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Effects of hydrogen‑rich saline on early 
acute kidney injury in severely burned rats 
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Abstract 

Background:  Early acute kidney injury (AKI) in severely burned patients predicts a high mortality that is multi-fac‑
torial. Hydrogen has been reported to alleviate organ injury via selective quenching of reactive oxygen species. This 
study investigated the potential protective effects of hydrogen against severe burn-induced early AKI in rats.

Methods:  Severe burn were induced via immersing the shaved back of rats into a 100°C bath for 15 s. Fifty-six 
Sprague–Dawley rats were randomly divided into Sham, Burn + saline, and Burn + hydrogen-rich saline (HS) groups, 
and renal function and the apoptotic index were measured. Kidney histopathology and immunofluorescence stain‑
ing, quantitative real-time PCR, ELISA and western blotting were performed on the sera or renal tissues of burned rats 
to explore the underlying effects and mechanisms at varying time points post burn.

Results:  Renal function and tubular apoptosis were improved by HS treatment. In addition, the oxidation–reduc‑
tion potential and malondialdehyde levels were markedly reduced with HS treatment, whereas endogenous anti‑
oxidant enzyme activities were significantly increased. HS also decreased the myeloperoxidase levels and influenced 
the release of inflammatory mediators in the sera and renal tissues of the burned rats. The regulatory effects of HS 
included the inhibition of p38, JNK, ERK and NF-κB activation, and an increase in Akt phosphorylation.

Conclusion:  Hydrogen can attenuate severe burn-induced early AKI; the mechanisms of protection include the inhi‑
bition of oxidative stress induced apoptosis and inflammation, which may be mediated by regulation of the MAPKs, 
Akt and NF-κB signalling pathways.
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Background
Acute kidney injury (AKI) is a devastating complication 
that affects patients exposed to severe burn injury [total 
body surface area (TBSA) ≥20%], which has been asso-
ciated with a high mortality rate (from 50 to 100%) [1, 
2]. The pathogenesis of AKI post burn is multifactorial 
and not completely understood [1, 2]. Early AKI may be 

attributed to intravascular hypovolemia, systemic vaso-
constriction, early organ dysfunction or myoglobinu-
ria, which appears during the first 5 days post burn and 
results from systemic inflammatory response syndrome 
(SIRS) or apoptosis; late AKI may be caused by sepsis, 
multi-organ failure or drug toxicity [2–5].

Combined with the apoptotic pathway, reactive oxy-
gen species (ROS)-induced oxidative stress is involved 
in the development of renal dysfunction followed by 
AKI or other diseases [6, 7]. In addition, inflammation 
participates in the progression of renal impairment post 
burn, whereas ROS can induce inflammatory cytokine 
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activities via the assistance of the nuclear factor (NF)-κB 
pathway [8, 9]. Mitogen-activated protein kinases 
(MAPKs), including p38 MAPK, c-Jun N-terminal kinase 
(JNK), and extracellular signal-regulated kinase (ERK), 
play important roles in the mediation of apoptosis, cellu-
lar proliferation and differentiation, and previous studies 
have verified that MAPKs are involved in the pathogene-
sis and protection against AKI caused by different stimuli 
[10]. ROS have been reported to be involved in MAPK 
activation [11, 12].

Ohsawa et  al. first reported that molecular hydrogen 
(H2) is a novel, selective antioxidant that specifically 
neutralises the hydroxyl radical (·OH) and peroxynitrate 
anion (ONOO−), without disturbing metabolic oxi-
dation–reduction or ROS-involved signals [13]. H2 is 
electrically neutral and much smaller than the oxygen 
molecule, it can easily penetrate cellular and intracellular 
membranes, which makes it highly effective in reducing 
cytotoxic radicals [14]. It also has a protective effect on 
oxidative stress-induced organ damage [9, 15, 16]. Fur-
thermore, H2 has been shown to suppress inflammation 
and apoptosis in colitis, hepatitis, graft I/R injury and 
some chemical-induced organ injuries via the inhibi-
tion of inflammatory cell infiltration and the regulation 
of pro-inflammatory cytokine expression and inflamma-
tion/apoptosis-related signalling pathways [17–21]. Both 
the inhalation of H2 gas and the application of hydrogen-
rich saline (HS) are effective routes for utilisation of the 
therapeutic properties of H2, as certified by prior experi-
mental and clinical studies [15, 17, 22–25].

Given that ROS-based oxidative stress, and subsequent 
apoptosis/inflammatory response all play roles in the 
pathophysiological development and cytoprotection of 
burn-induced early AKI and that H2 has anti-oxidative 
stress, anti-apoptotic and anti-inflammatory effects, we 
hypothesised that H2 will have a protective effect on renal 
function after severe burn. In addition, details regard-
ing the regulation of intrinsic signalling pathways were 
included in this study. Based on previous experiments, in 
this study, we selected HS as a H2 carrier and intraperi-
toneal (IP) administration as an effective and convenient 
application method [23].

Methods
Animals and treatment
All experiments protocols on animals in this study were 
approved by the Committee on Animal Care of Second 
affiliated hospital, School of Medicine, Zhejiang Univer-
sity (No. 2015-140) and strictly abided by the National 
Institutes of Health Guidelines for the Care and Use of 
Laboratory Animals. Adult male Sprague–Dawley (SD) 
rats (weighing approximately 220–250 g) were purchased 
from the Animal Centre of Zhejiang Chinese Medical 

University (Hangzhou, China) and were housed on a 
12-h light/dark cycle in an air-filtered unit with consist-
ent temperature and humidity and free access to food 
and water. The animals were randomly assigned to seven 
groups (Figure  1), including the Sham group (saline, 
10  ml/kg, immediate IP injection post water immer-
sion) and three Burn + vehicle (saline, 10 ml/kg, imme-
diate IP injection post burn) and three Burn + hydrogen 
saline (HS, 10 ml/kg, immediate IP injection post burn) 
groups (n = 8 per group). The rats in the Burn + vehicle 
groups and Burn +  HS groups were sacrificed by over-
doses of sodium pentobarbital at 6, 24 or 72 h post burn, 
while those in the Sham group were sacrificed at 72  h 
post water exposure. Both kidneys were dissected after 
cardiac perfusion with phosphate-buffered saline (PBS) 
(pH = 7.2) and were maintained in 10% formalin at 4°C 
or in a −80°C freezer for subsequent experiments.

Severe burn model
After a SD rat was anaesthetised with sodium pentobar-
bital (50 mg/kg, IP injection), the shaved back of the rat 
was immersed into 100°C hot water for 15 s, generating 
a full-thickness dermal burn model with 40% TBSA [26]. 
The Sham group was exposed to 25°C water after anaes-
thesia [26]. Liquid resuscitation with lactated Ringer 
solution (LRS) at 4  ml/kg/TBSA was performed via IP 
injection immediately and 6 h after the operation. All rats 
were housed in individual cages and given 0.25  mg/kg 
buprenorphine by subcutaneous injection immediately 
and every 12 h post burn for analgesia. The pain and dis-
tress scale, reported previously, were conducted imme-
diately and every 6  h after recovering from anaesthesia 
to evaluate the pain condition of rat models and instruct 
pain-reliving therapy [27].

HS preparation
Hydrogen-rich saline was prepared as previously 
described [16, 23, 28]. In general, H2 was dissolved in 
0.9% saline for 6  h under 0.4  MPa pressure to a super-
saturated condition using HS-producing apparatuses 
from the Department of Diving Medicine, the Second 
Military Medical University, Shanghai, China. Gas chro-
matography (Biogas Analyzer Systems-1000, Mitleben, 
Japan) was applied to monitor the hydrogen concentra-
tion (maintained at greater than 0.6 mmol/l in HS [13]).

Drug administration
The rats in the three-time-point post burn (6, 24, 72  h) 
Burn + HS groups received HS (10 ml/kg) by IP injection 
immediately after SAH induction, which was re-adminis-
tered every 12 h before sacrifice. An equal volume of 0.9% 
saline (10 ml/kg) was IP-injected into the SAH models of 
the three Burn + vehicle groups (6, 24, 72 h) immediately 
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and every 12 h after SAH induction. The Sham group was 
given 0.9% saline immediately and every 12 h post warm-
water exposure.

Histological evaluation
The fixed kidneys were cut into 7-μm-thick sections for 
haematoxylin and eosin (HE) staining, and the tissue 
slices were observed under the microscope. Histologi-
cal changes were scored based on the percentage of renal 
cortical tubules that expressed epithelial necrosis, and 
these changes were ranked as 0: normal, 1: less than 10%, 
2: 11–25%, 3: 26–75%, and 4: greater than 75%. Ten high-
magnification files for every slice were randomly selected 
for blinded observation.

Renal function evaluation
Rat blood samples were collected to measure the serum 
levels of creatinine (Cr) via a clinical chemistry analyser 

system and kits (Prochem-V, Drew Scientific, Dallas, 
TX, USA). The serum neutrophil gelatinase-associated 
lipocalin (NGAL) levels were detected in the various 
groups using a Rat NGAL ELISA kit (Boster, Wuhan, 
China) according to the manufacturer’s instructions.

Measurement of redox potential, lipid peroxidation 
and antioxidant enzymatic activity
The oxidation–reduction potential (redox potential, 
ORP) value was determined using the HI3131B elec-
trode (Hanna Co, Ltd, Italy) according to the provided 
instructions. For detection, 0.5% renal tissue homogen-
ate was injected into the device under airtight condi-
tions at 25.2°C. The renal tissue homogenate reacted with 
a thiobarbituric acid reactive species (TBARS) assay kit 
(KeyGEN, Nanjing, China), and this reaction was used 
to obtain the malondialdehyde (MDA) levels. Tissue 
superoxide dismutase (SOD), glutathione peroxidase 

Figure 1  Experimental design and animal group classification. Cr creatinine, HS hydrogen-rich saline, IHC immunohistochemistry staining, IF immu‑
nofluorescence staining, LRS lactated Ringer’s solution, NGAL neutrophil gelatinase-associated lipocalin, WB Western blotting.
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(GSH-Px) and catalase (CAT) activities were measured 
using commercial assay kits from KeyGEN Biotech (Nan-
jing, China) according to the manufacturer’s protocols. 
The absorbance values were measured using a microplate 
reader (Model 680 Microplate Reader, BIO-RAD, CA, 
USA).

TUNEL staining for apoptosis
The commercial cell death detection kit was purchased 
from Roche Diagnostics (Indianapolis, IN, USA). The 
stained slices were observed and photographed under 
a microscope (DM5500B, Leica, Solms, Germany), and 
the apoptotic index was determined as the percentage of 
apoptotic cells versus the total number of cells counted in 
a blinded manner.

Immunohistochemistry (IHC) staining
Paraffin-embedded tissues (5-μm-thick slices) were 
examined by IHC and IF staining. Some sections were 
incubated with anti-myeloperoxidase (MPO) antibodies 
(Abcam, Cambridge, UK) overnight at 4°C. Then, they 
were incubated with goat anti-rabbit secondary antibody 
(Boster, Wuhan, China), and visualised with a 3,3-diam-
inobenzidine (DAB) kit (Boster, Wuhan, China). Finally, 
the mounted sections were observed and photographed 
under a microscope at 200× magnification (DM2500, 
Leica, Solms, Germany).

Detection of renal tissue MPO activity
Tissue homogenate were obtained for the detection of 
MPO activity using a rat-specific ELISA kit according 
to the manufacturer’s instructions (Lianshuo, Shanghai, 
China).

Quantitative real‑time PCR (qRT‑PCR) analysis of renal 
tissue
The expression levels of TNF-α, IL-1β, IL-6, IL-10 and 
ICAM-1 were analysed via qRT-PCR. Briefly, total RNA 

was isolated from tissues with TRIzol Reagent (Invit-
rogen, Carlsbad, CA, USA) and RNase-Free DNase I 
(Qiagen, Duesseldorf, Germany). The SuperScript First-
Strand Synthesis System for reverse transcription PCR 
(RT-PCR) (Invitrogen, Carlsbad, CA, USA) was applied 
to synthesise cDNAs, and RNA and cDNA concentra-
tions and purities were measured via BIO-RAD spec-
trophotometry (SmartSpecTM Plus, BIO-RAD, CA, 
USA). The primers (Table 1) were designed using Primer 
Premier 6.0 software and were synthesised by Shanghai 
Biological Engineering Co., Ltd. (Shanghai, China). PCR 
amplifications were conducted using the Power SYBR® 
Master Mix (Invitrogen, Carlsbad, CA, USA) in an iQ™ 5 
Real-time PCR system (BIO-RAD, CA, USA). Expression 
levels were assessed relative to that of 18S rRNA, as an 
internal standard, and the details are shown in Table  1. 
Relative quantification of the target gene expression lev-
els was conducted using the 2−∆∆Ct method.

Western blotting analysis
The protein samples of the right kidneys were mixed 
with loading buffer and subjected to SDS-PAGE. The 
transferred membranes were subsequently blocked and 
incubated overnight at 4°C with the following primary 
antibodies: anti-cleaved caspase-3, anti-Akt, anti-p-Akt, 
anti-p38, anti-p-p38, anti-ERK, anti-p-JNK, anti-JNK (all 
from Santa Cruz, CA, USA), anti-NF-κB p65 (both from 
Abcam, Cambridge, UK), and anti-p-ERK (Cell Signalling 
Technology, Boston, USA). β-actin (Santa Cruz, CA, USA) 
was blotted on the same membranes and served as the 
control. The protein bands were detected with SuperSig-
nal® West Dura Extended Duration Substrate (Pierce, USA) 
and X-ray Film (Kodak, USA) and were then analysed with 
Bandscan 5.0 software and compared with β-actin.

Statistical analysis
The data are presented as the mean ± standard error of 
the means (SEMs). GraphPad Prism version 5.01 (San 

Table 1  The oligonucleotide primers used for PCR amplification

Gene Genbank accession Primer sequences (5′–3′) Size (bp) Annealing (°C)

Rat TNF-α NM_012675.3 GCCACCACGCTCTTCTGTCTACTG
TGGGCTACGGGCTTGTCACTC

152 64

Rat IL-1β NM_031512.2 GCTTTCGACAGTGAGGAGAATGAC
CTGCTGTGAGATTTGAAGCTGGAT

126 64

Rat IL-6 NM_012589.2 TGACAGCCACTGCCTTCCCTAC
CAATCAGAATTGCCATTGCACAA

169 64

Rat IL-10 NM_012854.2 GCACTGCTATGTTGCCTGCTCTT
GAGCATGTGGGTCTGGCTGACT

111 64

Rat ICAM-1 NM_012967.1 CACAAACGACGCTTCTTTTGCTCT
CCCCTCTTGCCAGGTCCAGTT

144 64

Rat 18S (reference substance) M11188 GAATTCCCAGTAAGTGCGGGTCATA 105 64
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Diego, CA, USA) and SPSS 19 (SPSS, Chicago, IL, USA) 
were used for the statistical analyses. The comparisons 
between the Sham group and each of the burn groups, 
which were treated with saline or HS, were conducted 
using Mann–Whitney U tests. Multiple comparisons 
among groups treated with saline or HS at different 
times were analysed with two-way analysis of variance 
(ANOVA) followed by Bonferroni’s post hoc tests. A 
value of p < 0.05 was accepted as statistically significant.

Results
HS attenuates the severity of renal tubular damage 
and the elevation of serum Cr and NGAL levels in severely 
burned rats
HE-stained slices were analysed via histological exami-
nation (Figure  2a). The tubular damage scores signifi-
cantly increased in the rats at 6 h post burn and remained 
elevated at 72  h post burn, although a slight decrease 
was observed at 24 h (all p < 0.05, vs Sham) (Figure 2b). 
Similarly, significant elevations in serum Cr levels were 

observed post burn at three time points (all p < 0.05, vs 
Sham) (Figure 2c). For HS treatment, the tubular damage 
scores in the rats were significantly decreased at the dif-
ferent time points post burn injury (all p  <  0.05, vs cor-
responding Burn  +  saline) (Figure  2b); in addition, the 
Cr levels were reduced (Figure  2c). After severe burn 
insult, the serum NGAL levels in the rats were markedly 
elevated at 6 h and were improved at 24 h but remained 
significantly higher than those of the Sham group (all 
p < 0.05) (Figure 2d). The NGAL levels clearly increased 
again at 72 h post burn (p < 0.05) (Figure 2d). HS treat-
ment caused a remarkable decline in the NGAL levels in 
the sera of burned rats at various time points after burn 
(all p < 0.05), and we observed the lowest NGAL level of 
the three Burn + HS groups in the 24-h group (Figure 2d).

HS relieves severe burn‑induced oxidative stress in the 
renal tissues of rats
After burn injury, all three time point groups displayed 
significant elevations in their ORP values in renal tissues 

Figure 2  Histological and laboratory evaluations of renal function in the early stage of post burn. Representative HE-staining images of different 
paired groups (saline or HS treatment) manifested histological evidence of renal tubular damage at different time points post burn at a magnifica‑
tion of ×400. Several injurious changes appeared on the renal tubules after burn insult (a upper row); HS treatment resulted in an attenuation of 
these effects (a lower row). Furthermore, the tubular damage scores provided quantitative verification (b). With respect to the blood examination, 
serum creatinine (c) and NGAL (d) levels showed similar remarkable elevations after burn, which indicated the development of burn-induced 
early renal dysfunction. The sample size was n = 8 for each group. The results were expressed as the means ± SEMs. **p < 0.01, vs Burn + saline; 
#p < 0.05, ##p < 0.01, vs Sham.
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compared with the Sham group (all p  <  0.05, vs Sham) 
(Figure  3a). HS treatment gave rise to marked reduc-
tions in the ORP value in the corresponding groups (all 
p  <  0.05, vs corresponding Burn  +  saline) (Figure  3a). 
Additionally, severe burn induced a sharp increase in the 
MDA level at 6 h (p < 0.05, vs Sham) (Figure 3b). Subse-
quently, the extent of MDA elevation gradually decreased 
at 24 and 72  h, despite the levels of both groups being 
obviously higher than that of the Sham group (both 
p < 0.05, vs Sham) (Figure 3b). HS treatment significantly 
decreased the increases in MDA levels at all three time 
points (all p < 0.05, vs corresponding Burn + saline) (Fig-
ure 3b). Extensive burn injury also reduced the activities 
of endogenous antioxidant enzymes (total SOD, GSH-Px, 
CAT) (all p < 0.05, vs Sham) (Figure 3c–e), and HS appli-
cation significantly reversed the reduction of antioxidant 
enzyme activities post burn (all p < 0.05, vs correspond-
ing Burn + saline) (Figure 3c–e).

Apoptosis evaluation
As shown in Figure  4a, b, the number of tubular apop-
totic cells rose significantly at 6  h post burn, gradually 
increased afterwards, and then continually increased 
to 72  h (all p  <  0.05, vs Sham), whereas HS treatment 
substantially ameliorated burn-induced renal tissue 

apoptosis in the 6-, 24- and 72-h Burn + HS groups (all 
p < 0.05). In addition, burn injury caused a consistent ele-
vation in cleaved caspase-3 (activated caspase-3, indicat-
ing apoptosis) levels from 6 to 72 h post burn, all of which 
were dramatic (all p < 0.05, vs Sham), while HS injection 
clearly attenuated this trend (all p < 0.05, vs correspond-
ing Burn + saline) (Figure 4c). In terms of pro-apoptotic 
protein expression, the protein level of cleaved caspase-3 
increased remarkably with time post burn, whilst cas-
pase-3 showed a similar expression trend from 6 to 72 h 
after burn insult (all p  <  0.05, vs Sham) (Figure  4d, e). 
After HS administration, the expressions of cleaved cas-
pase-3 and caspase-3 at the three times exhibited drastic 
declines, in contrast to the corresponding Burn + saline 
groups (all p < 0.05) (Figure 4d, e). The ratio of cleaved 
caspase-3/caspase-3 represents the actual activation of 
caspase-3 and reflects apoptosis induction. Although 
the ratio of cleaved caspase-3/caspase-3 remained 
unchanged at 6  h post burn when compared with the 
Sham group, a slight increase was observed at 24 h, and 
a marked increase was observed at 72  h. The ratio of 
cleaved caspase-3/caspase-3 for the three HS treatment 
groups (6, 24 and 72 h) levelled out at a lower level, and 
a significant difference compared to the Burn +  saline 
group occurred at 72 h post burn.

Figure 3  Assessment of oxidative stress and antioxidant enzyme activities in the kidneys of burned rats and the effects of HS treatment. After burn 
injury, the renal tissues of the rats displayed significant elevations in the ORP value in the different groups compared with the Sham group (b). Addi‑
tionally, the MDA levels in the rat renal tissues presented remarkable augmentations after burn (a), with simultaneous declines in the activities of 
endogenous antioxidant enzymes (SOD, GSH-Px, and CAT) (c–d). Following the application of HS for different lengths of time post burn, significant 
reductions were observed in the ORP and MDA levels, and antioxidant enzyme activities increased (a–e). The sample size was n = 8 for each group. 
The results were expressed as the means ± SEMs. *p < 0.05, **p < 0.01, vs Burn + saline; #p < 0.05, ##p < 0.01, vs Sham.
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Changes in MPO and inflammatory mediators in kidneys 
post burn and after HS treatment
MPO was detected via IHC staining in rat kidneys after 
burn injury (Figure  5a). HS treatment was associated 
with decreased numbers of positively labelled cells in 
renal tissues (Figure  5a). Severe burn injury also led to 
gradually elevated renal tissue MPO levels from 6 to 72 h 
(all p < 0.05, vs Sham) (Figure 5b), whereas these burn-
induced MPO level increases were significantly low-
ered in the three Burn + HS groups at 24 and 72 h (all 
p < 0.05) (Figure 5b).

Moreover, the mRNA expression of TNF-α and IL-1β 
in renal tissues was markedly increased at 6  h post 
burn (p < 0.05, vs Sham), and the extent of this increase 
was reduced at 24 h post burn injury but was elevated 
again at 72 h post burn (p < 0.05, vs Sham) (Figure 6a, 
b). In addition, the elevated mRNA expression of 

IL-6 gradually decreased over time in the rat kidneys, 
although all mRNA expression levels at the three time 
points were significantly elevated (all p < 0.05, vs Sham) 
(Figure 6c). The levels of both IL-10 and ICAM-1 were 
clearly increased at 6  h and continued to increase 
until 72 h post burn (all p < 0.05, vs Sham) (Figure 6d, 
e). After HS treatment, the mRNA expression levels 
of the selected inflammatory mediators were mark-
edly reduced in all time-paired Burn +  HS groups (all 
p < 0.05) (Figure 6a–c, e), whereas the increase of IL-10 
expression became more remarkable (all p  <  0.05, vs 
corresponding Burn + saline) (Figure 6d).

Western blotting assessment of signalling proteins
Following severe burn injury, phosphorylated Akt (p-Akt) 
levels were significantly increased at 6  h and peaked at 
24 h post burn, followed by a reduction in this elevation 

Figure 4  Analysis of apoptosis in renal tissues post burn. TUNEL staining revealed increased numbers of apoptotic cells at 6, 24, and 72 h post burn, 
whereas corresponding reductions in the time-paired groups were observed with the regular administration of HS (a) (vs Sham, magnification 
×200). The quantitative assessment of the numbers of apoptotic cells is shown (b). In addition, cleaved caspase-3 protein expression, as a marker 
of apoptotic activation, revealed significant gradual elevations over time, and HS markedly down-regulated cleaved caspase-3 expression (c–f). 
The sample size was n = 5 for TUNEL staining and n = 6 for Western blotting for each group. The results were expressed as the means ± SEMs. 
**p < 0.01, vs Burn + saline; #p < 0.05, ##p < 0.01, vs Sham.
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at 72 h (all p < 0.05, vs Sham) (Figure 7a). The levels of 
activated p38, i.e., phosphorylated p38 (p-p38), exhibited 
a marked, stepwise elevation from 6 to 72 h (all p < 0.05, 
vs Sham) (Figure 7b). Following HS treatment, HS clearly 
promoted the further augmentation of the p-Akt/Akt 
ratio (all p < 0.05, vs corresponding Burn + saline) (Fig-
ure  7a). In contrast, the ratio of p-p38/p38 in the renal 
tissues of severely burned rats markedly decreased in all 
time groups (all p < 0.05, vs corresponding Burn + saline) 
and ultimately reached a similar value as that of the Sham 
group at 72 h (Figure 7b).

Although obvious changes in p-ERK protein expres-
sion were observed post burn (all p < 0.05, vs Sham) (Fig-
ure 7c), HS treatment led to significant down-regulation 
of p-ERK at all selected time points (all p < 0.05, vs cor-
responding Burn + saline) (Figure 7c). Furthermore, the 

activated pro-apoptotic kinase JNK (p-JNK) exhibited 
increased expression after burn injury, and the most 
significant elevation was observed at 72 h post burn (all 
p < 0.05, vs Sham) (Figure 7d); the elevation of p-JNK lev-
els was markedly down-regulated by HS administration 
(all p < 0.05, vs corresponding Burn + saline) (Figure 7d).

As a subunit of the NF-κB dimer, p65 has typically been 
chosen as an index of NF-κB activation [29]. Although 
NF-κB p65 protein expression was significantly increased 
at 6, 24 and 72  h post burn (all p  <  0.05, vs Sham), the 
trend towards increased expression decreased with time 
(Figure 7e). HS displayed an apparent effect of decreasing 
the increased protein expression of NF-κB p65 at all thee 
time points (all p < 0.05, vs corresponding Burn + saline), 
with the greatest reduction observed at 72  h post burn 
(Figure 7e).

Figure 5  Immunohistochemistry renal tissue staining and detection of MPO protein expression in renal tissue and serum. Apparent positive stain‑
ing for MPO, which is considered to be an index of neutrophil infiltration, was observed after burn insult at 6, 24, and 72 h (a upper row), whereas HS 
treatment decreased this phenomenon (a lower row). Based on the ELISAs, the MPO level in rat kidneys increased at all time points after burn insult, 
and the HS treatment ameliorated these elevated MPO levels at 24 and 72 h post burn (b). In addition, serum MPO levels revealed similar elevations 
in the MPO levels in the three Burn + saline groups; marked effects of HS application on the reversal of these elevations were also identified in 
the time-paired Burn + HS groups (b). The sample size was n = 8 for each group. The results were expressed as the means ± SEMs. **p < 0.01, vs 
Burn + saline; ##p < 0.01, vs Sham.
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Discussion
In the present study, we first explored the potential pro-
tective effect of HS on AKI after severe burn in rats. The 
experimental results demonstrated that HS represents a 
potentially novel therapeutic medium for AKI post severe 
burn injury that provides protection via anti-oxidative 
stress, anti-apoptotic and anti-inflammatory effects. 
Moreover, HS might further regulate the MAPKs/Akt/
NF-κB signalling pathways (Figure 8).

Acute kidney injury is typically associated with injuri-
ous histological changes to renal tissue cells, including 
the absence of the proximal tubular brush border, bleb-
bing of apical membranes, separation of tubular epithe-
lial cells from the basement membrane, or aggregation 
of cells and proteins in the luminal region [30]. We also 
observed tubular epithelial necrosis by microscopic 
detection, similar to other studies on AKI caused by dif-
ferent reasons [31–33]. Applied HS, less necrotic tubules 
were found with a lower tubular damage score, which 
suggests a relief of early AKI post burn. In addition, the 
serum Cr and NAGL levels reflect renal function altera-
tion and represent sensitive indicators or biomarkers 
of AKI [5, 30, 34–36]. Serum creatinine level elevation, 

including an increase of at least 0.3 mg/dl or 50%, com-
bined with a reduction in urine output (documented 
oliguria of less than 0.5  ml/kg per hour for more than 
6 h), is also one of the current standard criteria for AKI 
diagnosis [37]. After the critical burn insult, the rat kid-
neys presented progressive histologic injuries with time, 
in parallel renal dysfunction was also observed according 
to the serum Cr and NAGL results. The regular manage-
ment of HS via the IP route effectively ameliorated renal 
tissue damage and improved burn-induced renal dys-
function, all of which suggested the protective potential 
of HS on early AKI post burn.

Substantial evidence has suggested that ROS and oxida-
tive stress play vital roles in the pathogenesis of AKI, and 
similar effects have been verified in other burn-induced 
tissue injuries [38–42]. Because of the abundance of poly-
unsaturated fatty acids, the kidney is considered vulner-
able to ROS-mediated oxidative stress, with the ability to 
generate ROS itself [43, 44]. Moreover, the aberrant and 
excessive production of free radicals such as ·OH and 
ONOO− results in vascular constriction and immoder-
ate consumption of endogenous anti-oxidant enzymes 
such as SOD, GSH-Px, and CAT, eventually giving rise 

Figure 6  Quantitative RT-PCR analysis of inflammatory mediators in the renal tissues of severely burned rats. The qRT-PCR analysis revealed that HS 
treatment could significantly attenuate the clear elevation in mRNA expression after burn in the rat kidneys (a–c, e). Additionally, positive IHC results 
for IL-10 were observed post burn, and more positive renal cells were identified with HS treatment at various time points (d). Although the expres‑
sion of IL-10 mRNA markedly increased with time, HS treatment appeared to enhance this increase in the kidneys of burned rats (d). The sample size 
was n = 6 for each group. The results are expressed as the means ± SEMs. *p < 0.05, **p < 0.01, vs Burn + saline; #p < 0.05, ##p < 0.01, vs Sham.



Page 10 of 15Guo et al. J Transl Med  (2015) 13:183 

to organ injury [13, 23, 45]. In our study, HS exhibited a 
strong ability to attenuate severe burn-induced oxidative 
stress damage to renal tissues by scavenging free radi-
cals and up-regulating endogenous anti-oxidant enzyme 
activities.

Apoptosis is a common response of the kidney when 
confronting insults such as a burn, ischaemia, radiation, 
trauma, or toxic injury [46–49]. Mariano et  al. demon-
strated that pro-apoptotic mediators in the circulatory 
system contribute to renal functional alterations after 
burn injury [47]. Furthermore, ROS-related oxidative 
stress induces mitochondrial dysfunction and tubular 
epithelial cell apoptosis after burn injury via triggering a 
series of apoptotic mediators [30, 50]. We observed the 
obvious induction of apoptosis in renal tissue post burn, 
and persistent ROS-related oxidative stress played roles 

in the progression of apoptosis. Similar to prior reports, 
our results of increased cleaved caspase-3 expression and 
number of TUNEL-positive cells, which corresponded 
to the prior renal function evaluation results, indicated 
that the most severe AKI conditions occurred at 72  h, 
following increased renal failure. In this study, HS treat-
ment significantly reduced renal cell apoptosis in the rat 
burn model, and this was verified to be an anti-apoptotic 
effect.

The inflammatory response also participates in the 
onset and development of early AKI post burn [51, 52]. 
Generally, cell necrosis can cause the loss of cell mem-
brane integrity and the uncontrolled release of products 
of cell death into the extracellular space, all of which can 
initiate an inflammatory response in the surrounding 
tissue and finally result in advanced tissue injury [53]. 

Figure 7  Effects of HS on signalling proteins post burn via western blotting analysis. HS relieved ROS-induced p38 phosphorylation and Akt inhibi‑
tion (a, b). Both of p-JNK and p-ERK displayed marked elevations at the three time points, and HS administration decreased p-JNK and p-ERK expres‑
sion (c, d). The sample size was n = 6 for each group. Following burn insult, NF-κB was markedly activated, and HS attenuated this activation (e). The 
results are expressed as the means ± SEMs. *p < 0.05, **p < 0.01, vs Burn + saline; #p < 0.05, ##p < 0.01, vs Sham.
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Therefore, as well as systemic response caused by local 
burn wound, the tubular necrosis also contributes to the 
inflammatory injury in kidneys of burned rats [54, 55]. 
The extent of inflammation can indirectly reflect the level 
of tissue necrosis. In addition, the release of circulatory 
and tissue inflammatory mediators might cause increased 
vascular permeability and tubular damage, which could 
eventually lead to filtration failure and tubular dysfunc-
tion. In terms of inflammatory mediators, ROS-related 
oxidative stress may initiate inflammatory cascades that 
result in pathophysiological organ changes [56]. Inflam-
matory cytokines and adhesion molecules such as TNF-
α, IL-1β, IL-6, and ICAM-1 trigger a strong inflammatory 
response to injurious stimuli [4], whereas MPO signifies 
an inflammatory condition by reflecting the infiltration of 
neutrophils [40]. IL-10 is an anti-inflammatory cytokine 
that is generated by monocytes/macrophages and T 
and B lymphocytes, which antagonise the inflammatory 
response and regulate auto-immunity [57]. We observed 
and examined renal tissue MPO levels using IHC stain-
ing and ELISA and discovered that the MPO levels of 
rat renal tissues were markedly augmented post burn, 
indicating the potentially important role of inflamma-
tory cell infiltration in tissue injury post burn. The study 
conducted by previous researchers demonstrated that 
H2 could effectively attenuate LPS/burn-induced lung 

neutrophil recruitment and inflammation supported by 
the down-regulation of tissue MPO and proinflamma-
tory cytokines (TNF-α, IL-1β, IL-6) [20, 40]. In addition, 
Cardinal et al. suggested that administration of hydrogen 
water (similar to HS) significantly attenuated the intra-
graft production of inflammatory cytokines (TNF-α, 
IL-6, ICAM-1 and INF-γ) after kidney allotransplanta-
tion [21]. In several in vivo and in vitro studies, H2 was 
reported to bring about a further increase in IL-10 levels 
after endotoxin stimulation as a way to attenuate inflam-
mation [58, 59]. In our study, the final results showed that 
H2 ameliorates AKI after severe burn in rats through an 
anti-inflammatory effect that involves the down-regula-
tion of inflammation-related enzymes and cytokines and 
up-regulation of anti-inflammatory cytokines in the cir-
culation and local tissues.

Afterwards, we estimated the potential value of 
MAPKs and Akt signalling in the beneficial effects of 
H2 on early AKI post burn. As a family of serine/thre-
onine protein kinases, MAPKs are considered to be 
responsible for most cellular responses to cytokines 
and external stress signals and are vital for the induc-
tion of apoptosis and inflammatory mediators [60, 
61]. In terms of p38 MAPK, its activation has been 
reported to participate in the induction of apopto-
sis and inflammatory response in local wounds and 
remote organs after burn insults [54, 62–66]. In addi-
tion, previous studies also indicated that p38 MAPK 
plays an important role in the development of renal 
injuries via its regulation on renal cell apoptosis and 
the release of local or systemic inflammatory mediators 
[67–69]. Feng et al. demonstrated that phosphorylated 
p38 MAPK, regarding as an activated condition, plays 
a more important role in the induction of renal cell 
apoptosis, which contributes to the renal injury post 
burn [30]. In the present study, we observed a similar 
activation of p38 MAPK in the renal tissue after burn, 
paralleling with the enhanced tubular apoptosis and 
the release of pro-inflammatory cytokines, which sug-
gests p38 MAPK may be involved in the progress of 
early AKI post burn through regulating burn-induced 
apoptosis and inflammation. In common knowledge, 
JNK has been implicated in mitochondrial death and its 
activation contributes to cell apoptosis [11, 70]. Several 
previous studies reported that JNK activation in renal 
samples was associated with tubular cell apoptosis after 
renal ischemia–reperfusion [13]. Recently, Marshall 
et  al. demonstrated the silence of JNK2 could allevi-
ate the hepatic apoptosis post burn [71]. In addition, it 
was reported that the JNK pathway plays a critical role 
in the smoke-induced lung injury and the application 
of JNK inhibitor could attenuate the airway apoptosis 
[72]. Except ROS, JNK can also be activated by some 

Figure 8  A schematic diagram of the potential mechanisms of burn-
induced AKI and the routes by which H2 exerts its effects.
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pro-inflammatory cytokines including TNF and IL-1 
[73]. Due to a significant increase of JNK phospho-
rylation and corresponding tubular apoptosis in rats’ 
kidney post burn, we speculated it may play an impor-
tant role in regulating burn-induced tubular apoptosis. 
ERK, another important member of MAPKs, has been 
suggested that its activation is associating with cell sur-
vival in several kinds of renal injuries. However, in this 
study, the burn-induced activation of ERK in rats’ kid-
ney did not company with the corresponding decrease 
of tubular apoptosis. Therefore, ERK may be involved 
in the other aspect of the mechanism of burn-induced 
AKI rather than inhibiting tubular apoptosis. In an in 
vivo study, Seo and collaborators demonstrated that 
activated ERK induces the dissociation of IκBα from 
NF-κB, therefore allowing nuclear translocation and 
DNA-binding of NF-κB and the subsequent produc-
tion of pro-inflammatory cytokines [74]. The result of 
our study exerted that the phosphorylation of ERK, 
as activated ERK, was paralleled with the increase of 
NF-κB p65 expression and the release of pro-inflamma-
tory mediators, which suggests ERK participates in the 
regulation of tissue inflammation during the process of 
burn-induced early AKI. In view that ROS can trigger 
activation of signaling pathways involved in cell migra-
tion and invasion such as MAPKs, H2 is like to influ-
ence some members of ROS to achieve its effect [75]. 
Although H2 has been observed to influence some sig-
nal transduction pathways, some researchers believe 
that this is based on its role as an indirect modulator 
rather than as a molecule binding directly to signalling 
receptors. In contrast, Itoh and colleagues regarded 
H2 as a gaseous signalling molecule due to the result 
showing that H2 could attenuate the phosphoryla-
tion of FcεRI-associated Lyn as well as its downstream 
signal transduction (such as JNK, p38 MAPK, ERK) 
in rat RBL-2H3 mast cells, followed by the inhibition 
of NADPH oxidase activity and reduction of hydro-
gen peroxide (H2O2) levels [76]. In addition to ROS 
activation, JNK can be activated by the LPS-induced 
inflammatory response and attenuated by hydrogen 
inhalation [77]. The data, obtained from human histo-
cytic lymphoma U937 cells, indicated that H2O2 and 
·OH could activate PI3K-Akt and PLC-Ras-Raf-ERK 
signaling pathways [78], whereas Xu and Zhang dis-
covered that saturated HS decreased LPS-induced 
ERK phosphorylation in a rat model of acute liver dys-
function [79]. Moreover, Sobue et al. indicated that H2 
can attenuate ERK, p38 MAPK, and NF-κB activation 
in mouse livers [80]. Taken together, we suggested H2 
may inhibit NF-κB activation by reducing oxidative 
radicals-induced ERK phosphorylation, which allows 

degradation of IκBα from NF-κB. Correspondingly, Akt 
is an important downstream signal of the classic PI3K-
Akt pathway, and Akt activation has been regarded 
as a cell survival factor that antagonises apoptosis in 
renal tissue exposed to heavy metal or burn insult [30, 
61]. The protective effects of Akt in apoptosis include 
enhancing the capacities of antioxidant and anti-apop-
totic proteins and reducing the capacities of pro-apop-
totic proteins [61]. Moreover, the significant activation 
of Akt in rat kidneys was observed in the early stage 
after burn insults, while a late decrease in Akt activa-
tion appeared with increased ROS [30, 81]. Consider-
ing the other possible routes resulting in the activation 
of Akt and our results, the effect of H2 on Akt phospho-
rylation may be attributed to its effect on ROS-medi-
ated Akt inhibition. Taken together, we determined 
that the regular administration of HS could down-regu-
late the p-p38/p38, p-JNK/JNK, and p-ERK/ERK ratios, 
as well as up-regulate Akt phosphorylation.

In a series of previous experiments, NF-κB signalling 
was implicated in AKI induced by various stimuli, such as 
I/R injury, haemorrhagic shock, lipopolysaccharide (LPS), 
or cisplatin, via interactions with TNF-α, IL-1β, ICAM-1, 
etc. [82–88]. In addition, ROS has been reported to par-
ticipate in NF-κB pathway activation, which is unsurpris-
ing given the oxidant-sensitive properties of NF-κB [86]. 
The protective effect of H2 has been manifested in several 
models of inflammatory injury based on its inhibition of 
inflammatory cell infiltration, NF-κB activation and pro-
inflammatory cytokine production [23]. Furthermore, 
H2 has been reported to inhibit cytokine-induced LOX-1 
gene expression by directly suppressing IκBα to down-
regulate NF-κB activation [89]. On the other hand, the 
increase in infection-caused free radicals contributed to 
the subsequent degradation of cytosolic IκBα and to the 
nuclear translocation of NF-κB subunits (p65 and p50), 
and H2 indirectly inhibited NF-κB signalling through 
reducing oxygen-free radicals [13]. ERK may be also 
involved in regulation of H2 on NF-κB signalling, consid-
ering its reported regulation on NF-κB activation [74]. 
Our results indicate that HS may protect the kidneys of 
burned rats from AKI via negatively regulating NF-κB 
signalling.

Conclusion
In summary, the present study first demonstrates the 
protective effects of H2 against early AKI following severe 
burn in rats. The beneficial effects of this treatment are 
a result of its ability to relieve oxidative stress, apoptosis 
and inflammation and may be mediated by the complex 
modulation of the MAPKs, Akt and NF-κB signalling 
pathways.
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