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Abstract 

Background:  Cervical squamous cell carcinoma (CSCC) is a major cause of female mortality worldwide. This study has 
examined epidermal growth factor receptor (EGFR) pathway markers that represent actionable pharmacological targets.

Methods:  HPV16 positive CSCCs (n = 105 patients) from Madhya Pradesh, India were screened for KRAS and PIK3CA 
mutations by PNA-clamp real-time PCR. Immunohistochemistry (IHC) was performed for EGFR, PIK3CA, PTEN, phos-
pho-AKT, phospho-mTOR and phospho-44/42 MAPK (ERK1/2).

Results:  KRAS mutations were detected in 0/91 (0%) and PIK3CA mutations in 19/95 (20.0%) informative speci-
mens: exon 9, E542 (n = 3) and E545 (n = 15); exon 20, H1047R (n = 1). PIK3CA mutation detection was associated 
with older mean patient age [48.2 vs. 56.6 years (P = 0.007)] and with post-menopausal age: 5/45 (11.1%) patients 
<50 years vs. 14/50 (28.0%) patients ≥50 years (P = 0.045; OR = 3.11). EGFR expression was present in 60/101 (59.4%) 
CSCCs and was associated with PIK3CA mutation detection (P < 0.05) but not age (P > 0.05). EGFR and phospho-AKT 
staining showed associations with tumor grade and/or lymph node status (P < 0.05). Significant associations were not 
found for the other study markers (P > 0.05).

Conclusion:  These data show that PIK3CA mutation acquisition is related to patient age and EGFR expression. The 
absence of KRAS mutations supports the potential of anti-EGFR therapies for CSCC treatment. The relatively high 
PIK3CA mutation rates indicate that PI3K may be a therapeutic target for a significant subset of CSCC patients. Quali-
tatively distinct IHC staining profiles for the marker panel were noted patient to patient; however, across patients, 
consistent linear relationships between up- and downstream pathway markers were not observed. Evaluation of the 
expression status of potential cancer pathway targets may be of value in addition to molecular profiling for choosing 
among therapeutic options.
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Background
Cervical cancer is the fourth most common and fatal 
female malignancy worldwide: each year there are an 

estimated 528,000 new cases and 266,000 deaths from 
the disease [1]. Around 85% of deaths occur in low or 
middle income less developed countries (LDCs). The 
highest mortality rates are found in African and South 
Asian countries [1, 2]. India ranks first for the overall 
number of cervical cancer deaths per year: 72,825, which 
accounts for more than a quarter of the global burden. 
With respect to mortality rate (15.2/100,000 deaths), 
India ranks seventeenth [1, 2].
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Cervical cancer is a preventable disease. The introduc-
tion of national cervical cytology screening programs 
among more developed countries (MDCs) has greatly 
reduced disease incidence and mortality rates [3]. Human 
papillomaviruses (HPV) are well characterized as the 
cause of cervical cancer and supplementation of cytol-
ogy screening with HPV testing has also helped improve 
the detection of precursor lesions and patient manage-
ment. HPV vaccination programs have been established 
in many countries. However, LDCs such as India lack 
the resources and infrastructure to support comprehen-
sive national cervical cytology screening or HPV vac-
cination programs. Although initiatives are in place, it 
will likely be many years before screening and vaccina-
tion are widely accessible to Indian women, especially in 
rural areas where the majority of cervical cancer related 
deaths occur [4, 5]. Consequently, the disease will remain 
a social and economic burden in India for some time to 
come. Additionally, cervical cancer continues to impact 
a significant subset of women from MDCs; in the USA, 
12,900 new cases and 4,100 deaths (2.3 per 100,000) are 
predicted for 2015 [6]. Therefore there is a considerable 
need for cervical cancer treatments that are effective 
worldwide.

The epidermal growth factor receptor (EGFR), a recep-
tor tyrosine kinase (RTK), is a well characterized target 
for anti-cancer therapies for a variety of cancer types [7, 
8]. EGFR stimulation activates a tyrosine kinase domain 
that controls multiple cell growth and division functions 
including maturation, proliferation, inhibition of apop-
tosis, angiogenesis and metastasis via pathways down-
stream of EGFR signaling. The MAPK/ERK and PI3K/
AKT/mTOR pathways are of particular clinical interest 
[7, 8]. EGFR mediated activation of the mitogen-acti-
vated protein kinase/extracellular signal-regulated kinase 
(MAPK/ERK) signaling cascade (KRAS, BRAF, MEK and 
ERK1/2) mobilizes transcription factors leading to cell 
proliferation [9–11]. Mutations to the oncogene KRAS 
result in constitutively active KRAS allowing chronic 
downstream signaling. EGFR stimulation also activates 
the PI3K/AKT/mTOR pathway that results in translation 
factor activation protein synthesis and degradation of 
the tumor suppressor transcription factor FOXO3; PI3K 
(phosphatidylinositol-4,5-bisphosphate 3-kinase) is also 
activated by RAS [9, 12–14]. Mutations to the oncogene 
PIK3CA (a sub unit of PI3K) may predict responsiveness 
to PI3K/AKT/mTOR inhibitors and to anti-EGFR thera-
pies [12–16].

Causes of EGFR upregulated expression include recep-
tor overexpression and activating mutations [7]; however, 
in cervical cancer EGFR mutations are undetectable [14–
19] or uncommon [20]. EGFR expression in cervical can-
cer may also be activated by HPV16 E5 or E6/E7 proteins 

[21, 22]. Additionally, HPV16 E6 has been shown to 
cause receptor hyperactivation under conditions of abun-
dant growth factor availability and to increase the inter-
nalization of phosphorylated EGFR even in the absence 
of growth factors; this results in prolonged receptor acti-
vation and MAPK and PI3K stimulation [22].

Pharmacologically, there are two modes of EGFR inhi-
bition: anti-EGFR monoclonal antibodies (e.g., cetuxi-
mab, panitumumab), or specific inhibitors of the EGFR 
tyrosine kinase domain (e.g., erlotinib, lapatinib). Clini-
cal efficacy of anti-EGFR therapies has been shown in 
clinical trials for lung, colon, pancreas and head and 
neck tumors [7, 11–15]. Anti-EGFR treatment efficacy 
is impacted by aberrations to downstream elements in 
the pathway [7–9, 11–15]. KRAS is the most frequently 
mutated member of the RAS gene family and encodes a 
21 kDa guanosine 5-triphosphate-(GTP-) binding protein 
early in the MAPK signaling pathway. The most common 
KRAS mutations occur at codon positions 12 and 13 in 
exon 2, and less frequently in codons 61, 63, 117, 119, and 
146. Wild type KRAS protein expression is normally reg-
ulated via EGFR and GAP proteins; however, activating 
KRAS mutations are insensitive to EGFR or GAP inhi-
bition resulting in chronic signaling of cells to grow and 
divide: activated KRAS results in the phosphorylation 
and activation of ERK1/2 via the activities of B-RAF and 
MEK 1/2. Phosphorylated ERK 1/2 activates AP-1 family 
transcription factors such as jun and fos, which on bind-
ing to AP-1 result in the expression of cyclins, cytokines 
and growth factors promoting cell proliferation [7–9, 11, 
12, 23]. Novel ERK inhibitors are in development to facil-
itate treatment of patients with activating KRAS or BRAF 
mutations [23].

EGFR also stimulates PI3K expression and the PI3K/
AKT/mTOR cascade resulting in increased transcription, 
protein synthesis and proliferation [9, 13–15]. The phos-
phatidylinositol-4, 5-bisphosphate 3-kinase, catalytic 
subunit alpha (PIK3CA) gene encodes the p110α cata-
lytic subunit protein of PI3K. PIK3CA mutations occur 
in a wide range of tumors. In some tumor types PIK3CA 
mutations are frequently associated with EGFR or KRAS 
mutations [24, 25] and with a poorer prognosis [25]. A 
number of drugs targeting PI3K have been developed and 
are under investigation for therapeutic utility [18–22]. 
Phosphatase and tensin homolog (PTEN) is tumor sup-
pressor gene that negatively regulates PI3K signaling by 
protein phosphatase activity. Loss of expression or PTEN 
mutation is associated with many tumors [15, 26].

Active PI3K, phosphorylated through receptor tyros-
ine kinase or RAS GTP activity, can phosphorylate the 3′ 
position hydroxyl group of the inositol ring of phosphati-
dylinositol (PIP2) converting it to PIP3; the serine/threo-
nine protein kinase AKT (Protein Kinase B) binds to PIP3 
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at the plasma membrane, allowing PDK1 to activate AKT 
by phosphorylation at Thr308. Phosphorylated AKT is a 
key regulator of numerous cellular and nuclear process, 
including the promotion of protein synthesis via a mul-
tistep protein cascade that includes activation of mTOR 
(mechanistic target of rapamycin) and thence activation 
of the translation factor S6 K that promotes protein syn-
thesis. Deregulators of this pathway include activating 
mutations in the PIK3CA gene (p110 subunit) and inac-
tivation of the phosphatase and tensin homolog (PTEN) 
gene. The PIK3CA gene encodes PI3-Kinase that can 
phosphorylate the 3′ position hydroxyl group of the ino-
sitol ring of phosphatidylinositol, a key signal transducer 
in the PI3K-AKT pathway [12, 13]. An extensive variety 
of drugs have been developed targeting the PI3K/AKT/
mTOR pathway. These include inhibitors of PI3K p110α, 
AKT, or mTOR, as well as dual PI3K/mTOR inhibitors 
[12, 13]. A schematic of the EGFR signaling pathway is 
shown in Fig. 1.

The aims of our study were to examine the biologic 
expression and potential therapeutic significance of 
MAPK/ERK and PI3K/AKT/mTOR pathway mediators 
in Indian cervical squamous cell carcinomas (CSCCs) 
and to compare these data to similar studies from more 
developed countries. CSCCs were investigated by PNA-
Clamp PCR for KRAS and PIK3CA mutations and by 
immunohistochemistry (IHC) for the expression of 
EGFR, pMAPK (pERK1/2), PIK3CA, PTEN, pAKT, and 
p-mTOR.

Methods
Specimens
The study was conducted with approvals from the Insti-
tutional Review Boards of the Sri Aurobindo Institute 
of Medical Sciences (SAIMS), Indore, Madhya Pradesh, 
India, and The University of Vermont, Burlington, Ver-
mont, USA; patient informed consent was not required 
as coded archival specimens from patients already 
treated to the standard of clinical care were utilized. 
Formalin-fixed, paraffin-embedded (FFPE) CSCC speci-
mens from 105 patients, untreated other than by surgery, 
were accrued for the study. All specimens had previously 
tested HPV16 positive [27]. Patient cohort clinical data is 
shown in Table 1.

DNA extraction
Five to ten 10  µm FFPE tumor sections were cut into 
1.5  mL tubes. Microtome blades were cleaned with 
xylene, alcohol and DNA AWAY (Thermo Scientific, 
Waltham, MA, USA) between specimen blocks. Tissue 
sections were cleared of paraffin by xylene followed by 
ethanol washes. DNA was extracted from dehydrated tis-
sues using proteinase K combined with column purifica-
tion (DNeasy Blood and Tissue kit, Qiagen, Valencia, CA, 
USA). DNA extracts were quantified and assessed for 
purity by NanoDrop 2000 spectrophometry (NanoDrop 
Technlogies, Wilmington, DE, USA). DNA amplification 
quality was confirmed for all samples by PCR for a 209 
base pair β-globin fragment [27].

Fig. 1  Simplified representation of the EGFR MAPK/ERK and PI3K/AKT/mTOR pathways (see “Background” text for step details).
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Mutational analysis of PIK3CA and KRAS by peptide  
nucleic acid (PNA) clamping assay
KRAS and PIK3CA gene mutation assays were performed 
by quantitative real-time PCR (SYBR Green) using PNA-
Clamp Mutation Detection Kits (PNA Bio Inc., Thousand 
Oaks, CA, USA): 15-20  ng of purified DNA per sample 
was assayed using a CFX96 Touch™ Thermal Cycler (Bio-
Rad Inc., Hercules, CA, USA). The KRAS kit screens for 
seven common mutations of exon 2 (codon 12: nucleo-
tide changes c.35G>A, c.35G>C, c.35G>T, c.34G>A, 
c.34G>C, c.34G>T; codon 13: c.38G>A). The PIK3CA 
kit screens for nine common mutations: exon 9 (E542 
nucleotide changes: c.1624G>A, c.1625A>G, c.1625A>T; 
E545: c.1633G>A, c.1634A>G, c.1635G>T) and exon 20 
(H1047: c.3139C>T, c.3140A>T, c.3140A>G). Cycling 
conditions for all assays consisted of pre-denaturation 
at 94°C for 5 min followed by 40 cycles of denaturation 
(94°C for 30 s), PNA clamping (70°C for 20 s), annealing 
(63°C for 30 s), and extension (72°C for 30 s). The PNA-
Clamp assay uses DNA primers to amplify across the 
locus/loci of interest in combination with an internal 
PNA oligo designed to anneal to the wild type form of the 
target. Primer extension and amplification is prevented 
if wild-type KRAS or PIK3CA is present due to the sta-
bility of the PNA/DNA hybrid when sequences perfectly 
anneal, whereas a single base mismatch is highly destabi-
lizing so permitting primer extension when a mutation is 
present. Mutation detection assessment was performed 

according to an algorithm provided with the kit and 
involves taking into account the cycle threshold (Ct) val-
ues of specimen PCRs performed minus a PNA-Clamp 
oligo compared to the Ct value performed with a PNA-
Clamp oligo. Clamping controls of known wild type DNA 
was performed as a negative control.

Tissue microarray (TMA) preparation
TMAs were prepared from the 105 CSCC specimens by 
removing 1.0 mm diameter cores of tumor from the FFPE 
blocks using a Tissue Arrayer (Beecher Instruments, 
Inc., Wisconsin, USA). Guided by haematoxylin and 
eosin (H&E) stained slide-mounted tissues sections ink-
marked for tumor areas, blocks were sampled from up to 
four different regions to control for heterogeneity. All 105 
patient samples were contained in a total of five TMA 
blocks. TMA sections were H&E stained and reviewed by 
a histopathologist to confirm tumor had been accurately 
targeted: in two instances, inadequate tumor material 
was sampled for IHC analyses.

Immunohistochemistry (IHC)
IHC was performed for six target antigens (Table  2): 
EGFR, PIK3CA, PTEN, and activated forms of AKT (i.e., 
phosphorylated at Thr308 by PDK1 that functions down-
stream of PI3K via conversion of PIP2 to PIP3), mTOR 
(i.e., phosphorylated at Ser2448 via PI3 kinase/AKT 
signaling), and MAPK (ERK1/2) (i.e., phosphorylated at 
Thr202 and Tyr204 by MEK1 and MEK2). The choice of 
IHC antibody clone was determined by literature and 
supplier datasheet review and by availability of clones 
suitable for FFPE applications. In some instances several 
alternative clone choices were available; it was beyond the 
resources available for this study to compare alternatives. 
As regards AKT, complete activation involves phospho-
rylation at Ser473 and Ser450 by mTORC2 [in addition to 
phosphorylation at Thr308 by PDK1 (Fig. 1)]. In order to 
be able to investigate specifically, the potential relation-
ship of PIK3CA wild type/mutation status and PIK3CA/
PTEN expression on AKT phosphorylation expression, 
an antibody for AKT phosphorylated at Thr308 only was 
selected.

TMA sections were deparaffinized thorough xylene 
and rehydrated through graded ethanol followed by 
antigen retrieval. Slides were then treated with 3% 
hydrogen peroxide in PBS/0.05% tween 20 buffer to 
block endogenous peroxidase activity. After this, a 
15 min non-specific protein binding blocking step was 
performed (Protein Block, serum-free [Dako North 
America Inc., Carpinteria, CA, USA]). Primary anti-
body was then applied followed by secondary detec-
tion using a Dako EnVision+/HRP/DAB+kit and 
counterstaining with hematoxylin. IHC assays were 

Table 1  Characteristics of the analyzed cohort

Clinical characteristics n = 105

Age range 25–90

Mean age (SD) 49.7 (13.2)

FIGO stage

 Stage I

  T1/T1a1 2

  T1b1 65

  T1b2 27

 Stage II–III 11

Tumor size

 ≤2 cm 12

 >2–5 cm 77

 >5 cm 16

Lymph node status

 Positive 20

 Negative 67

 No data 18

Histology

 Well 17 (16.2%)

 Moderately 74 (70.5%)

 Poorly 14 (13.3%)
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performed according to supplier recommendations; 
optimization tests were also performed on breast, 
colon, or tonsil TMA specimens as well as the CSCC 
TMAs. Negative control assays were performed using 
IgG antibodies to Aspergillus niger glucose oxidase 
(Dako North America Inc.).

IHC staining patterns were reviewed (independently 
by MFE, SB with support from KC) naïve to mutation 
data and were scored with reference to the proportion 
of cells staining: 0  =  Negative; 1  =  Rare cell positive 
(<1%); 2 = Focally positive (1–25%); 3 = Variably positive 
(25–75%); 4 =  Uniformly positive (>75%); and in terms 
of staining intensity: 0 = Negative; 1 = weakly positive; 
2 = moderately positive; and 3 =  strong positive. These 
scores were summed to give an Allred score (AS) rang-
ing from 0 to 7 [28]. Because IHC data interpretation is 
unstandardized, can be controversial and is dependent 
on the scoring approach, IHC staining was also catego-
rized into low-level (LL) (AS <4) and high-level (HL) (AS 
≥4) staining groups [29]. This dichotomous grouping 
approach was taken given the limiting numbers of speci-
mens in the study. Staining was judged among tumors 
relative to each other as matched specimens of normal 
cervical epithelium from each patient were not available 
for study.

Statistical analysis
Mutation and IHC data were cross-compared and com-
pared against age, tumor grade (well, moderate, poor), 
stage (T1 vs. ≥T2), size (depth of invasion ≤2  cm vs. 
>2 cm), lymph node status (negative or positive). Patient 
outcome data was inaccessible for the purposes of this 
study. Data were assessed by Fisher’s exact test, Mann–
Whitney test, or Kruskall-Wallis test. Analyses were per-
formed using InStat software (GraphPad Software Inc., 
La Jolla, CA, USA).

Results
Mutation analyses
KRAS mutations were detected in 0/91 (0%) informa-
tive specimens (i.e., that showed a Ct value ≤30 for 
the detection of KRAS in the absence of a PNA-Clamp 
oligo). PIK3CA mutations were detected in 19/95 (20.0%) 
informative specimens. PIK3CA mutations in exon 9 
were the most common: 3 (15.8%) in E542 and 15 (78.9%) 
cases in E545; 1 (5.3%) specimen showed an exon 20 
mutation at H1047R. Mutation status showed no cor-
relation with FIGO stage, tumor size, differentiation or 
lymph node (LN) status. PIK3CA mutation detection was 
associated with older age: wild type mean age 48.2 (SD 
13.7, age range 25–90) vs. mutation mean age 56.6 (SD 
10.7, age range 45–80), P = 0.007. Dividing the patients 
as pre-menopausal vs. post-menopausal, mutations were 
detected in 5/45 (11.1%) women <50 years and in 14/50 
(28%) ≥50 years (P = 0.045; OR = 3.111). PIK3CA muta-
tion data in relation to clinical characteristics are sum-
marized in Table 3 and Additional file 1: Table S1.

Immunohistochemistry
Marker staining data in terms of ‘negative’, ‘low’, ‘interme-
diate’ and ‘high’ Allred scores is shown in Table 4.

EGFR
EGFR stained positive (AS ≥1) in 60/101 (59.4%) speci-
mens; 38/101 (37.6%) showed HL staining (AS ≥4); 55/60 
(91.7%) tumors showed membranous and cytoplasmic 
staining, 2/60 (3.3%) showed cytoplasmic staining and 
3/60 (5.0%) showed membranous staining. No significant 
correlations were detected with respect to patient age, 
tumor stage or size (p > 0.05).

EGFR staining showed a significant association with 
PIK3CA mutation status: wild type mean AS 2.4 (SD 2.6) 
vs. mutation mean AS 3.8 (SD2.7), P = 0.043. HL EGFR 

Table 2  Details of immunohistochemical procedures

a  Heat treatment: 105°C for 20 min (Decloaking Chamber, Biocare Medical, Concord, CA), then 20 min cool down.

Antigen Antibody (clone) Supplier Antigen retrieval Antibody dilution, 
incubation time

EGFR Mouse mAb (H11) Dako North America Inc., 
Carpinteria, CA, USA

0.1% (w/v) trypsin in 40 mM  
CaCl2/TBS pH 7.8, 20 min, 37°C

1:100, 30 min RT then 
4°C overnight

PIK3CA Rabbit pAb (LS-B5363) LifeSpan Biosciences, Inc.,  
Seattle, WA, USA

Citrate buffer pH 6.0a 1:150, 30 min, RT

PTEN Rabbit mAb (138G6) Cell Signaling Technology, 
Danvers, MA, USA

Citrate buffer pH 6.0a 1:100, 40 min, RT

Phospho-AKT (Thr308) Mouse mAb (18F3.H11) Rockland Immunochemicals, 
Inc., Gilbertsville, PA, USA

None 1:100, 1 h, RT

Phospho-mTOR (Ser2448) Rabbit mAb (49F9) Cell Signaling Technology, 
Danvers, MA, USA

Citrate buffer pH 6.0a 1:100, 40 min, RT

Phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204)

Rabbit mAb (D13.14.4E) Cell Signaling Technology, 
Danvers, MA, USA

Citrate buffer pH 6.0a 1:400, 1 h, RT
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staining was noted in 12/19 (63.2%) PIK3CA mutated 
specimens and in 23/72 (31.9%) wild type specimens 
(P = 0.018; OR = 3.652).

EGFR staining showed an association with lymph node 
status: mean AS for LN negative patients was 2.9 (SD 
2.5) vs. 1.7 (SD 2.5) for lymph node positive specimens 
(P = 0.047). On the basis of LL/HL categorization, 4/21 

(19.0%) LN positive patients showed staining vs. 26/65 
(40.0%) LN negative patients (P = 0.114; OR = 2.833).

AS data analysis showed an association of EGFR stain-
ing with histological grade: Well 4.3 (SD 2.5), Moder-
ate 2.2 (SD 2.5), and Poor 3.4 (SD 2.8), P  =  0.029; no 
significant trend was shown when the data were scored 
according to LL/HL, P = 0.351. Representative staining is 
shown in Fig. 2. Table 5 summarizes marker association 
data.

Phospho‑AKT
Cytoplasmic staining (AS ≥1) was detected in 90/101 
(89.1%) CSSCs; 85/101 (84.2%) showed HL staining. No sig-
nificant correlations were detected with respect to PIK3CA 
mutation status, patient age, tumor stage or size (p > 0.05). 
pAKT cytoplasmic staining showed an association with 
lymph node status: mean AS for LN negative patients was 
4.9 (SD 2.3) vs. 5.8 (SD 2.2) for lymph node positive speci-
mens; P =  0.027. On the basis of LL/HL categorization, 
3/21 (14.3%) LN positive patients showed staining vs. 13/65 
(20.0%) LN negative patients; P =  0.75. Cytoplasmic AS 
data analysis showed an association with histological grade: 
Well 6.6 (SD 0.5), Moderate 5.4 (SD 2.0), and Poor 4.5 (SD 
2.3), P = 0.009; no significant trend was shown when the 
data were scored according to LL/HL, P = 0.518.

Nuclear pAKT staining (AS ≥1) was detected in 56/101 
(55.4%); 50/101 (49.5%) showed HL staining. No signifi-
cant correlations were detected with respect to PIK3CA 
mutation status, patient age, tumor stage, size or lymph 
node status (p > 0.05). Nuclear AS data analysis showed 
an association with histological grade: Well 5.1 (SD 3.1), 
Moderate 3.3 (SD 3.0), and Poor 2.0 (SD 2.7), P = 0.014; 
no significant trend was shown when the data were 
scored according to LL/HL, P  =  0.085. Representative 
staining is shown in Fig. 2.

PIK3CA, PTEN, phospho‑mTOR, phospho‑p44/42 MAPK 
(ERK1/2)
PIK3CA, PTEN, and p-mTOR, p-MAPK (ERK1/2) 
showed no significant relationships to mutation status 
or to any clinical parameter (P > 0.05). PIK3CA showed 
strong cytoplasmic staining (AS ≥4) in 100/101 (99.0%) 
specimens (Additional file  2: Figure  S1). PTEN stained 
(mostly cytoplasmic, occasional nuclear) positive (AS 
≥1) in 31/100 (31.0%) specimens; 26% showed HL stain-
ing. mTOR stained (mostly cytoplasmic, occasional 
nuclear) positive (AS ≥1) in 64/101 (63.4%) specimens; 
42/103 (40.8%) showed HL staining. P-MAPK cyto-
plasmic staining was detected in 71/102 (69.6%) and 
59/102 (57.8%) CSSCs (AS ≥1 and AS ≥4 respectively.) 
P-ERK1/2 nuclear staining was detected in 75/102 
(73.5%) and 64/102 (62.7%) CSSCs (AS ≥1 and AS ≥4 
respectively). Representative staining is shown in Fig. 2.

Table 3  Correlation between  clinical characteristics 
and PIK3CA mutations

Italic value indicates statistically significant.

* Pearson chi square and Fisher’s exact test.

Characteristics n = 95 PIK3CA mutant-
type

PIK3CA wild-
type

P value*

No. of patient 
(n = 19)

No. of patient 
(n = 76)

Mean age (SD) 49.7 (13.2) 56.6 (10.7) 48.2 (13.7) 0.007

FIGO stage

 Stage I 84 (88.4%) 16 (16.8%) 68 (71.6%) 0.688

 Stage II–III 11 (11.6%) 3 (3.2%) 8 (8.4%)

Tumor size

 ≤2 cm 11 1 10 0.433

 >2–5 cm 69 16 53

 >5 cm 15 2 13

Lymphnode

 Positive 17 5 12 0.337

 Negative 61 11 50

 No data 17

Histology

 Well 16 (16.8%) 2 (2.1%) 14 (14.7%) 0.547

 Moderately 65 (68.4%) 13 (13.7%) 52 (54.7%)

 Poorly 14 (14.7%) 4 (4.2%) 10 (10.5%)

Table 4  Summary of marker panel staining patterns

Each antibody was reviewed with respect to the proportion of cells staining: 
0 = Negative; 1 = Rare cell positive (< 1%); 2 = Focally positive (1–25%); 
3 = Variably positive (25–75%); 4 = Uniformly positive (>75%); and in terms of 
staining intensity: 0 = Negative; 1 = weakly positive; 2 = moderately positive; 
and 3 = strong positive. These scores were summed to give an Allred score (AS) 
ranging from 0 to 7. Staining data is summarized in the above table as: Negative, 
(AS = 0–1), Low (AS = 2–3), Intermediate (AS = 4–6), High (AS = 7).

Marker Negative Low Intermediate High

EGFR (n = 101) 41 (40.6%) 22 (21.8%) 26 (25.7%) 12 (11.9%)

PIK3CA (n = 101) 1 (1.0%) 0 (0%) 13 (12.9%) 87 (86.1%)

PTEN (n = 100) 69 (69.0%) 5 (5.0%) 26 (26.0%) 0 (0%)

p-mTOR (n = 101) 37 (36.6%) 22 (21.8%) 41 (40.6%) 1 (1.0%)

p-AKT cytoplasmic 
(n = 101)

11 (10.9%) 5 (5.0%) 47 (46.5%) 38 (37.6%)

p-AKT nuclear 
(n = 101)

45 (44.6%) 4 (4.0) 31 (30.7%) 21 (20.8%)

p-MAPK/Erk1/2 cyto-
plasmic (n = 102)

31 (30.4%) 14 (13.7%) 57 (55.9%) 0 (0%)

p-MAPK/Erk1/2 
nuclear (n = 102)

27 (26.5%) 11 (10.8%) 64 (62.7%) 0 (0%)
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Fig. 2  Representative histochemical and immunohistochemical staining. Heterogeneous staining pattern combinations were detected among 105 
cervical squamous cell carcinomas. Patients A and B: moderately differentiated Stage 1 tumors, wild type PIK3CA; patients C (poorly differentiated) 
and D (moderately differentiated): Stage 1 tumor, mutated PIK3CA. Scale bar 50 µm. All images were originally photographed with a ×20 objective 
lens using an Olympus BX50 light microscope (Center Valley, PA, USA) equipped with a QImaging Retiga 2000R digital camera (Surrey, BC, Canada) 
(PIK3CA staining is included in Additional File 2: Figure S1).
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Inter‑relationships of IHC markers
EGFR over-expression may activate the PI3K/AKT/
mTOR pathway. No significant relationships were noted 
with respect to EGFR staining and PIK3CA, p-AKT or 
p-mTOR. Neither was PIK3CA staining related to p-AKT 
or p-mTOR, nor p-AKT to p-mTOR (P < 0.05). Further-
more, EGFR staining levels showed no correlation with 
pMAPK staining and there was also no significant asso-
ciation of PTEN expression with PIK3CA or pAKT.

Discussion
This study has investigated CSCC specimens for aberra-
tions to key EGFR pathway elements. EGFR IHC staining 
patterns were examined in relation to KRAS mutations 

and MAPK pathway expression, as well as in relation 
to PIK3CA mutations and PIK3CA, PTEN, pAKT and 
p-mTOR expression.

Low-level (LL) EGFR staining was present in 59.4% and 
high-level (HL) staining in 37.6% of the CSCC specimens. 
On the basis of mean Allred scores, EGFR staining was 
associated with well differentiated tumors and with lymph 
node negative patients. Previous EGFR IHC studies of 
cervical carcinomas show a wide range of expression lev-
els (6–100%) [16, 18]; these data may be a reflection of dif-
ferences in antibody clone choices, IHC protocols, and/or 
in how staining was rated [16]. HPV genotype may also 
be important as HPV16 E5 or E6/E7 proteins can lead 
to EGFR overexpression [20, 21]; our samples were all 

Table 5  Summary of staining patterns that included statistically significant associations

AS (Allred Score), High Level (HL) AS (AS ≥4), Low Level (LL) AS (AS <4).

Italic values indicate statistically significant.

* Mann–Whitney test.

** Fisher’s Exact test.

** Kruskall-Wallis test.
a  Well and moderate categories combined.

Marker PIK3CA wild type (n = 19) PIK3CA mutant (n = 72) P value

EGFR mean AS 2.4 (2.6) 3.8 (2.7) 0.043*

EGFR HL AS 12 23 0.018** (OR = 3.652)

EGFR LL AS 49 7

Lymph node negative (n = 65) Lymph node positive (n = 21)

EGFR mean AS 2.9 (2.5) 1.7 (2.5) 0.047

EGFR HL AS 26 4 0.114*

EGFR LL AS 39 17

Well differentiated (n = 8) Moderately differentiated (n = 67) Poorly differentiated (n = 26)

EGFR mean AS 4.3 (2.5) 2.2 (2.5) 3.4 (2.8) 0.029***
EGFR HL AS 5 21 12 0.351a,*

EGFR LL AS 3 46 14

Lymph node negative (n = 65) Lymph node positive (n = 21)

p-AKT cytoplasmic mean AS 4.9 (2.3) 5.8 (2.2) 0.027*
p-AKT cytoplasmic

 HL AS 52 18 0.751**

 LL AS 13 3

Well differentiated (n = 8) Moderately differentiated (n = 65/66) Poorly differentiated (n = 27)

p-AKT cytoplasmic mean AS 6.6 (0.5) 5.4 (2.0) 4.5 (2.3) 0.009***
p-AKT cytoplasmic 0.518a,*

 HL AS 8 56 22

 LL AS 0 9 5

p-AKT nuclear mean AS 5.1 (3.1) 3.3 (3.0) 2.0 (2.7) 0.014***
p-AKT nuclear 0.178a,*

 HL AS 5 35 10

 LL AS 3 31 17



Page 9 of 13Bumrungthai et al. J Transl Med  (2015) 13:244 

HPV16 positive, whereas other studies did not report or 
included a variety HPV types. There are also contradictory 
data about the relationship of EGFR expression to clini-
cal markers, prognosis and therapeutic response: many 
studies show that EGFR overexpression is an independent 
predictor of poor response to radio/chemo-therapy, poor 
disease-free survival and poor overall survival; other stud-
ies show do not show these correlations [16]. Our data are 
supportive that EGFR staining could be used to identify 
CSCC patients eligible for anti-EGFR therapies.

The potential of anti-EGFR therapies for CSCC treat-
ment is strengthened by the non-detection of KRAS muta-
tions among our specimens. This finding is consistent with 
previous studies (Table  6) that have found KRAS muta-
tions to be absent or uncommon (1.3–13.6%) in CSCC; 
KRAS mutations may occur more frequently in cervical 
adenocarcinomas (Table 6). KRAS mutations can chroni-
cally activate KRAS expression [9]. Via B-Raf, this in turn 
leads to continuously activated MAP kinase signaling as 
a consequence of phosphorylation in the cytoplasm of 
MEK1/2 and thence ERK1/2 and which in turn results in 
the activation of transcription factors promoting cell pro-
liferation following migration into the cell nucleus [30]. 
In the absence of KRAS mutations it might therefore be 
expected that over-expression of EGFR would correlate 
with the expression of phosphorylated ERK1/2; this type 
of invariable simple linear relationship was not detected 

(Fig.  2). However, approximately 60% (HL) to 75% (LL) 
CSCCs stained negatively (cytoplasm or nucleus) suggest-
ing the possibility that ERK1/2 staining might be used for 
identifying patients likely to benefit from anti-MAPK/ERK 
interventions. We are unaware of any other studies to date 
that have assessed pERK staining in cervical cancer.

PIK3CA mutations were detected in 20.0% of 95 CSCC 
specimens. As with IHC, mutation data estimates may be 
impacted by the experimental technique. Most studies 
of KRAS and PIK3CA mutations in cervical cancer have 
combined PCR amplification across mutation hotspot 
regions with Sanger sequencing (Table 6). The potential 
limitation of this approach is the detection sensitivity, 
which is of the order ~10% [31]. The highest and low-
est estimates of PIK3CA mutation frequencies in cervi-
cal cancers (5.7 and 37.5%) have been obtained using 
Sequenom massARRAY technology [19, 32], which has a 
sensitivity threshold of ~5% [33]. The detection sensitiv-
ity for methods employing massively parallel sequencing 
is of the order ~1% [31], which is the same as the ana-
lytical sensitivity reported for the PNA-Clamp technique 
[34]. PIK3CA mutations may activate the PI3K-PTEN-
AKT pathway; however, there are contradictory data as 
to whether or not PIK3CA mutations confer anti-EGFR 
therapy resistance [35–37].

The PIK3CA and KRAS mutation detection rates among 
the Indian CSCCs is comparable to what has been found 

Table 6  KRAS and PIK3CA mutations in cervical cancer

Specimen country of origin: a Greece, b Poland, c Japan, d Sweden, e USA, f Canada, g Norway and Mexico, h The Netherlands, i Italy, and j India. KRAS mutation 
methodology: 1 codon 12 PCR/sequencing, 2 codon 12 PCR–RFLP/SSCP, 3 codons 12, 13 and 16 PCR/sequencing, 4 codons 12 and 13 PCR/sequencing, 5 sequenom 
MALDI-TOFF massARRAY, 6 exome/whole genome Illumina HiSeq 200, 7 codons 12 and 13 PNA-Clamp PCR. PIK3CA mutation methodology: i exons 9 and 20 PCR/
sequencing, ii exons 1, 9 and 20 PCR/sequencing, iii sequenom MALDI-TOF massARRAY, iv exome/whole genome Illumina HiSeq 200, v exon 9 nested PCR/sequencing, 
vi exons 9 and 20 PNA-Clamp PCR. ns not specified whether specimens were squamous cell carcinoma or adenocarcinoma.

References Squamous cell carcinoma Adenocarcinoma/other

KRAS mutation PIK3CA mutation KRAS mutation PIK3CA mutation

Dokianakis et al. [50]a 0/10 (0%)1 – 2/2 (100%)1 –

Stenzel et al. [51]b 3/22 (13.6%)2 – 1/2 (50.0%)2 –

Pappa et al. [52]a 2/28 (7.1%)3 – 1/19 (5.3%)3 –

Miyake et al. [53]c – 2/12 (16.7%)i – 1/9 (11.1%)i

Cui et al. [38]d – 5/84 (6.0%)ii – 10/100 (10.0%)ii

Iida et al. [18]c 0/32 (0%)4 – 3/48 (6.3%)4 –

Janku et al. [54]e – i2/8 (25.0%) – 0/7 (0%)i

Janku et al. [55]e 1/10 (10%)4 5/14 (35.7%)i – –

Janku et al. [40]e – 6/18 (33.3%)i – –

Wright et al. [19]e 0/40 (0%)5 15/40 (37.5%)iii 7/40 (17.5%)5 10/40 (25.0%)iii

McIntyre et al. [39]f – 16/69 (23.2%)i – 3/13 (23.1%)i

Ojesina et al. [48]g 1/79 (1.3%)6 9/79 (11.4%)iv 2/35 (5.7%)6 8/35 (22.9%)iv

Rashmi et al. [32]e – 6/120 (5.0%)iii – 2/20 (10.0%)iii

Spaans et al. [47]h 9/205ns (4.4%)5 50/205ns (24.4%)iii Ns Ns

Tornesello et al. [56]i – 3/55 (5.5%)v – –

The present studyj 0/91 (0%)7 19/95 (20.0%)vi – –
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in MDC CSCCs (Table 6) suggesting that susceptibility to 
the accumulation of these mutations in CSCC aetiology 
is an intrinsic biologic property of the disease rather than 
related to ethnicity or culture. PIK3CA mutation detec-
tion in our study was associated with older, post-meno-
pausal age. The possibility of a relationship to older age 
has previously been suggested on the basis of data com-
bined from the detection of PIK3CA mutations in 5/84 
(6.0%) CSCC and 10/100 (10.0%) cervical adenocarcino-
mas in patients from Sweden [38] suggesting age may be 
a global determinant for PIK3CA mutation susceptibility 
in cervical cancer. These data indicate that PIK3CA muta-
tion prevalence estimates may be ‘biased’ by the age of the 
sample population. Among our specimen set, PIK3CA 
mutations did not correlate with any available clinical 
parameters. In previous studies, PIK3CA mutations have 
been found associated with shorter survival [19], or with 
better survival or treatment response for patients treated 
with radical chemoradiotherapy or PI3K/AKT/mTOR 
inhibitors [39–41]. These findings together with the dis-
covery of mutations in 20% of CSCCs are supportive for 
the use of PIK3CA mutation testing for prognostic strati-
fication and as a potential target for therapeutic interven-
tions. PIK3CA amplification has been reported in 14/20 
(70.0%) [42] CSCCs; however, by IHC PIK3CA staining 
was strong in 99.0% CSCCs specimen in our study.

In relation to the EGFR/AKT/mTOR signaling path-
way, PIK3CA mutations were associated with EGFR posi-
tive staining assessed either in in terms of AS (P = 0.043) 
or by LL vs. HL values (P = 0.018; OR = 3.652). The find-
ing of a significant association with either form of IHC 
rating, strengthens support for a relationship between 
EGFR expression and PIK3CA mutation acquisition. Pos-
sibly, continuous PI3K synthesis together with increased 
cell proliferation heightens susceptibility to a PIK3CA 
mutation event. These data are also suggestive that 
patients with EGFR overexpression and PIK3CA muta-
tions might usefully be treated synergistically using drugs 
for both targets.

PTEN staining was detected in a minority of specimens 
and was not associated with any of the clinical param-
eters. Absence of expression of this tumor suppressor 
protein that dephosphorylates PIP3 preventing AKT acti-
vation is consistent with tumor promotion. Other studies 
have found low PTEN expression in CSCC but have also 
noted an association of expression with tumor size and 
lymph node involvement [43, 44]. Loss of heterozygosity 
at the PTEN locus has been shown up to 23% of Indian 
cervical cancers [45] and PTEN promoter methylation 
in 58% of CSCC [46]. PTEN mutations in cervical can-
cer have been reported in 2.4–6.9% of specimens [47, 48]. 
Accordingly, PTEN IHC biomarker data might also use-
fully be figured into a drug selection for CSCC.

Elevated EGFR, in the absence or presence of PTEN 
expression, did not correlate with elevated phospho-AKT 
and phospho-mTOR expression. Cytoplasmic pAKT 
expression was common and was associated with lymph 
node positive patients (P =  0.022) and with well differ-
entiated tumors when data was assessed in terms of AS 
values but no such association was found when the data 
was assessed by LL/HL cut-off points. Nuclear pAKT 
(detected in ~50% of the tumors) also showed an asso-
ciation with well differentiated tumors by AS assessment 
only (P  =  0.046). P-mTOR showed staining in 40.8% 
(HL)–59.2% (LL) of the specimens and was unassociated 
with any study parameters.

In this study we focused on some of the factors that 
impact EGFR related pathways. Intercellular signal-
ing pathways, such as the MAPK/ERK and PI3K/AKT/
mTOR, are circuitously inter-related and impacted 
directly or indirectly by multiple other factors, genetic 
and epigenetic. Consequently, the expression of down-
stream events in a pathway may be the outcome of 
other over-riding (aberrant) parallel pathway processes 
or meta-levels of regulation rather than being directly 
related to an upstream amplification or mutation event. 
For example, in the case of cervical disease, the expres-
sion of other RTKs such as ErbB-2, or enzymes such as 
cyclooxygenase-2 may impact pathway expression [57]. 
Additionally, CSCC results from chronic infection with 
high-risk HPV. The effects of the HPV16 E5, E6 and E7 
oncogenes have been well characterized for their dys-
regulation of EGFR, p53 and pRB respectively. The HPV 
oncogenes can also impact multiple additional cellu-
lar pathway factors [58, 59]. It is therefore unsurprising 
that CSCC shows manifold heterogeneity as reflected in 
EGFR pathway expression profiles.

In summary, the major findings of this study are 
threefold. Firstly, KRAS mutations were undetected in 
Indian CSSCs whereas PIK3CA mutations were age-
associated and relatively common being detected in 
28.0% of specimens from women ≥50  years vs. 11.1% 
of women <50  years. Secondly, across patients EGFR 
staining was common and was associated with PIK3CA 
mutation detection (by mean AS or by LL/HL scoring) 
and also showed associations with lymph node status 
and histological grade. pAKT IHC staining also showed 
association with lymph node status and histological 
grade. These relationships were partially dependent on 
how IHC staining patterns were scored reaffirming the 
requirement for standardized IHC protocols to allow 
accurate biomarker inter-study comparisons and clinical 
appraisal [49]. Thirdly, at the level of individual patients, 
qualitatively distinct marker panel staining profiles 
were observed patient to patient (Fig.  2). This finding 
may be of significance for precision/individualized/
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personalized medicine. A variety of cellular pathways 
are candidates for pharmacologic interventions and for 
each pathway there may be multiple potential action-
able targets. Our data suggest that in addition to molec-
ular profiling, IHC data might be usefully incorporated 
into precision medicine algorithms; the expression level 
of putative pathway targets may be important for decid-
ing among therapeutic options. For example, Patient A 
(Fig. 2) might be a candidate for EGFR or ERK targeted 
therapies, Patient B for AKT, mTOR or ERK, Patient C 
for EGFR or mTOR, and Patient D for ERK therapies. 
Clinical trials in particular might benefit from noting 
pre- and post-treatment expression levels of interven-
tion pathways/targets and the relationship to therapeu-
tic response.

Conclusions
This study shows that EGFR represents a promising tar-
get for CSCC treatments, especially given the absence of 
KRAS mutations among the study samples. It is unclear 
whether PIK3CA mutations compromise EGFR thera-
pies. However, pharmacologic agents used to treat CSCC 
patients with PIK3CA mutations have been shown to be 
efficacious [41]; these together with EGFR treatments 
might therefore be usefully combined. Downstream cel-
lular pathway protein expression levels may not neces-
sarily be predictable on the basis of amplification events 
or activating mutations. IHC or proteomic assay of these 
expression levels may be of importance for selecting 
among alternative therapeutic strategies for use in preci-
sion medicine protocols. Overall, the data for the Indian 
CSCCs is comparable to data published for CSCCs from 
more developed countries suggesting that EGFR path-
way-related therapies could be of benefit to patients 
worldwide.
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