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of airway tissue remodeling in asthma
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Abstract 

The complement mediators are the major effectors of the immune balance, which operates at the interface between 
the innate and adaptive immunity, and is vital for many immunoregulatory functions. Activation of the complement 
cascade through the classical, alternative or lectin pathways thus generating opsonins like C3b and C5b, anaphyla-
toxins C3a and C5a, chemotaxin, and inflammatory mediators, which leads to cellular death. Complement mediators 
that accelerate the airway remodeling are not well defined; however, an uncontrolled Th2-driven adaptive immune 
response has been linked to the major pathophysiologic features of asthma, including bronchoconstriction, airway 
hyperresponsiveness, and airway inflammation. The mechanisms leading to complement mediated airway tis-
sue remodeling, and the effect of therapy on preventing and/or reversing it are not clearly understood. This review 
highlights complement-mediated inflammation, and the mechanism through it triggers the airway tissue injury and 
remodeling in the airway epithelium that could serve as potential targets for developing a new drug to rescue the 
asthma patients.
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Introduction
Asthma is a chronic inflammatory disease of the air-
ways distinguished by the variable airflow obstruction 
and associated increase in airway hyperresponsiveness 
(AHR) to various stimuli [1–3]. Asthma is considered to 
be mediated primarily by the allergen-specific CD4+ T 
cells, Th2 cytokines, and allergen-specific IgE antibody 
leading to airway inflammation and hyperresponsive-
ness [4–7]. Cellular inflammation of the diseased airways 
with eosinophil and neutrophil is the hallmark feature of 
asthma and is considered relevant to the pathogenesis of 
the disease [8–10]. Asthma pathogenesis has been asso-
ciated with major pathophysiologic features including 
airway constriction, hyperresponsiveness, and neutro-
philic inflammation [11–14] (Figs. 1, 2). In addition, over-
activated complement cascade play a key role as effectors 
of cell-mediated and humoral immune system in pulmo-
nary tissue injury during asthma pathogenesis [15–17].

In the recent years, a novel research area has centered 
on the role of innate immune components-complement 
cascade in the regulation of Th2-biased adaptive immu-
nity in asthma [14, 18]. It is well established that uncon-
trolled complement activation in the airway contributes to 
asthma pathogenesis, which includes morphogenetic/or 
pulmonary tissue remodeling [19, 20]. Complement acti-
vation has been demonstrated in mouse models of allergic 
asthma, which highlighted the role of C3a mediated air-
way hyperresponsiveness, and airway tissue remodeling 
[21]. The complement system has also been associated 
with a variety of non-immunological conditions includ-
ing pulmonary tissue regeneration, and progression to 
pulmonary tissue fibrosis after airway tissue injury [22]. 
The presence of increased levels of C3a and C5a peptides 
in the bronchoalveolar lavage (BAL) and serum of asth-
matics and the increased expression of their respective 
receptors signifies the key involvement of the comple-
ment mediators in asthma pathogenesis [23]. In addition, 
it has been noted that levels of C reactive protein (CRP) 
are increased in non-allergic but not in allergic asthma 
conditions [24]. CRP is an acute-phase serum protein and 
a mediator of innate immunity through the complement 
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activation of C1, C4, C2 and C3 components. CRP medi-
ates innate immunity through the binding to microbial 
polysaccharides and to ligands exposed on damaged cells 
leading to the activation of the classical complement path-
way, which facilitates uptake by phagocytic cells [25, 26].

The complement cascade comprises a network of 
active complement mediators of more than 30 pro-
teins, which have been recognized as a major defense 
option for a host cell against the microbial invaders [19, 
27] (Fig.  1). The complement cascade can be initiated 
through three different pathways: the classical pathway, 
the lectin pathway, and the alternative pathway. The 
alternative pathway of the complement cascade plays 
a vital role in neutrophil-mediated diseases including 
asthma [28, 29]. The three pathways all converge in the 
activation of the pivotal complement molecule C3 and 
generate C3 convertase. This C3 convertase facilitates 
the cleavage of C3 into C3a and C3b. After cleavage of 
C3, the C3b molecule combines with the C3 convertase 
to form a C4bC2aC3b complex in the classical and lec-
tin pathways, while forming a C3bBbC3b complex 

in the alternative pathway. Both the C4bC2aC3b and 
C3bBbC3b complexes are known as C5 convertase, 
which catalyzes the cleavage of C5 into C5a and C5b 
molecules. The generated C5a can then act as a potent 
anaphylatoxin at the site of production while C5b par-
ticipate in the assembly of the membrane attack com-
plex (C5b-9 or MAC). The primary cytolytic activity of 
complement is catalyzed by the non-enzymatic function 
of the MAC, which is initiated through the amphiphilic 
complex generated after the linkage of C5b–C6, and C7. 
This complex is able to insert into microbial lipid bilay-
ers and subsequent binding of C8 initiates C9 polym-
erization, which creates membrane-spanning channels 
to initiate osmotic lysis of the foreign constructs [19] 
(Fig.  1). In summary, the activated complement media-
tors in asthma airway tissue remodeling are recognized 
as a potential targets for therapeutic intervention in 
preclinical and clinical research [30–32]. This review 
primarily focus on indirect (thorough adaptive immune 
system) and direct effects of the complement system on 
airway tissue remodeling.
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Fig. 1  Model shows active mediators of the complement cascade during inflammation in airway asthma. Further, it highlights activation of inflam-
matory cells (Basophils, PMNs and Macrophages) through complement receptor binding and downstream release of inflammatory mediators. 
As shown, all these mediators contribute in tissue damage and remodeling. APL-1 and APL-2, are derivatives of Compstatin, bind to and inhibit 
complement activation at the C3 level, thus blocking all major effector pathways of complement activation. (Both APL-1 and APL-2 are under clini-
cal trials).
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Complement system effect on airway tissue 
remodeling mediated by adaptive immune system
The complement activation modulates key adop-
tive immune responses, which stimulates and/or sup-
press pulmonary allergic reactions during airway tissue 
remodeling [33]. The complement mediators exerts 
their immunoregulatory roles through the initiation and 
development of the adaptive immunity to stimulate and/
or suppress pulmonary allergy in allergic asthma. The 
involvement of C3a and C5a in asthma is well established, 
and it is reported that both bronchial epithelial and 
smooth muscle cells express receptors for C3a and C5a 
anaphylatoxins [16, 23]. The core portion of complement 
activation cascade is involved in host defense against 
pathogenic infections; however, the by-products C3a 
and C5a of the pathway have potent inflammatory prop-
erties [15, 34]. In particular, complement components, 
and their activated fragments C3a and C5a synchronize 
the magnitude of adaptive immune responses via liga-
tion of their respective receptors expressed on antigen-
presenting cells (APCs) and T lymphocytes [1, 35–37]. 
A gradient of inflammatory cytokines released by Th2 
cells particularly IL-4, IL-5 and IL-13 coordinates major 
pulmonary inflammatory responses, which involves 
development, migration, inflammatory cells activation, 

allergen-specific antibody production, goblet cell hyper-
plasia, increase in vascular permeability, and airway 
reactivity, all of which plays a central role in asthma 
pathogenesis, and pathology [4, 14, 38]. The genetic inter-
ference of complement components in asthma pathogen-
esis has been investigated, and it is reported that genetic 
variations in the complement components modulates the 
susceptibility to asthma [39]. A detailed single nucleotide 
polymorphisms (SNPs) in C3, C5, C3AR1, and C5AR1 
gene plays a significant role in susceptibility and patho-
genesis of bronchial asthma [1]. In addition, C3a and C5a 
modulates Th2 and Th17 immunity as the expression of 
IL17 by Th17 cell enhances C3 secretion by airway epi-
thelial cells in severe allergic asthma [40].

The anaphylatoxins C5a and C3a have long been cred-
ited as a potent pro-inflammatory mediators contribut-
ing to the allergic inflammatory conditions [35]. Recent 
studies indicate that C3a regulate interaction of APCs 
and effector cells causing leukocyte activation, smooth 
muscle contraction, increase in vascular permeability [35, 
41], inflammatory cell infiltration and mucus secretion 
[2, 3, 16].

A wide range of inflammatory cells have been associ-
ated with airway tissue remodeling includes lympho-
cytes, neutrophils, eosinophils, and macrophages, which 
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Fig. 2  Model shows IL-13 and TGF-β mediated sub-epithelial fibrosis. Both of these cytokines are released post complement activation in airway 
lumen. Further, TGF- β1 promotes the differentiation of fibroblast into myofibroblast, and IL-13 stimulates collagen type-1 production by the airway 
fibroblast in a matrix metalloproteinase (MMP)-2 and TGF-β1-dependent manner.
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releases various mediators to facilitates airway tissue 
remodeling process. A variety of cell type produces both 
mediators, however several studies have identified mac-
rophages as a critical source of both TGF-β1 and PDGF 
in airway fibrosis [42, 43]. Notably, TGF-β is one of 
the leading mediator involved in airway tissue remod-
eling during asthmatic pathogenesis. This profibrotic 
cytokine is secreted by different inflammatory and epi-
thelial cells including ASM, endothelial cells, fibroblasts, 
macrophages, and eosinophils [44]. TGF-β is a potent 
regulator of fibroblast/myofibroblast function and the 
production of several ECM proteins including collagens, 
proteoglycans, and tenascin [44, 45]. TGF-β1 is well 
known as a key inducer of fibrosis in many tissues and 
organs [46]. In addition, macrophage also generate profi-
brotic mediator especially platelet-derived growth fac-
tor (PDGF), which directly activate fibroblasts [44, 47]. 
PDGF act as a potent pro-fibrotic signal by stimulating 
the proliferation of activated collagen-producing hemat-
opoietic stem cells (HSCs).

Local effects of the complement system on the 
airway tissue remodeling
Airway tissue remodeling is a secondary process, which 
occur due to a chronic inflammatory environment [48, 
49]. It disrupts the normal airway tissue repair process, 
which involves airway wall thickening, mucous hyper-
plasia, mucosal neovascularization, smooth muscle 
hyperplasia, deposition of fibrous and other extracellu-
lar matrix protein, myofibroblast hyperplasia, epithelial 
hypertrophy, and mucous gland and goblet cell hyper-
plasia [48]. Although, the connection between inflamma-
tory process and fibrotic remodeling is well recognized 
but the origin, mechanism of activation, differentiation of 
fibroblasts, and the role of different inflammatory cells in 
asthma is still remain unclear. The relation between com-
plement system and asthma pathogenesis has been previ-
ously investigated in different animal model systems [17, 
50, 51]. The complement system, with its crucial role in 
innate and adaptive immunity mediates a variety of effec-
tor functions [3, 32, 41] that play a key roles in airway 
tissue inflammation and injury. It is a complex cascade 
involving proteolytic cleavage of anaphylatoxins (C3a and 
C5a), which are often activated by cell receptors. This 
cascade ultimately leads to the generation of antibodies 
and inflammatory responses as well as opsonization of 
apoptotic and necrotic bodies, facilitating their recog-
nition, clearance, and lysis [20, 27]. C3a and C5a trigger 
ASM contraction, promote mucus secretion, and aug-
ment blood vascular permeability [20, 35]. Furthermore, 
C5a and its end-product, membrane attack complex 
(MAC) regulate the downstream inflammatory responses 
through the infiltration of inflammatory cells into 

bronchial airway lumen, which stimulate the release of 
multiple acute inflammatory mediators TGF-β, RANTES 
and Pro MMP-9 [52, 53]. These inflammatory mediators 
may induce ASM hypertrophy and collagen deposition 
under the respiratory epithelium, which leads to the air-
way tissue remodeling and repair of lower airways [54].

C3a and C5a have potential to activates inflamma-
tory immune cells such as mast cells, macrophages, 
neutrophils, basophils, eosinophils, and also facilitates 
enhanced vascular permeability (through bradykinin), 
and triggers smooth muscle contraction through their 
receptors [55]. In allergic diseases, C3a and C5a medi-
ated C3aR and C5aR stimulation respectively produces 
a series of effector functions ranging from inflammatory 
cell migration to pro-inflammatory mediator production 
thus contributing to the development of airway remod-
eling [56]. Complement receptor-mediated activation 
of mast cells can occur through CR3 (the receptor for 
C3b) and C3aR (receptors for C3a); however, degranu-
lation seems to occur mainly as a result of activation 
of the receptor for C5a (C5aR) [57, 58]. Activated mast 
cells secrete TNF-α, IL-3, and GM-CSF, which facili-
tates downstream activation of neutrophils, eosino-
phils, and basophils respectively (Fig. 1; Table 1). During 
eosinophil activation, C3a and C5a regulate the produc-
tion of eosinophil cationic protein and their adhesion 
to endothelial cells as well as their migration [59]. C3a 
mediate synthesis of IL-6 and TNF-α from B cells and 
monocytes, and IL-17A from Th17 cells, which control 
the severity of experimental asthma [40, 60, 61]. The 
anaphylatoxins C3a and C5a generated during comple-
ment activation holds numerous pro-inflammatory and 
immunoregulatory properties critical for development 
and modulation of allergic immune responses [62]. In 
addition to its pro-inflammatory effector functions, 
complement regulates adaptive immunity at many levels 
[4, 63] including increased neutrophilic inflammation in 
asthma [64].

C5a is a potent chemoattractant for macrophages [65], 
neutrophils [66], activated B [67] and T cells [68], baso-
phils [69] and mast cells [70]. Complement-induced neu-
trophil activation mostly involve C5a and possibly C5b-9 
complexes identified in serum-activated neutrophils [71]. 
The products of eosinophil activation, and bindings of C3a 
and C5a have been reported to cause mast cell degranula-
tion in lung tissues, which further regulates the process 
of inflammation and remodeling [72] (Fig. 2). In addition, 
C5a has been shown as one of the mediator of pulmonary 
fibrosis through the release of TGF-β and IL-13 by M2 
macrophage and eosinophils respectively [70, 73, 74].

The anaphylatoxins C3a and C5a produced during 
complement cascade activation influence numerous 
pro-inflammatory and immunoregulatory mediators for 
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the pulmonary tissue-specific immune responses [36] 
(Table 1). Both C3a and C5a have ability to recruit leuko-
cytic effector cells of the allergic inflammatory response 
[20]. Of note, C5a is a potent chemo-attractant for cells 
like macrophages, basophils, neutrophils, and T lym-
phocytes, whereas both anaphylatoxins can be chemo-
tactic for eosinophils and mast cells [11]. C3a and C5a 
also have potency to activate infiltrating granulocytes, 
leading to speedy production and release of pro-inflam-
matory mediators, such as histamines, leukotrienes, and 

platelet-activating factor as well as pro-inflammatory 
cytokines and chemokines, including IL-1, IL-6 and 
TNF-α [75–78]. The generation of functional comple-
ment mediators occurs in asthmatic persons, and both 
C3a and C5a are essential contributors in the pathophysi-
ology of the disease [20]. In asthmatic individuals, a rise 
in serum C3a and C5a have been reported after allergen-
induced bronchospasm [79]. Additionally, the levels of 
C3a and C5a have been found to increase in the BAL of 
asthmatic patients after segmental allergen challenge 
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Fig. 3  Simple illustration of complement inhibition approach to prevent fibrosis. This figure shows how blocking C3a and C5a prevent downstream 
activation of inflammatory mediators and subdue fibrotic process.

Table 1  Signaling through complement mediators and immune cells in airway tissue remodeling

Complement Immune cells Signaling molecule Remodeling

C3a, C5a M2 macrophages TGF-β Expression and secretion of ECM proteins

C3a, C5a M1 macrophages ↑iNOS, ROS, NO, IL-12, IL-1β and TNF-α AHR, airway fibrosis, attraction of eosinophils and neu-
trophils

C3a, C5a Eosinophil MBP and ECP granules, RANTES, IL-13, LTC4, LTC4 and 
LTE4, TGF-β

Vascular permeability, mucus secretion, and ASM con-
traction, modulation of cellular trafficking

C3a, C5a Basophils Histamine, LTC4, IL-4, IL-13 ASM contraction, vascular permeability, promotes Th2 
and IgE production

C3a, C5a PMNs TXA2, MPOs, MMP-9, ROS Bronchoconstriction, stimulate release of serotonin and 
histamine through platelets and mast cells respectively. 
Vascular permeability, mucus hypersecretion

C3a, C5a Mast cells Histamine, TNF-α, GM-CSF, IL-4, IL-13 LTC4,  
LTB4 and PGD2

Stimulates ASM contraction, vasodilatation and release 
of IL-16 production by CD8+ cells and airway epithelial 
cells

C5b and MAC Th2/CD4+ IL-4, IL-5 and IL-13 IL-13 suppress activation of NF-kB, and concomitant IL-5 
induced eosinophilic inflammation in an IL-4- inde-
pendent manner
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[16]. One study found that C3a and C4a concentrations 
were elevated in the plasma of patients with aspirin-
induced asthma [80], and numerous other clinical studies 
has also reported the significant production of anaphyla-
toxins under asthmatic conditions [18]. However, studies 
on animal models of airway hyperresponsiveness (AHR) 
has also concluded that both complement C3a and C5a 
are critical for asthma pathogenesis [16, 23, 81]. In addi-
tion to allergen-mediated activation, environmental 
agents can also triggers the complement activation. Air-
borne pollutants/or airborne particulate matter can acti-
vate the alternative pathway of the complement cascade 
in human serum and airway epithelium, respectively [34]. 
Cigarette smoke (CS) has been shown to activate the 
alternative pathway through cleavage of the internal thio-
ester bond in C3 [82]. C3a also stimulates smooth mus-
cle contraction [83], lysozyme release from immune cells 
[84], platelet aggregation [85], and triglyceride synthesis 
in adipocytes [86].

Discussion
Airway tissue remodeling in asthma is pathologically 
characterized by subepithelial deposition of collagen 
in the airways, increase in ASM cell mass, mucus gland 
hyperplasia, and mucosal neovascularization [48, 87–90]. 
The process of airway remodeling is potentially a crucial 
outcome of asthma, and has been associated with the 
increase in inflammatory cells specially macrophages, 
neutrophils, basophils and their mediators TGF-β, iNOS, 
ROS, NO, IL-12, IL-1β, TNF-α, TXA2, MPOs, MMP-9, 
ROS, histamine, LTC4, IL-4, and IL-13, which affect air-
way structural property and pulmonary functions [47, 74, 
91, 92]. Thus, it is most likely that the process of airway 
tissue remodeling precede to physiologic subphenotypes 
of irreversible/or partially reversible airflow obstruction 
and accelerated lung functions decline associated with 
the severity of disease [49].

Therapeutically, complement mediators C3a and C5a, 
and their respective receptors C3aR and C5aR, displays 
diverse activities during the course of disease progres-
sion and drugs that specifically targets C3a, C3aR, C5, 
C5a or C5aR could serve as potential therapeutic options 
for asthma treatment in future (Fig. 3) [32]. Experimen-
tal findings in mouse model of chronic allergen challenge 
have demonstrated some of the interesting correlations 
between airway inflammation, dysfunction and tissue 
remodeling [93]. The specific roles of complement frag-
ments have been reported in other disease models, e.g. 
systemic inhibition of C3a and C5a resulted in down 
regulation of collagen have been reported in a mouse 
model of orthotopic tracheal transplantations [22, 94]. It 
has been reported that C5-knockouts and C5aR antago-
nism significantly reduced airway tissue fibrosis at 5 and 

10  days post-injury in a mouse model of unilateral ure-
thral obstruction [95]. These investigations in animal 
models will increasingly allow categorizations of poten-
tial mediators resulting in airway tissue remodeling, and 
their impact on airway physiology [3, 32, 96]. In addi-
tion, new complement inhibition based drugs are now 
under development and shown significant attention in 
pulmonary diseases in human. In clinical trials, Comp-
statin, and its derivatives APL-1 and APL-2 bind to and 
inhibit complement activation at C3 activation step, thus 
blocking all major effector pathways required for com-
plement mediated tissue injury (Fig.  1). C3 inhibition 
has the potential to make available a broad and effective 
treatment comparable to further complement inhibition 
approaches. APL-1, is as a disease-modifying therapy for 
severe asthma and chronic obstructive pulmonary dis-
ease and an inhalable formulation of APL-1 is being used 
in ongoing Phase 1 trial in the United Kingdom [97, 98]. 
These studies will rectify efficacy of asthma treatments 
in reducing airway tissue remodeling in asthma patients. 
However, additional efforts are necessary in order to 
uncover the relationship between changes in airway 
pathology, and physiology before treatment regimens 
to prevent/or resolve established tissue airway remod-
eling. In new drug development for asthma therapy, the 
overwhelming interest of various highly specific comple-
ment inhibitors (C3a and C5a) for the demonstration of 
pathological mechanisms may not only uncover new can-
didates with therapeutic potential but also help discover 
even more fascinating cross-talk mechanisms between 
complement and other cellular parts of immunity.

In summary, this review discussed the complement-
mediated airway tissue injury, remodeling in airway epi-
thelium, and we anticipate that blocking/or antagonism 
of the functioning complement mediators could act as a 
potential therapeutic strategy to salvage asthma patients.

Conclusions
This review contributes to distinguish direct effects of 
the complement system on biological processes associ-
ated with airway tissue remodeling from indirect effects 
caused by adaptive immunity. Of note, this review high-
lights that complex functional changes in airways coexist 
with the complex inflammatory processes, and the poten-
tial synergistic use of C3a and C5a inhibition may subdue 
airway inflammation and prevent subepithelial fibrosis by 
blocking the intrapulmonary activation of C3a and C5a, 
is a potential clinical approach for treating patients with 
asthma.
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