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PIWIL2 promotes progression 
of non‑small cell lung cancer by inducing CDK2 
and Cyclin A expression
Xiaohan Qu1*, Jinlu Liu2, Xinwen Zhong1, Xi Li1 and Qigang Zhang1

Abstract 

Background:  PIWI proteins have important roles in tumorigenesis due to their interaction with piRNAs. Recent stud-
ies suggest that PIWI proteins affect prognosis of various cancers.

Methods:  In the present study, PIWI genes expression was assayed in non-small cell lung cancer (NSCLC). To deter-
mine the effects of PIWIL2 on NSCLC cells, overexpression and interference assays were performed using the A549 
and H460 cell lines. The tumor formation model was performed to demonstrate the effects of PIWIL2 on tumor forma-
tion in vivo.

Results:  PIWIL2 was increased both at the RNA and protein level in malignant cancer tissues compared with adja-
cent normal tissue. Moreover, increased PIWIL2 gene expression was negatively correlated with prognosis in NSCLC 
patients. Overexpression and interference of PIWIL2 promoted and depressed cell proliferation, respectively. Mean-
while, PIWIL2 interference arrested cells at the G2/M stage. In addition, we found that CDK2 and Cyclin A expression 
were correlated with PIWIL2 expression. Moreover, transfection of PIWIL2 promoted tumor growth in nude mice.

Conclusion:  Our findings shed light on the function of PIWIL2 in NSCLC and suggest potential prognostic and thera-
peutic value.
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Background
Non-small cell lung cancer (NSCLC) is one of the most 
common cancers worldwide and is associated with high 
mortality rates [1]. Several biomarkers have been used 
to detect progression have been used in diagnosis of 
NSCLC mortality. However, both NSCLC-specific anti-
gens and mRNA-based biomarkers are associated with 
overdiagnosis and overtreatment [2]: mRNA-based bio-
markers are seldom specific to NSCLC tissue and are 
commonly expressed by epithelial cells, including nor-
mal, hyperplastic and cancerous cells [2]; meanwhile, 
NSCLC-specific antigen serum levels could reflect cancer 
progression or NSCLC hyperplasia, infection or inflam-
mation [3]. Thus, there is a need for improved NSCLC 

biomarkers. Meanwhile, the most common therapeutic 
strategy for NSCLC, including exairesis, chemotherapy 
and radiotherapy, are associated with poor prognosis 
and low long-term survival rates [4]. New strategies such 
as gene therapy and stem cell therapy have been used in 
clinical treatment [5, 6]. In addition, epigenetic research 
presents another potential cancer therapeutic avenue; 
understanding epigenetic changes during NSCLC pro-
gression could contribute to diagnosis, predicting prog-
nosis and exploring new treatment strategies [7, 8].

Chromosomal instability is a common feature of can-
cer cells that often displays deletions, rearrangements 
and duplications of different DNA fragments in the 
genome [9]. Specific alterations in miRNA expression, 
methylation levels and histone modifications are all 
regarded as causative factors in the etiology of cancer 
[10, 11]. Indeed, aberrant DNA methylation has been 
found in transposable elements (TEs)–regions that may 

Open Access

*Correspondence:  han_seal@163.com 
1 The First Affiliated Hospital, China Medical University, NO. 155, Nanjing 
North Street, Heping District, Shenyang 110001, Liaoning, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-015-0666-y&domain=pdf


Page 2 of 10Qu et al. J Transl Med  (2015) 13:301 

be associated with cancer progression [12]; erratic TEs 
could lead to genomic instability and affect expression 
levels of both oncogenes and tumor suppressor genes [13, 
14]. Hyperactive TEs therefore appear to play an integral 
role in cancer development. PIWI proteins are key fac-
tors in controlling TE stability [15, 16]. By interacting 
with PIWI-interacting RNAs (piRNAs), PIWI protects 
the integrity and stability of the genome from silencing 
TEs [17]. Much progress has been made in understand-
ing the molecular function of PIWI in several cancers; 
however, the role of PIWI in NSCLC remains unknown.

Although the PIWI-piRNA pathway was first identi-
fied in the testis, PIWI has subsequently been found to be 
highly expressed in many different types of cancer [18]. 
PIWI is expressed in breast cancer [19] and gastrointes-
tinal cancer [20, 21] but not in the corresponding normal 
tissues. PIWI homologs are common in vertebrates; for 
example, in mice, three different homologs of PIWI were 
found [22] while in humans, PIWIL1, PIWIL2, PIWIL3 
and PIWIL4 were identified [23, 24]. These homologs 
may have different functions depending on the type of 
cancer. PIWIL1 promotes cancer growth and is associ-
ated with increased mortality [20, 25]; increased lev-
els of PIWIL2 have been reported in breast [26, 27] and 
cervical cancer [28]; and increased levels of PIWIL3 and 
PIWIL4 have been reported in colon cancer [29]. To 
date, PIWI gene expression has not been investigated in 
NSCLC; the expression patterns and function of PIWI in 
NSCLC therefore warrants investigation.

In the present study, we focus on the expression pattern 
of PIWI homologs in the context of NSCLC progression 
and prognosis. We investigated the function of PIWI in 
a NSCLC cell line, using cell transfection. The biologi-
cal activities of the NSCLC cell line were confirmed after 
PIWI over-expression and silencing. Finally, Cyclins and 
Cyclin-dependent kinases (CDKs) were detected after 
PIWI over-expression and silencing to investigate the 
mechanism of PIWI on NSCLC cell progression both 
in  vivo and in  vitro. This study provided novel insights 
into the role of PIWI in NSCLC that suggest potential 
diagnostic, prognostic and therapeutic value for PIWI in 
NSCLC.

Methods
Materials
NSCLC samples were provided by the China Medical 
University (Shenyang, China) in accordance with the 
guidelines of the China Medical University of Medi-
cine Research Ethics Committee. All patients provided 
informed consent. NSCLC tissues and adjacent tissues 
were collected from patients who underwent resection. 
Tumor tissues were confirmed as such by haematoxylin 
and eosin staining. Only those samples with more than 

70 % tumor content were used for further study as tumor 
tissues.

Cell culture and transfection
The human NSCLC cell line, A549 and H460 were 
obtained from the Shanghai Cell Bank at the Chinese 
Academy of Sciences. The cells were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) (Gibco, Gaith-
ersburg, Maryland, USA) containing 10  % fetal bovine 
serum (Gibco) at 37 °C in a incubator at 5 % CO2.

The pcDNA3.1+  vector containing c-Myc-tagged 
PIWIL2 was constructed in our laboratory as previously 
described [30]. The c-Myc promoter was synthesized by 
Sangon Biotech (Shanghai, China). The PIWI fragment 
was amplified from human iPS cell lines with the primer 
set: 5′-TTC TCG AGA TGG ATC CTT TCC GAC CAT 
C-3′ and 5′-TTC CAT GGT CAC AGG AAG AAC AGG 
TTC TC-3′. The primer sets were designed to contain the 
full length of coding sequence. Amplified PIWI cDNA 
was digested with NcoI and XhoI (New England BioLabs 
[NEB], Hertfordshire, UK). The digested fragment was 
then subcloned between the NcoI site and the XhoI site 
of the pcDNA3.1+  vector. The construction of shRNA 
for PIWIL2 was previously reported [30] (PIWIL2 
shRNA1: 5′-ACC GGC CUG GGU UGA ACU AAA-3′, 
PIWIL2 shRNA2: 5′-ACA GAA UCA AAC ACU GUG 
A-3′). Transfection was performed in 6-well plates with 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturers’ protocol. Cells were 
then replated at a density of 2 ×  105 cells per well and 
cultured for 48 h after which they were assayed by real-
time PCR, western blot and immunofluorescence stain-
ing. For rescue groups, after 24  h post interference or 
over-expression transfection, the second over-expression 
transfection or interference were performed, respectively. 
Then the cells were analyzed at 48  h post the second 
transfection.

MTT assays
To assay the cell proliferation rate, 24-well plates at a den-
sity of 2 × 104 cells/well were seeded after transfection. 
Subsequently, the cells were analyzed by methyle thiazol 
tetrazolium assay (MTT assay, Sigma-Aldrich, St. Louis, 
MN, USA). The amount of MTT formazon product was 
determined by using a microplate reader and the absorb-
ance was measured at 570 nm (Berthold, Tokyo, Japan).

Real‑time PCR
Total RNAs were extracted from tissues or cells using 
Trizol (Invitrogen, Carlsbad, CA, USA). The quality and 
quantity of total RNA was determined by agarose gel 
electrophoresis and by the BioPhotometer Plus (Eppen-
dorf AG, Hamburg, Germany). For reverse transcription, 
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1 μg total RNA was transcribed for each sample to com-
plementary DNA (cDNA) using M-MLV reverse tran-
scriptase  (Invitrogen) according to the manufacturer’s 
protocol. The primers for real-time PCR are shown in 
Table  1. The PCR conditions were as follows: 95  °C for 
3  min, 40 cycles at 95  °C for 12  s and 55  °C for 40  s. 
GAPDH was used as an internal PCR control. Mean-
while, a no-template control and melt curve analysis were 
used to monitor contamination. The relative expression 
levels were calculated using the 2−ΔΔCt method.

Western blot
The levels of PIWI proteins, CDK proteins, Cyclin pro-
teins and GAPDH were determined by western blot. 
Primary rabbit polyclonal antibodies against PIWIs 
(PIWIL1, SAB1300682; PIWIL2, SAB2105190; PIWIL3, 
SAB4200150; PIWIL4, SAB2105885), CDKs (CDK1, 
SAB4500050; CDK2, SAB4503706; CDK4, SAB4300695), 
Cyclins (Cyclin B, SAB4503501; Cyclin A, SAB4503499; 
Cyclin D1, SAB4502603) and GAPDH (SAB2100894) were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). Sec-
ondary antibodies were HRP-conjugated anti-rabbit IgG 
(Sigma-Aldrich). Both tissues and cells were homogenized 
using RIPA buffer (50 mM Tris pH 8, 150 mM NaCl, 1 % 
NP-40, 0.5 % DOC, 0.1 % SDS, 1 mM DTT, protease and 
phosphatase inhibitors). Extracted proteins were quanti-
fied using the BCA protein assay kit from Sangon Bio-
tech (Shanghai, China). For each sample, 15  μg protein 
were electrophoresed on a 12  % sodium dodecyl sulfate 
polyacrylamide gel. The sample was next transferred onto 
polyvinylidene fluoride membranes (Millipore, Billerica, 
MA, USA). Proteins were blocked at room temperature for 
1 h using 4 % skim milk and incubated with each antibody 

(for PIWIs, 1:1000; CDKs, 1:1000; Cyclins, 1:100; GAPDH, 
1:2000) at 4  °C overnight. After three washes with TBST 
buffer (pH 7.6, 20  mM Tris–HCl, 137  mM NaCl, 0.01  % 
Tween-20), membranes were incubated with HRP-con-
jugated anti-rabbit IgG and visualized using enhanced 
chemiluminescence (ECL, Millipore, Billerica, MA, USA).

Immunohistochemical staining (IHC)
Tissue samples were fixed with 10  % buffered formalin 
and 6-μm-thick tissue sections were cut. The sections 
were then incubated with monoclonal antibody (for 
PIWIs, 1:100; CDKs, 1:200; Cyclins, 1:200) and the same 
secondary antibody that was used for western blotting. 
Horseradish peroxidase streptavidin complex (Beyotime, 
Wuhan, China) was used to visualize the signals. Sections 
were color-developed with diaminobenzidine and stained 
with hematoxylin (Beyotime).

Immunofluorescence microscopy
Protein expression was measured by immunofluores-
cence, using monoclonal antibodies (for CDKs, 1:100; 
Cyclins, 1:100) that were detected by FITC-conjugated 
goat anti-rabbit IgG (Sigma-Aldrich) at a dilution of 
1:200. DAPI (1 μg/ml) was used to stain nuclei.

Flow cytometry
Cell activities and apoptosis were measured by flow 
cytometry after over-expression and inhibition of 
PIWIL2 in NSCLC cells. Annexin V-FITC and propidium 
iodide (PI) (BioVision, Milpitas, CA, USA) staining was 
used according to the manufacturer’s instructions. For 
each sample, at least 30,000 cells were analyzed. Experi-
ments were performed in triplicate.

Tumor formation in a nude mouse model
Five-week-old nude mice were used to confirm the effect 
of PIWIL2 on tumor formation. The experiment was 
approved by the ethics committee of the China Medi-
cal University (Shenyang, China). Mice were randomly 
divided into two groups of ten (n =  5). One group was 
treated with A549 cells while other was treated with 
A549 cells containing PIWIL2 expression vectors; 30,000 
A549 cells (in 1 ml DMEM) were injected every 3 days for 
21 days on the dorsal side of the mouse. Tumor volumes 
were calculated every 3  days according to the following 
the formula: Volume = length × width × height × 3.14/6. 
At 21 days, tumor tissues were assayed by real-time PCR, 
western blot and IHC.

Statistical analysis
Real-time PCR, MTT assays and apoptosis rates are pre-
sented as mean  ±  standard deviation (SD). One-way-
ANOVA analysis was used to analyze differences among 

Table 1  Primers used in the present study

Forward 5′–3′ Reverse 5′–3′

PIWIL1 TGTCTGTTGTCAAGTAATCG-
GAAGG

TTGCTGTTTGCCTAAGGTTCG

PIWIL2 TACCTTCAGCACACCGTCC GACACTGTATTTTGACGAGGT

PIWIL3 GAGCCCAGATACAGTACA-
GCGTT

GGACTGCCCCACGAGGTAA

PIWIL4 TACTGTATCGGACCTGAATCA TTCAGCCACAGCCTTCATCAG

CDK1 TGCTAAGTTCAAGTTTCGTA 
ATGCT

AAGGACTGAGATGATTTAAGC-
CAAC

CDK2 ATCCGCCTGGACACTGAG 
ACT

TGGAGGACCCGATGAGAATG

CDK4 CACAGTTCGTGAGGTGGC 
TTTA

TGTCCTTAGGTCCTGGTCTA-
CATG

Cyclin B TTGGTTTCTGCTGGGTGTAGG CCATGTTGATCTTCGCCTTATTT

Cyclin A GCATGTCACCGTTCCTCCTTG GGGCATCTTCACGCTCTATTTT

Cyclin D1 TCGCTGGAGCCCGTGAA CCGCCTCTGGCATTTTGG

GAPDH CGCTCTCTGCTCCTCCTGTT CCATGGTGTCTGAGCGATGT
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groups and results where P  <  0.05 were considered sig-
nificant. Survival curves were plotted according to the 
Kaplan–Meier method. Of the 126 patients involved in 
this study, 62 expressed relatively low levels of PIWIL2 
(fold-change relative expression to adjacent tissue was 
between 2 and 4) while 64 expressed high levels of 
PIWIL2 (fold-change relative expression to adjacent tissue 
was between 5 and 7) in cancer tissues, as judged by real-
time PCR (Table 2). Multivariate analysis was conducted 
using Cox’s proportional hazards regression model. 
Patients’ survival information was collected telephoni-
cally. Tumor stage was classified based on the 2011 Union 
for International Cancer Control (UICC) TNM classifica-
tion of malignant tumors. The nuclear grading was per-
formed according to Fuhrman’s system [31]. All data were 
analyzed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA).

Results
PIWIL2 expression is elevated in NSCLC tissues
To demonstrate the roles of PIWI in NSCLC, real-time 
PCR, western blot and IHC were employed to assay the 

expression levels of the four PIWI homologs (PIWIL1, 
PIWIL2, PIWIL3 and PIWIL4) in NSCLC tissues and 
adjacent tissues. PIWIL2 expression was significantly 
higher, both at the mRNA (P  <  0.05) (Fig.  1a) and pro-
tein levels (Fig. 1b, c), in malignant cancer tissues com-
pared to adjacent tissues. No significant difference was 
observed in other PIWI genes (PIWIL1, PIWIL3 or 
PIWIL4) between NSCLC tissues and adjacent tissues 
(Fig. 1).

PIWIL2 is associated with poor prognosis in NSCLC
We observed 126 patients for a period of 100 months to 
determine the relationship between PIWIL2 expression 
and NSCLC prognosis. Patients were divided into two 
groups: those that had high levels of PIWIL2 expression 
(mRNA expression levels higher than 5), and those with 
low levels of PIWIL2 expression (mRNA expression lev-
els lower than 4). Overall survival and disease-free sur-
vival were estimated. We found a significant negative 
correlation between PIWIL2 and overall survival as well 
as disease-free survival (Fig. 1d, e).

PIWIL2 regulates NSCLC cell progression
To determine the role of PIWIL2 on NSCLC cells, we 
used RNA interference and overexpression vectors to 
control PIWIL2 expression. As expected, the overex-
pression vectors increased, while the interference assay 
decreased PIWIL2 levels, as confirmed by real-time PCR 
(Fig.  2A) and western blot (Fig.  2B). Both shRNA1 and 
shRNA2 depressed expression of PIWIL2 which con-
firmed no off target effects in the present experiment 
(Fig. 2A, B).

The MTT assays indicated that cell proliferation could 
be depressed by both shRNA1 and shRNA2 interfer-
ence while overexpression of PIWIL2 induced cell prolif-
eration both in A549 and H460 (Fig. 3A, B). Using flow 
cytometry, we found that the interference group had 
higher levels of apoptosis compared with the overexpres-
sion group (Fig. 3C, D). Furthermore, in the interference 
group, more cells arrested at the G2/M stage compared 
with the other groups (Fig. 3C, E).

PIWIL2 regulates CDK2 and Cyclin A expression in NSCLC 
cells
We next investigated the mechanism whereby PIWIL2 
causes G2/M cell cycle arrest by measuring the expres-
sion of Cyclins and CDKs. The interference of PIWIL2 
was used shRNA1 which has been proved with no off 
target effects. The A549 cell line was used to deter-
mined the gene expression. The present result indicated 
that no significant differences were observed for CDK1, 
CDK4, Cyclin B or Cyclin D at mRNA or at the protein 
level (Fig. 4A–C). On the contrary, CDK2 and Cyclin A 

Table 2  Clinical characteristics of  patients with  liver can-
cer in the present study

Parameters n PIWIL2 χ2 P value

High Low

Total 126 64 62 0.189 0.87

Sex

 Male 60 30 30

 Female 66 34 32

Age (years) 1.56 0.56

 ≥50 67 34 33

 <50 59 30 29

T stage 6.15 0.03

 T1 75 40 35

 T2 32 18 14

 T3/4 19 6 13

N stage 4.62 0.05

 N0 96 44 52

 N+ 30 20 10

Metastasis 5.69 0.03

 No (M0) 72 35 37

 Yes (M1) 54 29 25

Recurrence 7.62 0.02

 No 70 34 36

 Yes 56 30 26

Fuhrman 11.52 0.02

 1 21 11 10

 2 64 30 34

 3 22 11 11

 4 19 12 7
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Fig. 1  Expression of PIWIL2 in NSCLC and multivariate Cox’s regression analyses of primary NSCLC patients (n = 126). Real-time PCR (a), western 
blot (b) and IHC (c) analysis of adjacent and NSCLC tissues. d Overall survival rates and its correlation with PIWIL2 expression. The cumulative overall 
survival rate for patients in the PIWIL2-high group was significantly lower than that for patients in the PIWIL2-low group (χ2 = 7.54; P = 0.03). e 
Disease-free survival rates and its correlation with PIWIL2 expression. The cumulative disease-free survival rate for patients in the PIWIL2-high group 
was significantly lower than that for patients in the PIWIL2-low group (χ2 = 8.78; P = 0.02). Real-time PCR data are presented as the mean ± SD 
(n = 30); **P < 0.01; for IHC, scale bars = 100 μm. The longest follow-up time was 100 months
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expression were significantly decreased or increased fol-
lowing PIWIL2 interference, or overexpression, respec-
tively (Fig. 4A–C).

PIWIL2 promotes tumor growth in vivo
We found that mice treated with PIWIL2-transfected 
A549 cells had significantly increased tumor volumes 
compared to controls (Fig.  5a). Moreover, PIWIL2 
expression promoted expression of CDK2 and Cyclin A 
both at mRNA and protein level (Fig. 5b–d), which indi-
cates that PIWIL2 induces CDK2 and Cyclin A expres-
sion and promotes tumorigenesis in nude mice.

Discussion
In this study, we explored PIWI expression in NSCLC as 
well as its role in tumor progression. By comparing the 
expression of the four PIWI homologs (PIWIL1, PIWIL2, 
PIWIL3 and PIWIL4), we showed that only PIWIL2 
was highly expressed in malignant NSCLC tissues com-
pared with adjacent tissues. These results suggested 
that PIWIL2 may play a crucial role in the progression 
of NSCLC. Moreover, high levels of PIWIL2 expres-
sion were associated with decreased overall survival 

and disease-free survival rates. Similar results have been 
demonstrated in breast [27] and endometrial cancer [28]. 
Thus, in cancers, the overexpression of PIWIL2 is key 
evidence in the malignant and pernicious [30]. How-
ever, PIWI expression patterns vary by cancer type. For 
instance, all PIWI proteins are overexpressed in colon 
cancer [29], while only PIWIL2 is expressed in breast 
cancer [26]. Although PIWI genes are potentially useful 
diagnostic and prognostic biomarkers, the heterogene-
ous expression patterns between different cancer types 
is still not well understood. We showed that PIWIL2 is 
highly expressed in NSCLC and is a potential indicator of 
NSCLC prognosis.

Once we confirmed the aberrant expression of PIWIL2 
in NSCLC, we investigated the potential role of PIWIL2 
in NSCLC progression in NSCLC cells using overex-
pression and interference of PIWIL2. High PIWIL2 
expression significantly promoted cell proliferation and 
activities. Conversely, inhibition of PIWIL2 triggered 
apoptosis and G2/M cell cycle arrest. It is widely rec-
ognized that PIWIL2, as a small RNA binding protein, 
mediates genome stability and regulates genes expression 
[32, 33]. The PIWI-piRNA pathway was first illustrated 

Fig. 2  The expression of PIWIL2 in NSCLC cells after transfection. Real-time PCR (A) and western blot (B) analysis indicated that mRNA and protein 
expression were down-regulated and up-regulated by interference and over-expression of PIWIL2, respectively
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Fig. 3  Effects of PIWIL2 on NSCLC cells after transfection. A and B indicate the cell proliferation after transfection by MTT in A549 and H460. C Flow 
cytometry analysis. D Apoptosis rates of PIWIL2 interference and over-expression groups, determined by flow cytometry analysis. E G2/M stage 
arrested rate was increased after repression of PIWIL2. Different lower case characters represent significant differences, P < 0.05
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in 2006 [22, 34], however, little is known regarding the 
PIWI-piRNA pathway in cancer. Although abnormal 
PIWI expression resulting in poor prognosis has previ-
ously been reported, the specific role of PIWI in cancer 
cells remains unknown. Additionally, PIWIL2 interfer-
ence triggers apoptosis, which implies a potential thera-
peutic strategy for NSCLC.

Because PIWIL2 regulates progression of NSCLC cells 
by controlling the cell cycle, we quantified cell-cycle-
related proteins affected by PIWIL2. CDK2 and Cyclin A 
are key factors that control DNA synthesis and the cell 
cycle [35]; lack of CDK2 and Cyclin A leads to apopto-
sis [36]. We showed that PIWIL2 promotes expression of 
CDK2 and Cyclin A both in vitro and in vivo. In a pre-
vious study, PIWIL2 could inhibit TGF-β signaling via 
Hsp90 and by promoting TβR degradation [37]. Further, 
PIWIL2 and TGF-β expression are negatively correlated 

[37]. These findings suggest that PIWIL2 may affect 
cell proliferation through various means. Our results 
support previous findings that PIWIL2 promotes cell 
proliferation.

Over the last decade, evidence has emerged that an 
epigenetic switch occurs during NSCLC transforma-
tion where non-coding RNAs, including miRNAs, piR-
NAs, and long non-coding RNAs, mediate self-renewal 
of cancer initiating cells [38]. Lim and colleagues showed 
that piRNA pathway genes are overexpressed in ovarian 
cancer [39] and they proposed that PIWIL1 and MAEL 
inhibit cell invasion. A subsequent study indicated that 
the RASSF1C-dependent promotion of lung cancer cell 
proliferation is dependent on IGFBP-5 and PIWIL1, 
implicating the PIWI-piRNA pathway in tumorigenesis 
[40]. In vertebrates, abnormal expression of PIWI genes 
was related to tumorigenesis, sterile and hypogenesis 

Fig. 4  The effects of PIWIL2 on CDK2 and Cyclin A in NSCLC cells. Real-time PCR (A) and western blot (B) analysis indicated that only CDK2 and 
Cyclin A is affected by changes in PIWIL2 expression. The characters on the bars represent significant differences between groups (P < 0.05). C 
Immunofluorescence analysis of CDK2 and Cyclin A after interference of over-expression of PIWIL2. CDK2 and Cyclin A protein were stained by FITC 
(green). Nuclei were stained by DAPI (blue)
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[41–46]. However, until now, the PIWI-piRNA pathway 
remains poorly understood. In addition to its role in sta-
bilizing the genome, the PIWI-piRNA pathway is likely 
involved in tumorigenesis. So far, detailed evidence for 
the role of PIWI proteins in tumorigenesis remains lim-
ited. We showed that PIWIL2 interference inhibited 
NSCLC progression, both in vitro and in vivo, which sug-
gests potential therapeutic value for PIWIL2 in NSCLC.

Conclusions
In sum, we showed that increased expression of PIWIL2 
is associated with worse prognosis of NSCLC and that 
PIWIL2 interference could inhibit cell proliferation and 
activities. Furthermore, CDK2 and Cyclin A were regu-
lated by PIWIL2 both in vitro and in vivo. These findings 
suggest that PIWIL2 participates in the progression of 
NSCLC via CDK2 and Cyclin A.
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