclear, separase (230 kDa) and Ki67
(359 kDa), thus, with the potential to be mitogenic for
certain cell types (with greater baseline compliance) [130,
131] (direct CM receptor-mediated stabilizing shift pres-
suromodulation) (Table 1; Additional file 5: Complete
Table 1 in Supplemental File Format).

The semi-aligned multialpha helix cum short monoal-
pha helix peptides include interleukin-2 (IL-2) [111, 132,
133] and interleukin-6 (IL-6) [134] monomers, which
function as effective dual CM receptor stabilizing shift
pressuromodulators by stabilizing heteromeric amor-
phous loop cum beta helix-rich receptor subunits (3
su: 2 su) (direct CM receptor-mediated stabilizing shift



Sarin J Transl Med (2015) 13:372

pressuromodulation) (Table 1; Additional file 5: Com-
plete Table 1 in Supplemental File Format).

The semi-aligned multialpha helix cum short
monoBeta 2-way helix peptides include interleukin-4
(IL-4) [135, 136], interleukin-13 (IL-13), interleukin-15
(IL-15) [111, 137], interleukin-20 (IL-20) and granulocyte
monocyte-colony stimulating factor (GM-CSF) [138-
142] monomers, which function as effective dual CM
receptor stabilizing shift pressuromodulators by stabiliz-
ing heteromeric beta helix-rich receptor subunits (4 su: 2
su) (direct CM receptor-mediated stabilizing shift pres-
suromodulation) (Table 1; Additional file 5: Complete
Table 1 in Supplemental File Format).

The semi-aligned multialpha helix cum short mono-
alpha helix cum short loop peptides include the leu-
kemia inhibitory factor (LIF)/oncostatin (OSM) [143]
monomer, which function as effective dual CM receptor
stabilizing shift pressuromodulators by stabilizing het-
eromeric amorphous loop cum beta helix-rich receptor
subunits (5 su: 3 su) (direct CM receptor-mediated sta-
bilizing shift pressuromodulation) (Table 1; Additional
file 5: Complete Table 1 in Supplemental File Format).

The semi-aligned multialpha helix-loop-short mono-
alpha helix-loop-short monobeta 2-way helix pep-
tides include the granulocyte-colony stimulating factor
(G-CSF)/macrophage (mouse)-colony stimulating fac-
tor (M-CSF) homodimer (60 kDa) [144-147], which
functions as effective dual CM receptor stabilizing shift
pressuromodulators by stabilizing heteromeric beta
helix-rich receptor subunits (3 su: 3 su) (direct CM
receptor-mediated stabilizing shift pressuromodulation)
(Table 1; Additional file 5: Complete Table 1 in Supple-
mental File Format).

Compact loose non-aligned multibeta helix, compact
disperse non-aligned multibeta helix peptide and compact
tight aligned/non-aligned multibeta helix peptide
regulation of intracellular function vis a vis Interaction

at the cell membrane (CM) receptor(s)

The compact mulibeta helix peptides are the compact
loose non-aligned/aligned multiple beta helix peptides
with a short singular non-angled/angled alpha helix
(short monoalpha helix cum compact loose non-aligned
3-way beta-X-2-way beta helix, short monoalpha helix
cum compact loose aligned 3-way beta helix, short
angled monoalpha helix cum compact loose aligned
3-way beta helix, short angled monoalpha helix cum
compact loose aligned 3.5-way beta helix), the compact
loose non-aligned multiple beta helix peptides + an
ancillary alpha knob (compact loose non-aligned multi-
beta helix &+ alpha helix knob), and the compact tight
semi-aligned/aligned multiple beta helix peptides (com-
pact tight semi-aligned multibeta helix, compact tight
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aligned multibeta helix) (<35 kDa in monomeric form)
(Table 1; Additional file 5: Complete Table 1 in Supple-
mental File Format).

The compact loose non-aligned multibeta helix cum
short monoalpha helix peptides include sulfate neutral-
ized CD4 receptor ligand interleukin-16 (IL-16) (IS 3+
— 1+4) [148-151], sulfate neutralized CCR5 receptor
ligands macrophage inflammatory protein-1 beta (MIP-1
beta: CCL20) (IS 3+ — 14), CCL3, CCL4 and CCL5
(RANTES) (IS 3+ — 1+) [152, 153], sulfate neutralized
CXCRA4 receptor ligand SDF-1 (CXCL-12) (IS 3+ — 1+)
[152] and sulfate neutralized CXCR1 ligand interleukin-8
(IL-8) (IS 3+ — 1+) [154, 155], all monomeric, which,
function as CM receptor stabilizing shift pressuromodu-
lators by binding to alpha helix-rich chemokine receptor
cores via neutral short alpha helix or short angled alpha
helix association for the pressuromodulating effect, and
exceptionally effective external cationomodulators by
draping over receptor exteriors via cationic compact
loose non-aligned multibeta helix motifs (3-way beta-
X-2-way beta helix, 3-way beta helix or 3.5-way beta
helix) for the external cationomodulation effect (3+
— 1+) [direct CM receptor-mediated stabilizing shift
pressuromodulation (single, dual or tri) cum external
cationomodulation (>3+ — 1+)], that which results in
exocytosis and transcription of higher molecular weight
protein forms, and CM-to-extracellular matrix interac-
tions associated with lamellopodesis and cell migration,
respectively (Table 1; Additional file 5: Complete Table 1
in Supplemental File Format).

The compact loose non-aligned Multibeta helix & alpha
helix knob peptides include sulfate neutralized fibroblast
growth factor (FGF-19/FGF-2) (IS 34+ — 1+) [102, 156—
162], sulfate neutralized hepatocyte growth factor alpha
(HGF alpha; Scatter Factor) (IS 3+ — 14) [163, 164],
sulfate neutralized epidermal growth factor (EGF) (IS 3+
— 1+4) [165, 166], sulfate neutralized Interleukin-1 alpha
(IL-1 alpha) (IS 34+ — 1+) [167] and sulfate neutralized
interleukin-1 beta (IL-1 beta) (IS 3+ — 1+) [156, 168],
each monomers, however, capable of binding as separate
monomers (IS 3+ — 1+: IS 34+ — 1+) to opposite sides
of beta-rich receptors close in molecular space, which
dimerize (3 su: 3 su), and thus, which function as effective
CM receptor stabilizing shift pressuromodulators [direct
CM receptor-Mediated stabilizing shift pressuromodula-
tion (single, dual or tri) cum external cationomodulation
(>34 — 1+)], that which results in exocytosis and tran-
scription of higher molecular weight protein forms, and
exceptionally effective external cationomodulators via
cationic extracellular interaction (>3+) with extracellu-
lar matrix heparan sulfate neutralizaiton of excess catio-
nicity (>34 — 1+), that which results in lamellopodesis
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and in cell migration (Table 1; Additional file 5: Complete
Table 1 in Supplemental File Format).

The compact tight semi-aligned/aligned Multibeta helix
peptides include tumor necrosis factor alpha (TNF alpha)
(SS 14) [164, 169-173], adiponectin (SS 1+) [174] and
RANKL (SS 1+) [175-180] with the ability to self-trimer-
ize without superimposition, and concomitantly, trimer-
ize beta helix-based receptors, which, therefore, function
as exceptionally effective pressuromodulators, indi-
rect shift pressuromodulators, as a result of prolonged
pseudo-cationic (1+) association with the CM second-
ary to self-trimerization and receptor trimerization, that
which increases CM compliance sufficiently enough to
cause the non-exocytosis of pre-synthesized Golgi res-
ervoir collagenase (MMP)-insensitive higher molecular
weight protein forms (i.e. Fibronectin: 240 kDa), which
remain intracellular, the process of which results in a
secondary significant decrease in whole cell compliance
[indirect 2ary CM receptor-mediated shift pressuromod-
ulation (tri or quad receptor internal pseudo-cationo-
modulation: SS 1+)], that which results in significantly
increased protein transcription of the entire spectrum of
synthesizable proteins, importantly, the highest molecu-
lar weight nuclear proteins, Ki67 (359 kDa) and separase
(230 kDa), and in mitogenesis and cell division (Table 1;
Additional file 5: Complete Table 1 in Supplemental File
Format).

Aligned long multibeta helix peptide regulation

of intracellular function vis a vis interaction at the cell
membrane (CM) receptor(s)

The aligned long mulibeta helix peptides are the aligned
long multiple beta helix peptides (aligned long multibeta
helix), the aligned long multiple beta helix peptides with
a short singular alpha helix (aligned long multibeta helix
cum short monoalpha helix), and the aligned long mul-
tiple beta helix with a short angled singular alpha helix
(aligned long nultibeta helix cum short angled mono-
alpha helix) (<25 kDa in monomeric form) (Table 1;
Additional file 5: Complete Table 1 in Supplemental File
Format).

The aligned long multibeta helix peptides include the
heterodimeric sulfate neutralized glycosylated hormones,
thyroid stimulating hormone alpha and beta (TSH alpha
and beta) (IS 3+ — 1+: IS 3+ — 1+), luteinizing hor-
mone alpha and beta (LH alpha and beta) (IS 3+ — 1+:
IS 3+ — 1+4), follicle stimulating hormone alpha and
beta (FSH alpha and beta) (IS 3+ — 1+) [181-183],
human chorionic gonadotropin alpha and beta (HCG
alpha and beta) (IS 3+ — 1+: IS 3+ — 14) [184-187],
brain-derived neurotrophic factor (BDNF) (IS 3+ —
1+: IS 3+ — 1+) [188] and nerve growth factor beta
(NGFb) (IS 3+ — 1+: IS 34+ — 1+) at the p75 NGF
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receptor (higher Bmax) [189-192], which, by binding to
amorphous loop cum beta-rich receptor subunits and
receptor trimerization, function as effective CM receptor
stabilizing shift pressuromodulators to induce the Golgi
vesicular exocytosis of various small molecule hormones
(i.e. thyroxine, testosterone, estrogen and progesterone,
etc.) that require significant pressuromodulation to exo-
cytose [8], and concomitantly, function as external cati-
onomodulators due to the presence of solvent accessible
cationic amino acid R groups that interact with extracel-
lular matrix heparan sulfates (IS 3+ — 1+: IS 3+ — 1+)
that which results in lamellopodesis and in cell migration
[193, 194] [direct CM receptor-mediated stabilizing shift
pressuromodulation (single, dual or tri) cum external cat-
ionomodulation (>3+ — 1+)] (Table 1; Additional file 5:
Complete Table 1 in Supplemental File Format).

The aligned long multibeta helix cum short/short
angled monoalpha helix peptides include the non-super-
imposed interlocking homodimeric peptides, transform-
ing growth factor beta (TGF beta) (SS 1+4) [195-209],
bone morphogenic protein-2/7 (BMP-2/7) (SS 1+) [199,
210], platelet derived growth factor-BB (PDGF-BB) (SS
1+) [131, 211-213] and placenta growth factor (PLGF)
(SS 1+) [214], with solvent accessible cationic amino acid
R groups sufficiently separated (SS) in molecular space
(14+/R group), which, by interlocking to each other via
the neutral short monoalpha helix motif, and by concom-
itantly interacting with beta helix-based receptor via the
cationic aligned long multibeta helix motif (SS 1+), func-
tion as exceptionally effective pressuromodulators, indi-
rect shift pressuromodulators, as a result of prolonged
pseudo-cationic (1+) association with the CM second-
ary to beta helix-based receptor quatramerization, that
which increases CM compliance sufficiently enough to
cause the non-exocytosis of pre-synthesized Golgi res-
ervoir collagenase (MMP)-insensitive higher molecular
weight protein forms (i.e. Fibronectin: 240 kDa), which
remain intracellular, the process of which results in a
secondary significant decrease in whole cell compliance
[indirect 2ary CM receptor-mediated shift pressuromod-
ulation (tri or quad receptor internal pseudo-cationo-
modulation: SS 1+)], that which results in significantly
increased protein transcription of the entire spectrum of
synthesizable proteins, importantly, the highest molecu-
lar weight nuclear proteins, Ki67 (359 kDa) and Separase
(230 kDa), and in mitogenesis and cell division (Table 1;
Additional file 5: Complete Table 1 in Supplemental File
Format).

The aligned long MultiBeta helix cum short angled
monoalpha helix peptides also include the non-super-
imposed interlocking homodimeric peptide, vascu-
lar endothelial growth factor-A (VEGF-A)/vascular
permeability factor (VPF) (1+ IS 1+ SS 1+ IS 1+) [162,
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215-219], which, in contrast to TGF beta, BMP-2/7 and
PDGE-BB, possesses solvent accessible cationic amino
acid R groups with mono-cationicity insufficiently sep-
arated (IS) in molecular space (1+/R group IS 1+/R
group), thus, similarly to the small (non-alpha non-beta)
di-cationic peptides such as the bradykinin monomer
(1 + IS 1 +) [indirect 3ary CM receptor-mediated shift
pressuromodulation (single or dual receptor endocytic
external cationomodulation: 24)], functions as a tran-
sient pressuromodulator cum external cationomodula-
tor, but in contrast to bradykinin, is significantly more
effective as an external cationomodulator (2+), as a result
of prolonged cationic association with the CM by bind-
ing to its beta helix-based receptor, the KDR receptor,
as an interlocked homodimer in context of KDR recep-
tor quatramerization, that which results in external cati-
onomodulation (2+)-mediated endocytic endothelial cell
transformation with a concomitant significant decrease
in endothelial cell compliance [indirect 3ary CM recep-
tor-mediated shift pressuromodulation (single or dual
receptor endocytic external cationomodulation: 2+)]
and increase in protein transcription of the entire spec-
trum of synthesizable proteins, importantly, the highest
molecular weight nuclear proteins, Ki67 (359 kDa) and
Separase (230 kDa), and in mitogenesis and endothelial
cell division (Table 1; Additional file 5: Complete Table 1
in Supplemental File Format).

Mixed helix and combinatory helix peptide regulation
of intracellular function vis a vis interaction at the cell
membrane (CM) receptor(s)
The mixed helix peptides include the transferrin receptor
(TfR) [220] peptides, transferrin-(Fe3+ — Fe2+), [221],
a compact loose non-aligned multibeta helix (neutral)-
intertwined-non-aligned multialpha helix peptide
(Fe3+ SS Fe3+ — Fe2+ SS Fe2+), and hemochromatosis
protein (HPE) [221], a long dualalpha helix (neutral) cum
compact loose aligned beta helix cum multishort 2-way
beta helix peptide [(14 IS 14+)n SS (1+ IS 1+)n], and the
combinatory helix peptides include the liver sinusoidal
endothelial cell (LSEC) mannose receptor peptide, par-
tially sulfate neutralized procollagen I peptide III C mon-
omer (IS 4+ — 24) [13, 222-225], a short monoalpha
helix-loop-short monoalpha helix-loop-short monoalpha
helix (neutral) cum compact loose non-aligned 5-way
beta-X-3-way beta helix (cationic) (Table 1; Additional
file 5: Complete Table 1 in Supplemental File Format).
The mixed helix transferrin receptor peptides, trans-
ferrin-(Fe3+ — Fe2+), and Hemochromatosis Protein,
as monomers, are capable of binding as separate mono-
mers to opposite sides of juxtaposed mixed alpha-rich
cum beta-rich receptors via neutral alpha helix ligand-
to-alpha helix receptor association, which, due to the
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presence of di-cationicity, the acquired Fe2+ in the for-
mer (transferrin), and the inherent 2+ in the later (HPE)
(MultiShort 2-way beta helix), function as effective exter-
nal cationomodulators (2+) via external cationomodu-
lation (2+)-mediated endocytosis, the process of which
results in significant endocytosis-vesiculovacuolization-
endothelial cell fenestration, particularly, at the liver
sinusoidal endothelial cell (LSEC) where the concentra-
tion of hepatocyte-produced Transferrin and HPE is
the greatest, and thus, maintains the highly endocytic-
endothelial glycocalyx layer-devoid reticuloendothelial
LSEC phenotype [7, 221], the concomitant presence of
VEGF only required to maintain the openly fenestrated
LSEC phenotype (versus diaphragm fenestrated) [7,
226]; furthermore, the secondary significant decrease in
endothelial cell compliance from transferrin and HPE
external cationomodulation (2+)-mediated endocyto-
sis [indirect 3ary CM receptor-mediated shift pressuro-
modulation (single or dual receptor endocytic external
cationomodulation: 2+)], results in the increased protein
transcription, importantly, that of the highest molecular
weight nuclear proteins, Ki67 (359 kDa) and separase
(230 kDa), that which results in mitogenesis and cell divi-
sion [4], and in LSEC turnover, in the physiologic state
(Table 1; Additional file 5: Complete Table 1 in Supple-
mental File Format).

The combinatory helix peptides, partially sulfate neu-
tralized procollagen I peptide III C monomer (IS 4+
— 2+4), consists of: (1) a compact loose non-aligned
5-way beta-X-3-way beta helix (cationic) motif, and in
comparison to interleukin-16 (IL-16), due to the pres-
ence of 5-way beta (versus an IL-16 3-way beta helix)
criss-crossed by 3-way beta helix (versus an IL-16 2-way
beta helix), has 4+ cationicity insufficiently separated
in molecular space (IS) (versus an IL-16 3+), in which
case 3+ cationicity of the 4+ is effectively neutralized
by heparan sulfate (or hyaluronate/glucoronate) in sys-
temic circulation (IS 4+ — 1+), but at the reticuloen-
dothelial liver sinusoidal endothelial cell (LSEC), which
do not have a thick endothelial glycocalyx layer (- hep-
aran sulfate/hyaluronate/glucoronate), the excess cati-
onicity is not effectively neutralized (IS 4+ — 2+), that
which, specifically, results in endocytosis, and uptake, of
partially sulfate neutralized procollagen I peptide III C
monomer (IS 44+ — 2+) at the LSEC ‘cation-dependent’
and cation-independent ‘Mannose’ receptors [224, 225]
(Table 1); and (2) a short monoalpha helix-loop-short
monoalpha helix-loop-short monoalpha helix (Neutral)
motif, and in comparison to insulin-like growth factor
(IGF) for example [31, 32], very similar, whereby, the pro-
collagen I peptide III C peptide, binds with ‘Mannose’
receptors with decimolar (dM) affinity (Kd) [33] viz a viz
tight association with the neutral alpha helix amorphous
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loop cum beta helix complex of the receptor construct
[227], also very similar to the insulin-like growth factor
receptor (IGFR) for example [33, 34]; furthermore, the
secondary significant decrease in LSEC compliance from
partially sulfate neutralized procollagen I peptide III C
monomer (IS 44+ — 2+) external cationomodulation
(24+)-mediated endocytosis [indirect 3ary CM receptor-
mediated shift pressuromodulation (single or dual recep-
tor endocytic external cationomodulation: 2+)], results
in the increased protein transcription of the highest
molecular weight nuclear proteins, Ki67 (359 kDa) and
Separase (230 kDa), and at the LSEC, importantly, that
which results in LSEC mitogenesis and cell division, and
in turnover, in the physiologic state, while, when present
in the fully neutralized (IS 44+ — 1+) form in vitro (hep-
arin-containing media) functions, instead, as a direct CM
receptor-mediated stabilizing shift pressuromodulator
cum external cationomodulator (>3+ — 14+) [227, 228]
(Table 1; Additional file 5: Complete Table 1 in Supple-
mental File Format).

Conclusion

Building on recent knowledge that the specificity of the
biological interactions of small molecule hydrophiles and
lipophiles across microvascular and epithelial barriers,
and with cells, can be predicted on the basis of their con-
served biophysical properties, and the knowledge that
biological peptides are cell membrane impermeant, it
has been further discussed herein that cellular, and thus,
nuclear function, are primarily regulated by small mol-
ecule hormone and peptide/factor interactions at the cell
membrane (CM) receptors.

The means of regulating cellular, and thus, nuclear
function, are the various forms of CM Pressuromodula-
tion that exist, which include direct CM receptor-medi-
ated stabilizing pressuromodulation, sub-classified as
direct CM receptor-mediated stabilizing shift pressuro-
modulation (single, dual or tri) or direct CM receptor-
mediated stabilizing shift pressuromodulation (single,
dual or tri) cum external cationomodulation (>3+ —
1+); which are with respect to acute CM receptor-stabi-
lizing effects of small biomolecule hormones, growth fac-
tors or cytokines, and also include indirect CM- or CM
receptor-mediated pressuromodulation, sub-classified
as indirect lary CM-mediated shift pressuromodulation
(perturbomodulation), indirect 2ary CM receptor-medi-
ated shift pressuromodulation (tri or quad receptor inter-
nal pseudo-cationomodulation: SS 1+), indirect 3ary CM
receptor-mediated shift pressuromodulation (single or
dual receptor endocytic external cationomodulation: 2+)
or indirect (Pseudo) 3ary CM receptor-mediated shift
pressuromodulation (receptor endocytic hydroxylocar-
bonyloetheroylomodulation: 0), which are with respect
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to sub-acute CM receptor-stabilizing effects of small bio-
molecules, growth factors or cytokines.

As a generalization, all forms of CM pressuromodula-
tion decrease CM and nuclear membrane (NM) compli-
ance (whole cell compliance), due to pressuromodulation
of the intracellular microtubule network and increases
the exocytosis of pre-synthesized vesicular endogolgi
peptides and small molecules as well as nuclear-to-
rough endoplasmic reticulum membrane proteins to the
CM, with the potential to simultaneously increase the
NM-associated chromatin DNA transcription of higher
molecular weight protein forms, secretory and CM-des-
tined, mitochondrial and nuclear, including the highest
molecular weight nuclear proteins, Ki67 (359 kDa) and
separase (230 kDa), with the latter leading to mitogen-
esis and cell division; while, in the case of growth factors
or cytokines with external cationomodulation capability,
CM receptor external cationomodulation of CM recep-
tors (>34 — 1+4) results in cationic extracellular inter-
action (>3+) with extracellular matrix heparan sulfates
(>3+ — 1+4) concomitant with lamellopodesis and cell
migration.

It can be surmised that the modulation of cellular, and
nuclear, function is mostly a reactive process, governed,
primarily, by small molecule hormone and peptide inter-
actions at the cell membrane, with CM receptors and the
CM itself. These insights taken together, provide valuable
translationally applicable knowledge.
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Additional file 4: Figure S3. Small molecule lipophiles.
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