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Abstract 

The treatment of cancer is becoming more precise, targeting specific oncogenic drivers with targeted molecular 
therapies. The epidermal growth factor receptor has been found to be over-expressed in a multitude of solid tumours. 
Immunohistochemistry is widely used in the fields of diagnostic and personalised medicine to localise and visualise 
disease specific proteins. To date the clinical utility of epidermal growth factor receptor immunohistochemistry in 
determining monoclonal antibody efficacy has remained somewhat inconclusive. The lack of an agreed reproduc‑
ible scoring criteria for epidermal growth factor receptor immunohistochemistry has, in various clinical trials yielded 
conflicting results as to the use of epidermal growth factor receptor immunohistochemistry assay as a companion 
diagnostic. This has resulted in this test being removed from the licence for the drug panitumumab and not per‑
formed in clinical practice for cetuximab. In this review we explore the reasons behind this with a particular emphasis 
on colorectal cancer, and to suggest a way of resolving the situation through improving the precision of epidermal 
growth factor receptor immunohistochemistry with quantitative image analysis of digitised images complemented 
with companion molecular morphological techniques such as in situ hybridisation and section based gene mutation 
analysis.
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Background
Personalised cancer medicine, depends upon and 
requires a detailed analysis of both immunohistochemi-
cal and molecular therapeutic targets. Over the last dec-
ade, emphasis has shifted from empirical treatment of 
patients to a biomarker-led, precision approach. Scien-
tific discoveries in carcinogenesis, particularly within the 
field of molecular pathology, have shaped the personal-
ised medicine paradigm [1–4]. The epidermal growth 
factor receptor (EGFR) is expressed on the surface of cells 
of epithelial, mesenchymal and neuronal origin, with an 
expression range of up to 100,000 receptors per cell. This 

overexpression sequentially leads to tumour promot-
ing properties such as increased proliferation, evasion of 
apoptosis and survival [5–9]. Aberrant over-expression of 
this biomarker has been a widely investigated therapeu-
tic target in a range of solid tumours including colorectal 
cancer (CRC) with different anti-EGFR therapies being 
considered.

Following the application of immunohistochemistry 
(IHC) within the field of diagnostic histopathology in late 
1970’s, this method has remained popular for detecting 
and visualising cellular proteins in tissue samples where it 
can be used for both clinical diagnosis and classification 
of tumours [10, 11], including the assessment of EGFR 
over-expression. The conventional, visual assessment of 
protein expression within a tissue microarray or whole 
tissue section involves subjective scoring of the tumour 
cells and normal cells according to the intensity and the 
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distribution of the stain. However, this subjective clas-
sification system does not sufficiently define the cellular 
and sub-cellular categories, and where the immunohis-
tochemical heterogeneity of cells is not adequately taken 
into account [12]. For example, classifying the tumour 
based only on the highest intensity—the so-called ‘hot 
spot’ method, allocates little significance to regions that 
have stained with a lower intensity. The heterogeneity 
of staining observed within tumours and its interpreta-
tive complications have been highlighted in a number of 
recent seminal papers [13–19].

Modern biomarker focused clinical trials must aim to 
identify reliable prognostic and/or predictive biomarkers 
for patient stratification [20, 21]. However, variation in 
IHC methodology, lack of a standardised scoring criteria 
for EGFR and tissue heterogeneity introduce a range of 
variables which impact the reliable application of EGFR 
IHC as a method to determine treatment efficacy [22].

Immunohistochemical variability in EGFR 
detection
In both the clinical and translational research setting, 
protein quantification and visualisation are important 
[10, 23]. The most common method of assessing pro-
tein expression in cancerous cells is immunohistochem-
istry, with other methodologies such as next generation 
sequencing (NGS) also being used to detect appropriate 
targets in specific cancer types [24]. The advantage of 
using IHC is that this method is fast, cost effective; avail-
able within all routine diagnostic laboratories and retains 
tissue context. However, it has the major disadvantage of 
being qualitative or at best semi-quantitative visual scor-
ing with inherent inter- and intra-observer variability 
[25–27]. The limited predictive utility of EGFR expres-
sion for the benefit of EGFR monoclonal antibody ther-
apy may be due to a myriad of pre-analytical variables 
[28–30]. Chromogenic intensity of immunohistochemi-
cal assays have been shown to be affected by the type of 
fixative and the duration of tissue fixation, duration of 
storage and the conditions of the immunohistochem-
istry methodology [28, 30–32]. Although EGFR IHC is 
not used in current clinical practice for selecting patients 
for cetuximab treatment, there are no universally stand-
ardised methodological guidelines [20, 21] unlike HER2 
interpretation and other IHC markers [33–37]. This in 
turn has made both the reproducibility and interpreta-
tion of EGFR results somewhat difficult. Studies have 
found that some EGFR IHC results in various cancer 
types are dependent on the type of antibody used [11, 
38]. Currently, the DakoCytomation® EGFR PharmDx® 
kit [K1492, Clone 218-C9, Dako, Glostrup, Denmark] 
remains the only FDA approved method for EGFR detec-
tion. Despite the pitfalls in EGFR IHC, EGFR remains one 

of the most commonly investigated cancer biomarkers 
due to its oncogenic role in various tumour types [11, 39, 
40]. The clinical utility of EGFR expression detection by 
IHC in colorectal cancer is still somewhat inconclusive, 
with numerous studies failing to demonstrate a predic-
tive and/or prognostic role for EGFR IHC as a compan-
ion diagnostic test for cetuximab [20, 41–43].

EGFR expression does not correlate with response 
to anti‑EGFR therapies?
The EGFR and downstream components of the pathway 
have an integral role in tumorigenesis by means of regu-
lating proliferation, angiogenesis and metastasis [7, 8, 
39] (Figure 1). EGFR inhibition can be achieved by using 
two classes of drugs, tyrosine kinase inhibitors or mon-
oclonal antibodies [44]. Cetuximab and panitumumab 
are monoclonal antibodies that bind specifically to both 
EGFR homodimers and its heterodimers [39, 40, 44]. 
Cetuximab is an IgG1 chimerised, monoclonal antibody 
containing 34% mouse protein, which binds specifically 
to EGFR and its heterodimers [45] (Figure  2). Panitu-
mumab is a fully humanised IgG2 antibody and has been 
found to have less hypersensitivity reactions compared to 
cetuximab [46]. KRAS and NRAS mutations have been 
identified as negative predictive markers for cetuximab 
and panitumumab efficacy in colorectal cancer [47–50] 
(Figure 2). This mutation is now used in current clinical 
practice to stratify patients eligible for cetuximab admin-
istration. However, recent studies identified that tumours 
with a KRAS wild type (KRAS WT) and positive EGFR 
expression as measured by IHC was not predictive of 
anti-EGFR efficacy [20, 42, 50, 51].

The use of cetuximab and panitumumab as both a sin-
gle agent and in combination with chemotherapy has 
shown efficacy in several studies [20, 45, 52–54]. Results 
published from the COIN and CRYSTAL clinical trials, 
and more recent scientific literature seems to suggest 
irinotecan ±5-fluorouracil as preferred chemotherapy 
partners to be used with cetuximab [20, 42, 55–58]. A 
recent meta-analysis by Vale et  al. [59] suggest that the 
differences in the effect may be partially explained by 
the use of oxaliplatin-based or irinotecan-based chemo-
therapy. Chung et al. reported that 25% of patients who 
were found to be EGFR negative demonstrated a com-
plete response to anti-EGFR therapy, the National Can-
cer Institute of Canada Clinical Trials Group CO.17 Trial 
enrolled patients on the basis of EGFR IHC positivity; 
however, there was no correlation between expression 
and response [20, 41, 42, 56, 60, 61]. Also the conven-
tional IHC antibodies used do not reliably detect EGFR 
mutations [62, 63], or differentiate between high affin-
ity and low affinity binding receptors [64], which may in 
turn account for the lack of correlation between EGFR 
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expression and response to EGFR targeting therapies. 
From the reports of EGFR negative patients benefiting 
from cetuximab therapy, it may be hypothesised that 
these patients may indeed have a high ratio of low affin-
ity to high affinity binding receptors and/or EGFR vari-
ants within the tumour [60, 61]. Another possible reason 
for an EGFR IHC negative tumour responding to the 

treatment response may be heterogeneous overexpres-
sion of EGFR in such cases similar to apparently HER2 
negative breast cancer cases showing response to Her-
ceptin treatment [65, 66]. The opinion within the clinical 
setting is that the current recommendations for EGFR 
detection and determining cetuximab efficacy in colorec-
tal cancer from these are not ‘fit for purpose’.

Figure 1  Schematic of the epidermal growth factor receptor and downstream pathways.

Figure 2  Inhibition of EGFR signalling can be achieved with the use monoclonal antibodies cetuximab and panitumumab in RAS wild type 
patients.
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Potential for molecular methods as companion 
confirmatory diagnostic tests for EGFR IHC
Determining EGFR gene amplification status and gene 
copy number (GCN) using fluorescence in  situ hybridi-
sation (FISH) and silver enhanced in  situ hybridisation 
(SISH) has been shown to be extremely useful in deter-
mining efficacy of some classes of anti-EGFR therapies 
[67–69]. Major advantages of using SISH rather than 
FISH is that SISH can be assessed using a bright-field 
microscope and probe signal remains stable in storage 
unlike fluorescent probes [69–72]. Attempts to stand-
ardise a method for EGFR FISH yielded inconclusive 
results, with inter-laboratory variability of scoring cut-
offs [73, 74]. Similar to that of KRAS mutational status, 
patients who have been found to have a low EGFR GCN 
are unlikely to respond to treatment with either cetuxi-
mab or panitumumab [69, 70, 74, 75]. A study carried 
out by Personeni et  al. found that EGFR GCN could be 
used to predict the outcome after treatment with cetuxi-
mab in colorectal cancer patients and was able to predict 
response and overall survival independent of KRAS sta-
tus [76]. However, like many other EGFR studies in colo-
rectal cancer the cut-offs used in the complete patient 
cohort did not perform as well as in the training set from 
which they were derived and the authors recommended 
that their cut-offs should not be used as part of any deci-
sion making process [76]. Algars et al. [70] demonstrated 
a clinical benefit from anti-EGFR therapy using EGFR 
gene copy number, from regions of high EGFR expression 
in KRAS WT patients to determine response to targeted 
therapies. This was different from the method used by 
Personeni et  al. [76] in a molecularly unselected popu-
lation. The aspect of non-molecularly defined cohort 
may account for the inability of Personeni et al. [70, 76] 
to standardise reproducible SISH cut-offs for the clini-
cal setting. In relation to determining the regions of high 
EGFR expression, it is important to note that the anti-
bodies used were not from the FDA approved PharmDx™ 
assay.

The role of sub‑cellular localisation of epidermal 
growth factor receptor
EGFR protein expression in colorectal cancer has been 
widely reported as membranous; however, numerous 
studies have noted the expression of EGFR within the 
cytoplasm of tumoural cells [77–79]. Unlike HER2, posi-
tive expression of EGFR is not predictive of response to 
anti-EGFR therapies, however, overexpression has how-
ever been linked to a poorer prognosis in colorectal can-
cer [20, 42, 80–82]. Upon interaction with a ligand the 
EGFR is internalised which initiates a complex signalling 
cascade and is degraded in the lysosomal compartment 
within the cytoplasm [7, 8, 83–85]. In previous studies 

in pancreatic and thyroid cancer, cytoplasmic expres-
sion of EGFR has been linked to a poor prognosis [77–79, 
86, 87]. These studies suggest that the cellular localisa-
tion of EGFR depend on tumour stage and cancer con-
text and may have significant clinicopathological value 
particularly in those patients treated with cetuximab 
with predictive or prognostic utility. Although Chung 
and colleagues [60] demonstrated that patients benefited 
from the cetuximab in the absence of membranous EGFR 
staining, what was not reported was whether any patients 
exhibited cytoplasmic EGFR staining.

Furthermore, the cytoplasmic localisation of EGFR in 
both RAS wild type and mutant metastatic colorectal 
cancer may confer an aggressive phenotype with these 
tumour cells having an altered intracellular metabolism 
and may be indicative of tumour cell population having 
undergone epithelial to mesenchymal transition [88, 89]. 
Additionally KRAS mutations are known to have differ-
ent phenotypes with mutations in codon 13 shown to 
benefit from the addition of cetuximab. KRAS mutations 
can signal through the RAF-MEK-ERK MAPK pathway 
or the PI3K-AKT-mTOR pathway, suggesting that cyto-
plasmic localisation depending on KRAS mutant isoform 
may have predictive and prognostic utility in RAS mutant 
colorectal cancers [90–92].

Extracellular and intracellular mechanisms 
as predictive markers for anti‑EGFR therapies 
in colorectal cancer
KRAS and NRAS mutations are established negative 
predictive markers for cetuximab [20, 50, 53, 56–58, 93], 
and account for approximately 50% of all mutations in 
colorectal cancer, coupled with other mutations approxi-
mately 40% of patients are eligible for anti-EGFR thera-
pies, however, not all eligible patients respond to these 
therapies. Even with the extensive molecular charac-
terisation of colorectal cancer [94–96], there are few 
molecular markers implemented in the clinical setting 
to determine clinical efficacy of anti-EGFR therapies. 
There are a variety of molecular markers that are still 
under extensive investigation such as BRAF and PI3KCA 
mutations to determine their roles in predicting efficacy 
[1, 4, 57, 58] (Figure 2). The histopathological evaluation 
of tissue has demonstrated an integral role of the micro-
environment in tumoural development and progression. 
Studies have identified and highlighted the complex-
ity of the crosstalk between tumour cells and host cells 
such as immune cells, cytokines and blood vessels which 
modulates tumour progression [97–101]. This observa-
tion has been expanded upon by Galon, Pagés and col-
leagues which led to the publication of seminal papers 
which defined the Immunoscore and has demonstrated 
the prognostic and predictive significance of immune 
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involvement in colorectal tumours amongst others [100–
108]. Automated interpretation of tissue biomarkers to 
predict response to therapy and future clinical behaviour 
of a tumour will provide an objective, standardised and 
reproducible method for tissue biomarker discovery and 
validation [22, 109].

Metastatic colorectal cancer has one of the poorest 
5-year survival rates which emphasises the need for 
additional predictive and prognostic markers to facili-
tate efficient and informative patient stratification [110]. 
There have been eleven ligands identified that are part 
of the HER family with various receptor specificity, six 
of these ligands have been found to associate with the 
epidermal growth factor receptor which induces dimer-
ization and initiation of complex intracellular signalling 
cascades [7, 8, 111] (Figure 1). Activation of oncogenic 
signaling through autocrine, paracrine or juxtacrine 
mechanisms have been shown to have both a predic-
tive effect for response to targeted therapies [112, 113] 
and as a resistance mechanism through the activation of 
alternative survival pathways [114, 115] (Figure 2). Gene 
expression profiling of these ligands have associated 
epiregulin (EREG) and amphiregulin (AREG) having a 
role in cetuximab efficacy [112]. An increased mRNA 
level of either ligand has been shown to be associated 
with sensitivity to cetuximab monotherapy which has 
reflected by the longer progression free survival [112, 
113, 116]. Tumours with increased levels of both AREG 
and EREG ligands and a KRAS WT benefited the most 
from anti-EGFR therapies these findings shows strong 
predictive value as KRAS and NRAS have strong nega-
tive predictive value [47, 48, 56, 112, 113], with a recent 
publication reporting that patients with KRAS mutant 
adenocarcinoma of the lung with induced epiregulin 
expression was associated with an aggressive phenotype 
[117].

Beyond total EGFR: determining pathway 
activation for predicting anti‑EGFR response
The presence or absence of total EGFR has been shown 
to have no predictive utility for anti-EGFR therapies 
in mCRC [42, 45, 60], thus emphasising the complexity 
of not just the epidermal growth factor receptor but of 
the entire EGFR signalling pathway [118]. Ascertaining 
the activation status of the EGFR pathway may indeed 
unveil additional EGFR-mediated insights, which has 
to date eluded clinical practice. However, the challenge 
facing this paradigm is how to best measure and inter-
pret activation status, what is well known is the plethora 
of phosphorylation of proteins within the intracellular 
compartment of cells. Indeed subtle changes in cellular 
biochemistry can alter the expression pattern of these 
proteins as well as gene expression profiles therefore 

providing misleading information as to the activation sta-
tus of the cellular pathways [30].

The activation status of most signalling pathways can 
be determined through the measurement of post-trans-
lational modifications, such as the phosphorylation status 
of key amino acids, involved in signal transduction. Phos-
pho-specific antibodies using immunohistochemistry or 
western blot analysis can be used to measure these. These 
dynamic post-translational changes can be used demon-
strate inhibition of signalling pathways by investigational 
drugs. The utility of these pathway activation markers 
and technologies in clinical trials has, however, been 
limited by the evanescent nature of amino acid phospho-
rylation which is rapidly reversed by endogenous phos-
phatases. Extensive studies have shown that the rate of 
tissue penetration by fixatives, such as formalin, in most 
solid tumours is too slow to inactivate phosphatases 
resulting in preservation of phosphorylation only in the 
outer few millimetres (<5mm) of the tissue sample [119]. 
The lack of reliable means to collect, store and ship such 
samples and to reliably preserve and measure these labile 
events has often failed to generate reproducible clinically 
translatable results. However, recent translational studies 
carried out by Chafin et al. [120, 121] identified a method 
termed “2+2” as a robust method to preserve these phos-
phorylated proteins.

What has become apparent in precision medicine that 
no single field can answer the complexity of cancer. A 
holistic understanding of the tumour genome, phenome, 
immunome and a myriad of other “ome” related clas-
sifications is needed to realize the potential of precision 
medicine. Genomic stratification of colorectal cancers 
has identified at least five molecular subtypes of colo-
rectal cancer all of which have various phenotypes and 
clinical outcomes [122, 123]. Irrespective of EGFR IHC 
status, a significant proportion of RAS wild type colo-
rectal cancers are resistant to cetuximab, which suggests 
other EGFR-mediated or related mechanisms, contrib-
ute to this paradox. Thus looking beyond total EGFR is 
warranted, EGFR can be activated through the auto-
phosphorylation of its tyrosine residues that in-turn 
stimulates a myriad of downstream signaling cascades. 
Integrating this knowledge into the EGFR paradigm, it 
is plausible that, if accurately detected, phosphorylated 
EGFR (pEGFR) may indeed reflect receptor utilization by 
the specific tumour.

Elegant studies carried out by Prahallad et  al. [1] and 
Corcoran et al. [4] identified that BRAF mutant colorec-
tal cancer cell lines were sensitive to dual inhibition with 
cetuximab and vemurafenib compared to melanoma cell 
lines. Indeed as shown by Corcoran and Prahallad inhibi-
tion of a single oncogenic mutation in colorectal cancer 
cells with vemurafenib, the same drug which has shown 
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up to 50% response rates in melanoma, efficacy is not 
the same [1, 4]. This is indeed an example of how the 
microenvironment of the specific tissue type can regu-
late resistance mechanisms to both targeted therapies 
and chemotherapy treatment. However, by addressing 
this ‘kinome remodeling’ [124] through the use of com-
bination therapies, efficacy was demonstrated. BRAF 
mutations are found in up to 60% of all melanomas [125] 
and up to 10% of colorectal cancers, with BRAF mutant 
CRCs having a poorer prognosis to both wild type and 
RAS mutant tumours. Corcoran et  al. [4] found that 
phosphorylated EGFR was overexpressed in over 60% 
of BRAF mutant colorectal cancers compared to pEGFR 
in melanoma. Taking these findings in subtype specific 
context suggests that baseline pEGFR levels may make 
these tumours more prone to EGFR-mediated resistance 
suggesting the use of pEGFR as a predictive marker to 
identify patient populations who may respond to differ-
ent combination therapy approaches. Thus patients with 
high tumoural pEGFR levels may indeed respond better 
to cetuximab and/or erlotinib in combination with vemu-
rafenib, for which there are several on-going clinical trials 
an example of which is the EViCT trial being conducted 
in Melbourne (ACTRN12614000486628). Patients with 
low pEGFR may be better candidates for MEK inhibi-
tors such as trametinib, in combination with vemurafenib 
which has shown improved clinical efficacy in melano-
mas compared to those treated with vemurafenib alone 
[126, 127]. It is plausible that mCRC patients whose 
tumours are negative for EGFR IHC indeed have elevated 
pEGFR which may explain why a subgroup of these total 
EGFR negative patients respond to anti-EGFR therapies.

Digital image analysis for improving the precision 
and predictive potential of EGFR IHC
Visual interpretation of immunohistochemistry is a sub-
jective measurement coupled with an arbitrary threshold 
to differentiate and classify patients into expression cate-
gories [128]. In addition to the subjectivity, there are well 
recognised issues of poor reproducibility in evaluation 
of tissue structures such as determining viable tumour 
percentage and tumour cellularity for molecular testing 
and grading systems such as Gleason grading in pros-
tate cancer [129–131]. The increased use of digital slides 
and whole slide imaging in the last decade has ushered 
in an exciting era of computer-aided histopathology, 
with image analysis approaches providing a powerful 
companion tool for the extraction of quantitative data 
from digital images in a robust and reproducible manner 
[132]. Not only does this quantitative, multi-parametric 
data enable clinical correlations but also offers the ability 
to visualise quantitative tumoural phenotypes and pro-
vide deeper insights into the biological characteristics 

of tissue specimens. As stated in the preceding sections, 
immunohistochemistry is an extremely important tool 
for the identification of single disease-related protein 
biomarkers [10]. Although the advantages of immuno-
histochemistry in biomarker discovery and validation 
are clear, the accompanying issues of inherent subjec-
tivity and poor reproducibility of chromogenic inter-
pretation of routine biomarkers and tissue architecture 
even by experienced pathologists are well described 
[109, 128–130]. Image analysis can significantly improve 
EGFR IHC evaluation through the quantification of 
expression within an automatically detected tumoural 
regions, providing an objective histological score. In 
recent guidelines published for the interpretation of 
biomarkers in breast cancer, the American Society of 
Clinical Oncology and the College of American Patholo-
gist’s recommended quantification of ER, PR and HER2 
by image analysis and in recent years some commercial 
image analysis algorithms have been approved for the 
evaluation of these markers [34, 35]. Riley et  al. [133] 
used a novel quantitative approach to investigate the 
co-localisation of biomarkers within the cytoplasm and 
nucleus in NSCLC within both tumoural and stromal 
tissue, highlighting prognostic clinical insights as to the 
expression of these biomarkers in various histological 
subtypes, which may benefit from targeted therapies. Of 
recent promise and excitement is the development of an 
automated approach by Galon and colleagues to quan-
tify the type, density and localisation of immune cells in 
cancer, which has been shown to have prognostic utility 
across multiple cancer types [101, 102, 106]. A compre-
hensive review on the role of digital pathology and image 
analysis in tissue biomarker research has recently been 
published by our group [109]. Quantitative studies of 
EGFR IHC are underway by a number of groups which 
may throw new light the role of EGFR in predicting 
response to therapy. These studies and the integration 
of ‘big data’ obtained from quantitative image analysis 
are likely to be important in defining a specific cancer 
phenome on a patient by patient basis, establishing new 
patient signatures and helping deliver the personalised 
medicine promise of ‘the right drug, for the right patient’ 
[134–139].

Conclusion
EGFR over-expression in colorectal cancer as determined 
by immunohistochemistry has led to initial clinical trials 
investigating patient selection for cetuximab and pani-
tumumab therapies and shown promising results [41, 
45]. However, what is now apparent is that patients can 
benefit from the addition of cetuximab in the absence 
of positive EGFR immunohistochemistry [20, 42, 46, 
51, 60]. The impact of both intra- and inter-tumoural 
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heterogeneity on therapeutic response, and an effec-
tive screening methodology has yet to be clinically 
implemented [140–142]. Additionally it is important 
to acknowledge that pre-analytical variables alone do 
not solely contribute to our inability to predict respon-
siveness to anti-EGFR therapy using tissue-based EGFR 
analysis. Indeed the complexity of the EGFR pathway as 
highlighted by a multitude of publications in recent years 
merits more in-depth studies in relation to this pathway.

The tumour tissue investigated for EGFR expression is 
usually the primary tumour sample, however, this may 
not reflect the molecular landscape and immunohisto-
chemical profile of the metastatic site [13, 57, 58, 143, 
144]. Studies by Chung and other authors have proposed 
that the expression of EGFR may vary within cancer types 
due to the ratio of low to high affinity binding receptors, 
which are not differentiated between by the commonly 
used EGFR assays [60, 62, 145–147]. Rather than relying 
upon an IHC method alone for determining patients who 
will benefit from cetuximab a more reliable approach 
based on a two-pronged strategy utilising a combination 
of EGFR IHC and EGFR SISH could be utilised to deter-
mine the EGFR status. Using such a combined approach 
it has been possible to identify clinically beneficial thera-
peutic cohorts of patients based on highest EGFR protein 
expression and assessing the gene copy number specifi-
cally within this region [70]. There is therefore a case to 
develop an assay for EGFR similar to that of the Dual ISH 
approach in HER2 [148]. In addition to the benefits of the 
dual method there is also the technically feasible scope 
for assessing the two independent molecular markers 
of the EGFR status on a single tissue section making the 
overall analysis more precise and reproducible.

Digital pathology and image analysis may indeed serve 
as companion prognostic and or predictive tools in per-
sonalised medicine [109], with some companies receiving 
FDA clearance for algorithms evaluating tissue biomark-
ers such as HER2, ER, PR and Ki67. For EGFR, quanti-
tative analysis of cell membrane expression may not 
be sufficient for patient stratification and selection for 
anti-EGFR therapy, and more precise localisation of the 
biomarker may be key. Whilst difficult to achieve this 
using visual scoring, this becomes entirely feasible using 
computer-aided image analysis. In the current immuno-
histochemical interpretation guidelines for EGFR and 
HER2, cytoplasmic localisation is not included. Expres-
sion of immunohistochemical markers must be evaluated 
depending on cellular context and in a cancer specific 
manner; the prognostic utility of sub-cellular localisa-
tion of biomarkers is exemplified by beta-catenin expres-
sion and localisation in solid tumours [149]. Molecular 
interactions are both intracellular and extracellular, and 
so it is a reasonable assumption that the internalisation 

and cytoplasmic accumulation of EGFR may indeed 
alter tumour cell morphology, metabolism and confer 
an invasive cellular phenotype [88, 89]. Adopting a novel 
digital pathology based approach for the evaluation of 
EGFR IHC expression in both the cytoplasm and mem-
brane may elucidate clinically beneficial subgroups that 
could benefit from the addition of targeted therapies. The 
objective and reproducible approach of image analysis 
in tissue biomarker evaluation could initiate a paradigm 
shift in the way in which we evaluate tissue biomarkers 
for patient stratification and personalised therapy regi-
mens and indeed the way in which cellular immunohisto-
chemistry is reported [22].

The TCGA consortium reported the frequencies of 
up-regulation of other HER family members in colo-
rectal cancer which provides scientific and clinical 
rationale for combination therapies to block different 
members [1, 4, 96, 150, 151]. Furthermore, as demon-
strated by multiple authors through the action of EGFR 
ligands, tumours do not have to express the EGFR to 
elicit a response to EGFR-targeted therapies, implying 
that cetuximab resistance and indeed response in spe-
cific cohorts may be governed by ligand-dependent and/
or ligand-independent mechanisms [112, 113]. Spano 
et  al. reported that immunohistochemical expression 
of EGFR was stage-dependent which may suggest that 
membranous expression of EGFR may not have a pre-
dictive utility for monoclonal antibody therapy in the 
metastatic setting as demonstrated in previous clinical 
trials however, may indeed have clinical utility in the 
adjuvant or neo-adjuvant setting [20, 42, 45, 80]. Fur-
thermore, using either total EGFR IHC and/or pEGFR 
IHC in a subtype specific context may enable more 
effective patient stratification approaches in CRC as 
demonstrated by Prahallad et al. [1] and Corcoran et al. 
[4].

Before we abandon EGFR IHC as an unreliable com-
panion diagnostic for patient selection, a detailed investi-
gation is necessary to include quantitative image analysis 
of aberrant EGFR expression within the membrane and 
cytoplasmic compartments, combined with ligand 
expression, molecular analysis of genetic abnormalities 
such as gene copy number variation and mutational sta-
tus. This will provide definitive insight into EGFR as a 
tissue-based biomarker in patients with colorectal cancer 
and other malignancies.
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