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Abstract 

Background:  Accumulated evidence suggests that dysregulated expression of long non-coding RNAs (lncRNAs) 
may play a critical role in tumorigenesis and prognosis of cancer, indicating the potential utility of lncRNAs as cancer 
prognostic or diagnostic markers. However, the power of lncRNA signatures in predicting the survival of patients with 
non-small cell lung cancer (NSCLC) has not yet been investigated.

Methods:  We performed an array-based transcriptional analysis of lncRNAs in large patient cohorts with NSCLC by 
repurposing microarray probes from the gene expression omnibus database. A risk score model was constructed 
based on the expression data of these eight lncRNAs in the training dataset of NSCLC patients and was subsequently 
validated in other two independent NSCLC datasets. The biological implications of prognostic lncRNAs were also 
analyzed using the functional enrichment analysis.

Results:  An expression pattern of eight lncRNAs was found to be significantly associated with overall survival (OS) of 
NSCLC patients in the training dataset. With the eight-lncRNA signature, patients of the training dataset could be clas-
sified into high- and low-risk groups with significantly different OS (median survival 1.67 vs. 6.06 years, log-rank test 
p = 4.33E−09). The prognostic power of eight-lncRNA signature was further validated in other two non-overlapping 
independent NSCLC cohorts, demonstrating good reproducibility and robustness of this eight-lncRNA signature in 
predicting OS of NSCLC patients. Multivariate regression and stratified analysis suggested that the prognostic power 
of the eight-lncRNA signature was independent of clinical and pathological factors. Functional enrichment analyses 
revealed potential functional roles of the eight prognostic lncRNAs in tumorigenesis.

Conclusions:  These findings indicate that the eight-lncRNA signature may be an effective independent prognostic 
molecular biomarker in the prediction of NSCLC patient survival.
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Background
Lung cancer is one of the most common human cancers 
and is the leading cause of cancer-related deaths among 
both men and women globally [1], accounting for about 
27% of all cancer-related deaths. In China, lung cancer 

has become the primary cause of cancer-related deaths, 
and mortality has increased by more than four times dur-
ing the past three decades [2]. The overall 5-year relative 
survival rate for lung cancer is low at nearly 15%, which 
is primarily due to principal detection at late, incurable 
stages and a paucity of late-stage treatments [3]. Lung 
cancer is generally divided into two main categories: small 
cell lung cancer and non-small cell lung cancer (NSCLC) 
accounting for approximately 80% of all lung cancers.

Long non-coding RNAs (lncRNAs), a recently discov-
ered subclass of non-coding RNA (ncRNA), are most 
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commonly defined as RNA transcripts longer than 200 
nucleotides with little coding capacity [4, 5]. Though the 
functions of only a limited number of lncRNAs have been 
well characterized, accumulating evidence has suggested 
that lncRNAs participate in a wide variety of biological 
processes, including cell differentiation, organogenesis, 
chromatin modification, genomic imprinting, dosage 
compensation, respond to diverse stimuli and so on, 
by exerting their functions as four archetypes: signals, 
decoys, guides and scaffolds [6, 7]. lncRNAs can regu-
late gene expression at the post-transcriptional level via 
competing endogenous RNA (ceRNA) crosstalk or at 
the transcriptional level via cis or trans and at the epi-
genetic regulation level [8–10]. Recently, a number of 
cancer-related studies have detected many dysregulated 
lncRNAs associated with tumorigenesis and tumor pro-
gression in a variety of cancers [11–13]. Like protein-
coding genes and miRNA, some dysregulated lncRNAs 
play oncogene-like roles. For instance, HOTAIR is an 
lncRNA that is overexpressed in breast tumors and sig-
nificantly associated with breast cancer metastasis [14]. 
Overexpression of lncRNA PCAT-1 is associated with 
poor prognosis in patients with colorectal cancer (CRC) 
[15]. Other well-studied lncRNAs, such as MEGS, GAS5, 
LIN00312 and LinRNA-p21, have instead demonstrated 
tumor suppressive roles [16, 17]. For example, lncRNA 
LIN00312, which is significantly down-regulated in naso-
pharyngeal carcinoma (NPC), was found to be an inde-
pendent contributor to NPC [18]. These findings suggest 
that, like protein-coding genes and miRNAs, lncRNAs 
could serve as diagnostic and prognostic biomarkers. Li 
et al. [19] measured lncRNA expression in paired tumors 
and adjacent normal tissues of 119 patients and identi-
fied a three-lncRNA signature that could predict the 
survival of patients with oesophageal squamous cell car-
cinoma (OSCC). Recent studies have also demonstrated 
emerging roles of lncRNAs in NSCLC [20]. For example, 
lncRNA MALAT1 (metastasis-associated lung adeno-
carcinoma transcript 1) is up-regulated in NSCLC based 
on evidence from subtractive hybridization of cDNA 
libraries, and can be used as an independent prognos-
tic marker of patient survival [21]. White and colleagues 
[22] found 111 differentially expressed lncRNAs between 
lung tumors and adjacent normal tissues, some of which 
have been functionally validated to be involved in cellular 
proliferation in vitro. Nie et al. [23] identified an lncRNA 
MVIH which is over-expressed in NSCLC tissues com-
pared with adjacent normal tissues. Subsequent studies, 
integrating custom-designed gene microarray and clini-
cal information, also discovered lncRNA signatures that 
were significantly associated with the survival of patients 
with gliolastoma multiforme [24], colorectal cancer 
[25] and breast cancer [26]. Other recent studies have 

characterized tens of lncRNAs that were identified to be 
associated with the presence of certain lung cancer histo-
logical subtypes [27, 28]. While the prognostic power of 
mRNA and miRNA signatures in various cancers is well 
established, the power of lncRNA signatures in predict-
ing the survival of patients with NSCLC has not yet been 
investigated.

In the present study, we conducted a comprehensive 
study of lncRNA expression profiles across 603 NSCLC 
patients with clinical information by repurposing the 
previously published NSCLC gene expression profiles, 
and identified an eight-lncRNA signature associated with 
survival. A risk score formula was constructed based on 
the expression data of these eight lncRNAs in the train-
ing dataset of NSCLC patients and was further confirmed 
in another two independent gene expression omnibus 
(GEO) NSCLC patient cohorts.

Methods
NSCLC datasets and patient information
NSCLC microarray datasets, generated with the Affym-
etrix platform (HG-U133A Plus 2.0), and clinical infor-
mation were obtained from the GEO database. After 
removing the patients without available survival infor-
mation, a total of 603 patients were enrolled in this study 
(Table 1), including 196 patients from GSE37745 (www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745) 
[29], 226 patients from GSE31210 (www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE31210) [30] and 181 
patients from GSE50081 (www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE50081) [31]. More detailed clini-
cal information of all 603 NSCLC patients included in 
this study can be found in Table 1.

Microarray processing and lncRNA profile mining
All the microarray raw data (.CEL files) of three NSCLC 
cohorts were obtained from the GEO database and 
processed using the robust multichip average (RMA) 
algorithm for background adjustment [32, 33]. The Affy-
metrix GeneChip probe-level data was log-2-scale trans-
formed and standardized by transforming the expression 
data into having a mean of 0 and a standard deviation 
(SD) of 1. The NetAffx probe set sequences for Affym-
etrix HG-U133 Plus 2.0 were downloaded from the Affy-
metrix website (http://www.affymetrix.com). LncRNA 
expression data from the Affymetrix-based expression 
profiling of NSCLC cohorts were obtained by repurpos-
ing microarray probes based on the sequences of the 
probe sets and the annotations of lncRNAs in GENCODE 
(http://www.gencodegenes.org/) (GRCh38, release 21) 
[34], as previous described [35]. By keeping probes that 
were uniquely mapped to the genomic coordinate of 
lncRNAs derived from GENCODE, 3,521 probes (or 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
http://www.affymetrix.com
http://www.gencodegenes.org/
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probe sets) and 2,313 corresponding lncRNA genes were 
obtained. Multiple probes (or probe sets) mapping to the 
same gene were integrated by using the arithmetic mean 
of the values of multiple probes (or probe sets) to gener-
ate a single gene expression value (on the log2 scale).

Statistical analysis
A univariable Cox regression analysis was performed to 
evaluate the relationship between the continuous expres-
sion level of each lncRNA and patients’ overall survival 
(OS) in the training dataset. Only those lncRNAs with a 
p value of <0.005 were considered statistically significant. 
To construct a predictive model, each of the selected 
lncRNA genes was analyzed using a multivariable Cox 
regression model in the training dataset, with OS as the 
dependent variable and other clinical information as the 
covariables. A risk score was then computed as follows:

where N  is the number of prognostic lncRNA genes, Expi 
is the expression value of ln cRNAi, and Coei is the esti-
mated regression coefficient of ln cRNAi in the multivari-
able Cox regression analysis. This risk score model was 

Risk Score (RS) =

N∑

i=1

(Expi ∗ Coei)

established by taking into account the power of each of 
the prognostic lncRNA genes.

Using the median risk score in the training dataset 
as a cutoff value, NSCLC patients in each dataset were 
divided into high- and low-risk groups. Kaplan–Meier 
survival analyses were performed to test the equality for 
survival distributions in different groups for each NSCLC 
cohort, and statistical significance was assessed using the 
two-sided log-rank test. Additionally, a multivariable Cox 
regression analysis and data stratification analysis were 
performed to test whether the risk score was independ-
ent of other clinical features within the available data. 
The time-dependent receiver operating characteristic 
(ROC) curve was also used to compare the sensitivity 
and specificity of the survival prediction of the lncRNA 
expression-based risk score in the training dataset. Area 
under the curve (AUC) value was calculated from the 
ROC curve. All analyses were performed using R soft-
ware and Bio-conductor. Significance was defined as 
p < 0.05.

Bioinformatics analysis of lncRNA gene function prediction
The co-expressed relationships between the prognos-
tic lncRNAs and protein-coding genes were computed 
using Pearson correlation coefficients. Gene ontology 

Table 1  Clinical features of all 603 NSCLC patients included in this study

Features GSE37745 (n = 196) GSE31210 (n = 226) GSE50081 (n = 181)

Age (years), no (%)

 ≤65 94 (48.0) 176 (77.9) 59 (32.6)

 >65 102 (52.0) 50 (22.1) 122 (67.4)

Gender, no (%)

 Male 107 (55.0) 105 (46.5) 98 (54.1)

 Female 89 (45.0) 121 (53.5) 83 (45.9)

Vital status (%)

 Alive 52 (26.5) 191 (84.5) 106 (58.6)

 Dead 144 (73.5) 35 (15.5) 75 (41.4)

Disease stage, no (%)

 I 130 (66.0) 168 (74.3) 127 (70.2)

 II 35 (18.0) 58 (25.7) 54 (29.8)

 III 27 (14.0)

 IV 4 (2.0)

Smoking status

 Never-smoker 115 (50.9) 24 (13.3)

 Ever-smoker 111 (49.1) 79 (43.6)

 Current 54 (29.8)

 Undetermined 21 (11.6)

Histology

 Adenocarcinoma 106 (54.0) 226 128 (70.7)

 Large cell carcinoma 24 (12.0) 7 (3.9)

 Squamous cell carcinoma 66 (34.0) 43 (23.9)
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(GO) and Kyoto encyclopedia of genes and genomes 
(KEGG) enrichment analyses of the co-expressed pro-
tein-coding genes with prognostic lncRNAs were per-
formed to predict the biological function of prognostic 
lncRNAs using the DAVID Bioinformatics Tool (version 
6.7), which is a commonly used functional annotation 
tool that can assess over-representation of functional 
categories among a gene set of interest [37]. Enrichment 
analysis was carried out using the functional annota-
tion chart and functional annotation clustering options, 
and was limited to KEGG pathways and GO terms in 
the “Biological Process” categories. Functional annota-
tion with p value of <0.05 and an enrichment score of >2 
were considered significant.

Results
Derivation of an eight‑lncRNA prognostic signature 
from the training dataset
The NSCLC patient cohort from GSE37745 (n = 196), 
including the relatively large patient sample size and 
relatively overall clinical information, was selected as 
training dataset to explore the association between 
lncRNA expression and OS of NSCLC patients. We 
first conducted a univariate Cox proportional haz-
ards regression analysis of the lncRNA expression 
data with OS as the dependent variable, and identi-
fied a set of eight lncRNAs as prognostic lncRNAs 
which were significantly correlated with patients’ OS 
(p value of <0.005). Table 2 shows a list of these eight 
prognostic lncRNAs along with important variable 
information. Of the eight lncRNAs, the higher expres-
sion level of lncRNA RP11-21L23.2, GPR158-AS1, 
RP11-701P16.5 and RP11-379F4.4 was associated with 
shorter OS (coefficient  >0), and the higher expression 
levels of the remaining four lncRNAs (CTD-2358C21.4, 
RP11-94L15.2, KCNK15-AS1 and AC104134.2) were 
associated with longer OS (coefficient  <  0). Then we 
further examined whether these eight prognostic lncR-
NAs are differentially expressed between cancer and 

normal lung tissue. The lncRNA differential expres-
sion analysis was performed for GSE18842 dataset 
(including 46 tumor and 45 normal lung tissue speci-
mens) (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE18842) [38] obtained from GEO database. 
We found that five of eight prognostic lncRNAs showed 
significant expression differences between tumor and 
normal lung tissue (Mann–Whitney U test p  <  0.05) 
(Additional file 1: Figure S1), demonstrating that these 
selected prognostic lncRNAs are associated with lung 
cancer.

An eight‑lncRNA signature predicts survival of NSCLC 
patients in the training dataset
To investigate whether the eight-lncRNA signature 
could provide an accurate prediction of OS in NSCLC 
patients, the expression data of these eight lncRNAs and 
other clinical features were fitted into a multivariable 
Cox regression model as covariates of the training data-
set. A risk score was generated for each patient in the 
training dataset according to the risk-score model (see 
“Methods”) as follows: Risk score  =  (0.306  ×  expres-
sion value of RP11-21L23.2)  +  (−0.314  ×  expression 
value of CTD-2358C21.4)  +  (−0.252  ×  expression 
value of RP11-94L15.2) +  (0.288 ×  expression value of 
GPR158-AS1) + (−0.271 × expression value of KCNK15-
AS1) + (−0.299 × expression value of AC104134.2) + (0.284 × expres-
sion value of RP11-701P16.5)  +  (0.321  ×  expression 
value of RP11-379F4.4). To evaluate how well the risk 
score predicts the 5-year survival, the various cutoff val-
ues were evaluated using time-dependent ROC curve 
(Figure  1a) which is commonly used for revealing the 
predictive accuracy of a model [39, 40]. In the training 
dataset, AUC for the eight-lncRNA signature prognos-
tic model was 0.78 at an OS of 5  years, demonstrating 
the better performance for survival prediction of the 
lncRNA expression-based risk score in the training data-
set. All patients in the training dataset were then ranked 
according to their risk score, and divided into either the 

Table 2  Eight lncRNAs significantly associated with the overall survival of NSCLC patients in the training set (n = 196)

a  Derived from the univariable Cox regression analysis in the training set.

Ensembl id Gene symbol Chromosomal position P valuea Hazard ratioa Coefficienta

ENSG00000261578.1 RP11-21L23.2 Chr11: 76,800,364-76,804,555(+) 2.57E−05 1.374 0.318

ENSG00000261731.2 CTD-2358C21.4 Chr16: 31,709,113-31,711,984(−) 2.22E−04 0.725 −0.322

ENSG00000264198.2 RP11-94L15.2 Chr17: 39,757,715-39,763,836(−) 2.88E−04 0.738 −0.303

ENSG00000233642.1 GPR158-AS1 Chr10: 25,158,072-25,176,276(−) 4.52E−04 1.334 0.288

ENSG00000244558.3 KCNK15-AS1 Chr20: 44,694,892-44,746,021(−) 1.27E−03 0.750 −0.287

ENSG00000225420.1 AC104134.2 Chr2: 88,538,720-88,575,610 (+) 1.85E−03 0.760 −0.274

ENSG00000251230.3 RP11-701P16.5 Chr4: 184,844,585-184,855,751(−) 2.01E−03 1.301 0.263

ENSG00000240207.4 RP11-379F4.4 Chr3: 158,732,263-158,784,070(+) 2.80E−03 1.433 0.360

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18842
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18842
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high- or low-risk group using the median risk score as 
the cutoff point. According to this cutoff value, patients 
were divided into either a high-risk group (n = 98) or a 
low-risk group (n = 98). Patients in the high-risk group 
had a significantly shorter OS than those in the low-
risk group (median OS 1.67 vs. 6.06 years, log-rank test 
p =  4.33E−09). Kaplan–Meier curves for the high- and 
low-risk groups in the training dataset (n  =  196) are 
shown in Figure 1b. In detail, OS rates of patients in the 
high-risk group were 30.6% at 4 years, 19.1% at 6 years, 
17.8% at 8 years and 11.9% at 10 years, versus 63.3, 53.8, 
46.3 and 38% in the low-risk group, respectively.

A significant association between the eight-lncRNA 
signature risk score and OS was observed in the univari-
able Cox regression model (Table  3). The hazard ratios 
of the eight-lncRNA signature risk score of the high-risk 

group versus that of the low-risk group for OS was 2.641 
[p  <  0.001; 95% confidence interval (CI) 1.887–3.697; 
Table 3].

The distribution of risk score, survival status and prog-
nostic lncRNA expression in 196 patients of the training 
dataset are shown in Figure 1c. Of these eight prognos-
tic lncRNAs, the high expression level of lncRNA RP11-
21L23.2, GPR158-AS1, RP11-701P16.5 and RP11-379F4.4 
was associated with high risk, while the remaining four 
lncRNAs (CTD-2358C21.4, RP11-94L15.2, KCNK15-AS1 
and AC104134.2) were shown to be protective. NSCLC 
patients with high prognostic scores tended to express 
high-risk lncRNAs, whereas those with low prognostic 
scores tended to express protective lncRNAs. Moreover, 
more deaths were noted for NSCLC patients with high-
risk scores than for those with low-risk scores.

Figure 1  The eight-lncRNA signature-focused risk score in prognosis of overall survival in the GSE37745 patient set. a Receiver operating charac-
teristic (ROC) analysis of the risk scores for overall survival prediction in the training dataset. The area under the curve (AUC) was calculated for ROC 
curves, and sensitivity and specificity were calculated to assess score performance. b The Kaplan–Meier curve for overall survival of two patient 
groups with high- and low-risk scores in the GSE37745 training set (n = 196). The differences between the two curves were evaluated by the two-
sided log-rank test. c The eight lncRNA-based risk score distribution, patients’ survival status and heatmap of the eight lncRNA expression profiles. 
The black dotted line represents the cutoff value of the risk score derived from the training set which separated patients into high- and low-risk 
groups.
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Table 3  Univariable and  multivariable Cox regression analysis of  the lncRNA signature and  overall survival of  NSCLC 
patients in the training and two independent cohorts

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P value HR 95% CI of HR P value

GSE37745 training set, n = 196

 Eight-lncRNA risk score

  Low risk/high risk 2.641 1.887–3.697 <0.001 2.761 1.934–3.942 <0.001

 Age

  ≤65/>65 1.355  0.977–1.878 0.069 1.427  1.024–1.986 0.035

 Gender

  Female/male 1.096 0.789–1.523 0.585 0.913  0.640–1.303 0.616

 Stage

  I 1 (reference) 1 (reference)

  II 1.220 0.793–1.875 0.366 1.169 0.758–1.802 0.479

  III 1.864 1.187–2.928 0.007 1.656 1.052–2.608 0.029

  IV 1.313 0.415–4.152 0.643 1.566 0.488–5.022 0.451 

 Subtype

  Adenocarcinoma 1 (reference) 1 (reference)

  Large cell carci-
noma

0.891 0.520–1.528 0.675 0.782 0.449–1.360 0.383

  Squamous cell 
carcinoma

1.257 0.883–1.791 0.205 0.920 0.623–1.359 0.676

GSE31210 testing set, n = 226

 Eight-lncRNA risk score

  Low risk/High risk 3.067 1.471–6.395 0.003 2.643 1.263–5.528 0.010

 Age

  ≤65/>65 2.584 1.313–5.083 0.006 3.685 1.800–7.544 <0.001

 Gender

  Female/male 1.519 0.780–2.955 0.219 1.143 0.402–3.246 0.802

 Smoking status

  No/Yes 1.637 0.837–3.201 0.15 1.388 0.482–3.996 0.544

 Stage

  I/II 4.232 2.175–8.236 <0.001 4.363 2.161–8.811 <0.001

GSE50081 testing set, n = 181

 Eight-lncRNA risk score

  Low risk/high risk 1.795 1.127–2.859 0.014 1.752 1.014–3.026 0.044

 Age

  ≤65/>65 1.559 0.932–2.608 0.090 1.316 0.752–2.303 0.336

 Gender

  Female/male 1.934 1.190–3.143 0.008 1.743 1.011–3.005 0.046

 Smoking status

  No/Yes 1.387 0.659–2.916 0.389 1.054 0.476–2.333 0.897

 Stage

  I/II 1.689 1.049–2.718 0.031 2.359 1.379–4.034 0.002

 Subtype

  Adenocarcinoma 1 (reference) 1 (reference)

  Large cell carci-
noma

1.326 0.479–3.671 0.587 1.094 0.376–3.184 0.870

  Squamous cell 
carcinoma

0.791 0.456–1.371 0.403 0.479 0.241–0.952 0.036
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Validation of the eight‑lncRNA signature for survival 
prediction in the testing GSE31210 dataset
To validate the prognostic power of the eight-lncRNA 
signature for survival prediction, the constructed 
expression-defined lncRNA prognostic model was also 
evaluated in the testing GSE31210 dataset. The same 
prognostic risk score model obtained from the train-
ing dataset was used to calculate the eight-lncRNA sig-
nature-based risk scores for 226 patients in the entire 
GSE31210 dataset. The cutoff value of the risk score 
derived from the training dataset without re-estimat-
ing parameters was used for the testing dataset to clas-
sify the patients into either a high-risk group (n = 111) 
or a low-risk group (n =  115). Patients with high-risk 
scores exhibited poorer OS than those with low-risk 
scores (median OS 4.45 vs. 5.08  years, log-rank test 
p = 1.65E−03). Kaplan–Meier curves for the high- and 
low-risk groups in the testing dataset are shown in Fig-
ure  2a. The OS rate of patients in the high-risk group 
was 91.7% at 2  years and 78.7% at 4  years, versus 97.4 
and 91.5% in the low-risk group, respectively. A signifi-
cant association between the eight-lncRNA signature 
risk score and OS in the univariable Cox regression 
model was observed. The hazard ratios of the eight-
lncRNA signature risk scores of the high-risk group ver-
sus the low-risk group for OS was 3.067 (p = 0.003; 95% 
CI 1.471–6.395; Table 3).

The distribution of patient lncRNA risk score, survival 
status and prognostic lncRNA expression in 226 patients 
of the GSE31210 dataset are shown in Figure 2b, reveal-
ing the similar results observed in the GSE37745 training 
dataset.

Further validation of the eight‑lncRNA signature in another 
independent dataset
To investigate the reproducibility of the eight-lncRNA 
signature in predicting OS of NSCLC patients, the prog-
nostic power of the eight-lncRNA signature for prediction 
of survival was further validated in another independent 
NSCLC cohort of 181 patients whose expression and sur-
vival data were obtained from GEO GSE50081. The clini-
cal feature of this independent NSCLC cohort is shown 
in Table  1. Patients in this independent NSCLC cohort 
were classified into either a high-risk group (n = 90) or 
a low-risk group (n =  91) according to the cutoff value 
of risk scores obtained from the training dataset. The 
median OS of the high-risk group for the GSE50081 
dataset is 4.29 years, whereas that of the low-risk group 
is 4.99  years (log-rank test p  =  1.26E−02). Kaplan–
Meier curves for the high- and low-risk groups within 
the independent GSE50081 cohort is shown in Figure 2c. 
Further univariable Cox regression analysis revealed 
that the high-risk scores of eight-lncRNA signature was 

significantly associated with lower OS of patients in 
GSE50081 dataset (p =  1.40E−02; HR =  1.795, 95% CI 
1.127–2.859; Table  3). Figure  2d shows the distribution 
of patient risk scores, the survival status and prognos-
tic lncRNA expression in the independent GSE50081 
NSCLC cohort, ranked according to the prognostic risk 
score values for the eight-lncRNA signature, which were 
similar to those observed in the training and GSE31210 
datasets.

Survival prediction by the eight‑lncRNA signature  
is independent of clinical features
To assess whether the prognostic power of the eight-
lncRNA signature for prediction of survival was inde-
pendent of other clinical features, multivariable Cox 
regression analysis was performed using the lncRNA 
signature-based risk score and other clinical features, 
including age, gender, smoking status, tumor stage and 
subtype, which were used as covariates. The results 
of multivariable Cox regression analysis from three 
NSCLC patients datasets showed that the prognostic 
power of the eight-lncRNA signature risk score (high-
risk group vs. low-risk group, HR  =  2.761, 95% CI 
1.934–3.942, p < 0.001 for GSE37745; HR = 2.643, 95% 
CI 1.263–5.528, p =  0.01 for GSE31210; HR =  1.752, 
95% CI 1.014–3.026, p = 0.044 for GSE50081) for pre-
diction of survival was indeed independent of these 
clinical features (Table  3). We also found that the two 
clinical factors, age and stage, also affected overall sur-
vival of patients. So, a data stratification analysis was 
performed according to age and stage. The three GEO 
datasets (GSE37745, GSE31210 and GSE50081), which 
included a total of 603 patients, were stratified by age 
into either a younger stratum (age ≤65) or an elder stra-
tum (age >65). The results of stratified analysis showed 
effective prognostic power in both the younger and elder 
patient groups. The eight-lncRNA signature could clas-
sify patients within each age stratum into either high- or 
low-risk groups with significantly different OS (log-rank 
test p =  4.46E−05 for the younger patient group and 
p =  6.61E−06 for the elder patient group) (Figure  3a, 
b), which suggested that the prognostic power of the 
eight-lncRNA signature was also age-independent. 
Then the patients of early (stage I and II) and late (III 
and IV) stage for GSE37745 dataset were grouped into 
two separate groups. The stratified analysis was further 
performed in early and late stage patients to evaluate 
whether the eight-lncRNA signature could predict sur-
vival of patients for different clinical stage. The log-rank 
test of early stage patients showed that within stage I 
and II, the eight-lncRNA signature could further subdi-
vide them into either a high-risk group with shorter sur-
vival or a low-risk group with longer survival (median 
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OS 2.03 vs. 8.05  years, log-rank test p  =  7.81E−09) 
(Figure 3c). Difference for OS between high-risk group 
(n = 18) and low-risk group (n = 13) also was observed 
for late stage patients (median OS 0.975 vs. 3.367 years) 
(Figure 3d), although the log-rank p value is 0.253 which 
was above the 0.05 significance level.

Functional characterization of the eight prognostic 
lncRNAs
To further investigate the potential biological roles 
involving the eight prognostic lncRNAs, the co-expressed 
relationships between the expression of eight lncRNAs 
and those of the protein-coding genes were computed 
using Pearson correlation coefficients in the GSE37745 
dataset of 196 patients. The expression of 679 protein-
coding genes were highly correlated with that of at least 

one of the eight signature lncRNAs (Pearson correla-
tion coefficient >0.40). GO and KEGG pathway function 
enrichment analysis for these co-expressed protein-cod-
ing genes was then performed, using the whole human 
genome as the background. The results showed that four 
genes (GATA6, CRISPLD2, CFTR2 and CLPTM1L) have 
been proven to be involved in lung cancer. GO functional 
annotation suggested that 679 protein-coding genes were 
significantly enriched in 28 GO terms (Figure 4a). These 
significant GO terms were organized into an interaction 
network with similar functions using the Enrichment 
Map [41] plugin in Cytoscape [42]. Several clusters of 
functionally related GO terms were observed including 
organ development and cell proliferation and immune, 
response to stimulus, catabolic and metabolic process 
(Figure  4b). Taken together, these results implied that 

Figure 2  The eight-lncRNA signature-focused risk score in prognosis of overall survival in additional validation datasets. a Kaplan–Meier survival 
curves were plotted for GSE31210 (n = 226). b The eight lncRNA-based risk score distribution, patients’ survival status and heatmap of the eight 
lncRNA expression profiles were analyzed in the GSE31210. c Kaplan–Meier survival curves were plotted for GSE50081 (n = 181). d The eight 
lncRNA-based risk score distribution, patients’ survival status and heatmap of the eight lncRNA expression profiles were analyzed in the GSE50081.
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the eight lncRNAs might be involved in tumorigenesis 
through interacting with protein-coding genes that affect 
the tissue/organ development and other important bio-
logical processes.

Discussion
During the past few decades, considerable efforts have 
been made toward the development of gene-expres-
sion-based diagnostic and prognostic biomarkers for 
lung cancer at the protein-coding genes and miRNAs 
levels [43, 44]. However, accumulating evidence sug-
gested that lncRNA are involved in oncogenic and 
tumor suppressive pathways have opened the door for 
this new biomarker. Transcriptional profiling analyses 
have discovered a number of tissue-specific lncRNAs in 
normal tissues and dysregulated lncRNAs in a variety 
of human cancers [11, 45], and highly aberrant expres-
sion of dysregulated lncRNAs is associated with tumo-
rigenesis [17]. Furthermore, these dysregulated lncRNAs 
have already shown great potential as novel molecular 
biomarkers for diagnosis, prognosis and treatment of 
cancer. More recently, several studies conducted array-
based transcriptional analyses of lncRNAs and function-
ally characterized cancer subtype-associated lncRNAs in 
breast cancer and lung cancer, proposing a novel clinical 
implication for lncRNAs as valuable biomarkers for pre-
diction of response to treatment as well as patient out-
come [27, 46]. Compared to protein-coding genes, the 
advantage of lncRNAs as molecular biomarkers is that 
lncRNA expression is more closely associated with its 
biological function and tumor status [16, 47]. However, 
to date, expression profile-based prognostic lncRNA sig-
nature for prediction of survival of NSCLC patients has 
not been investigated.

Recently, several studies have reported that lncRNA 
expression profiles can be obtained from publicly avail-
able, custom-designed DNA microarrays by re-anno-
tating the array probes [19, 25, 26, 35, 47]. In this study, 
microarray probe re-annotation was used to repurpose 
the publicly available human Affymetrix microarray data 
(HG-U133 Plus 2.0) and subsequently obtain lncRNA 
expression profiles of 603 NSCLC patients from GEO. 
To identify lncRNAs with prognostic value in NSCLC, 
survival analysis was performed by integrating lncRNA 
expression profiles and clinical information in a large 
cohort of NSCLC patients. An expression pattern of 
eight lncRNAs was found to be significantly associated 
with OS of NSCLC patients in the GSE37745 training 
dataset. Further ROC analysis demonstrated good per-
formance for predicting 5-year OS. A prognostic risk 
score model was developed based on the expression data 
of these eight lncRNAs and weighted by the estimated 

regression coefficients from multivariable Cox regression 
analysis. With this eight-lncRNA signature, patients in 
the training dataset with high-risk scores tended to have 
lower OS than those with low-risk scores. The separation 
between survival curves for high- and low-risk patients 
of the training dataset used for model development was 
observed. A previous simulation study revealed that 
a prognostic model can also be developed that is sig-
nificantly associated with survival time in the training 
dataset when using completely random gene expression 
profiles [48]. To evaluate the robustness and reproduci-
bility of the prognostic power of the eight-lncRNA signa-
ture, it was also tested in the non-overlapping two other 
independent NSCLC patient cohorts (GSE31210 and 
GSE50081) using the same model and criteria as those 
from the training dataset. In these tests, the prognostic 
power was also strong, indicating that the eight-lncRNA 
signature demonstrated good reproducibility and robust-
ness for the NSCLC patients.

Several studies have observed different clinical charac-
teristics and survival time among different age groups of 
NSCLC patients [49–51]. Multivariable Cox regression 
analysis was thus used to assess the independence of the 
eight-lncRNA signature in predicting OS. With age, gen-
der, smoking status, stage and subtype as covariables in 
the regression analysis, risk score of the eight-lncRNA 
signature was found to have maintained an independent 
correlation with OS. In the stratified analysis, the eight-
lncRNA signature showed prognostic power for different 
age groups, in which patients belonging to the same age 
group could be classified into high- and low-risk groups 
with significantly different survival prospects, indicating 
that the prognostic value of the eight-lncRNA signature 
was independent of age of the NSCLC patients. In lung 
cancer, clinicopathological parameters like tumor his-
tology, staging and localization of metastases determine 
patients’ outcome [52]. Since tumor stage and subtype 
data was only available for the GSE37745 patient data-
set, multivariate Cox regression analysis and stratified 
analysis were performed to assess the stage- and subtype-
independence of prognostic power of the eight-lncRNA 
signature. The eight-lncRNA signature was indeed found 
to be stage-dependent in NSCLC patients, and its prog-
nostic power was significant in stage I and II patients, 
in which all patients in stage I and II could be separated 
into high- and low-risk groups with significantly different 
survival. However, the eight-lncRNA signature achieved 
a p value of 0.253 for OS prediction of late stage patients, 
which was above the 0.05 significance level, suggesting 
that patients with early stage cancer may benefit signifi-
cantly from this eight-lncRNA prognostic signature. Fur-
ther multivariate Cox regression analysis testing tumor 
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subtype-independence suggested that prognostic power 
of the eight-lncRNA signature is independent of tumor 
subtype. Taken together, these results suggest that the 
prognostic power of the eight-lncRNA signature for pre-
dicting OS of NSCLC patients is independent of other 
clinical features except for stage.

Tens of thousands of lncRNAs have been identified 
and predicted by large-scale transcriptome analysis 
in humans [53]. However, the functions of only a few 
lncRNAs have been well characterized, so no thorough 
functional annotation data is available for the eight 
prognostic lncRNAs in the current literature. Recent 
bioinformatics studies have suggested that the func-
tion of lncRNAs could effectively be predicted with 

the inclusion of different kinds of biological data. To 
increase our understanding of the biological roles of 
the eight prognostic lncRNAs in NSCLC, functional 
enrichment analysis was performed for 679 protein-
coding genes co-expressed with the eight prognostic 
lncRNAs at the GO and KEGG pathway level. The bio-
logical processes most highly associated with the genes 
were organ development, cell proliferation and immune, 
response to stimulus, catabolic and metabolic process. 
In particular, several co-expressed protein-coding genes 
with eight prognostic RNAs were proven to participate 
in the NSCLC pathway. These results implied impor-
tant functional roles of the eight prognostic lncRNAs in 
tumorigenesis.

Figure 3  Survival analyses of all patients with available age or tumor stage information using the eight-lncRNA signature. a Kaplan–Meier survival 
curves for younger patients with NSCLC (age ≤65, n = 337). b Kaplan–Meier survival curves for elder patients with NSCLC (age >65, n = 226). c Sur-
vival prediction in early stage patients: Kaplan–Meier survival curves for all patients with stage I and II (n = 165). d Survival prediction in late stage 
patients: Kaplan–Meier survival curves for all patients with stage III and IV (n = 31).
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Due to the restriction of available data, gene expression 
profiles of only 2,313 of the tens-of-thousands of known 
and predicted lncRNAs were obtained. However, the prog-
nostic power of the eight-lncRNA signature uncovered in 
this study for predicting OS consistently observed in mul-
tiple independent datasets. Moreover, the incompleteness 
and low coverage of available lncRNA-related datasets are 
common when by studying lncRNA-disease associations. 
Although the functions of these eight lncRNAs have been 
inferred by bioinformatics analysis, the biological roles of 
these eight lncRNAs in tumorigenesis are still not clear 
and should be investigated in further experimental stud-
ies. With the rapid increase of lncRNA-related studies, 
more comprehensive lncRNA will become available, and 
lncRNA biomarker development for clinical prognostic 
evaluation of NSCLC should increase.

Conclusions
In summary, by examining lncRNA expression pro-
files of patients with NSCLC, our study identified eight 
lncRNAs associated with overall survival of NSCLC 
patients. A prognostic lncRNA signature was devel-
oped based on the expression patterns of these eight 
lncRNAs in the training dataset to predict the overall 
survival, and subsequently was validated in other two 
independent datasets. Further analysis demonstrated 
that the prognostic power of the eight-lncRNA signa-
ture for prediction of survival was independent of other 
clinical features. Our results suggested that the eight-
lncRNA signature may be an effective independent 

prognostic molecular biomarker in the prediction of 
NSCLC patient survival.
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