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Imaging technologies from bench to bedside
Ravinder Reddy1* and Mohammad Haris2
The last few decades have seen tremendous advances in
medicine that have enhanced understanding of patho-
physiological processes at the cellular and molecular level,
and led to the development of increasingly sophisticated
diagnostic imaging technologies. Early detection of disease
induced molecular and functional changes before induc-
tion of irreversible structural changes is key for optimal
treatment efficacy. Non-invasive imaging modalities, such
as positron emission tomography (PET) [1], single photon
emission computed tomography (SPECT) [2], computed
tomography (CT) [3], optical tomographic technologies
[4], magnetic resonance imaging (MRI) [5], ultrasound
(US) [6], and X-rays play a vital role in both the diagnosis
and monitoring of disease in response to therapy. These
techniques cover a broad range of spatio-temporal reso-
lution and varying degrees of sensitivity and specificity to
different molecular changes, and in many cases provide
complementary information [7,8]. Recently discovered
molecular targets of various disease states, including
oncology, neurodegenerative and neuropsychiatric, car-
diovascular, and musculoskeletal pathologies, drive fur-
ther developments in the imaging field to detect these
new molecular markers. Ultimately, these technologies
contribute to improved disease management and per-
sonalized patient care.
Standard-of-care medical imaging techniques such as

X-rays, US, CT and MRI provide exquisite structural de-
tails of human anatomy. These methods are the first-line
techniques in clinic for diagnosis and characterization of
disease, based primarily on structure/morphology such
as size, texture and tissue attenuation [8]. In addition to
providing diagnostic information, the US modality has
the additional benefit of use as a therapeutic tool [6,7,9].
Functional nuclear medicine techniques (PET and

SPECT) provide a unique, non-invasive assessment of
intracellular processes and enzyme trafficking, receptors
and gene expression, and serve as the underpinnings
of molecular medicine. These techniques provide
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non-invasive diagnostic information about biochemical
and physiological process ranging from glucose metabol-
ism to gene expression by evaluating the kinetics of short-
lived radioisotope tracers. While many promising tracers
have been synthesized that target a variety of metabolic
pathways or specific markers 18F-fluorodeoxyglucose
(FDG), a glucose analogue is the main radiotracer in
clinical practice today. In addition, these functional nu-
clear medicine techniques are also being used in re-
search and clinical settings to detect and evaluate
Alzheimer’s disease, metabolic viability of cardiac tis-
sues, in vivo gene expression, and in tracking of cancer
metastasis to different organs [7,8,10-12].
MRI is one of the most powerful and versatile non-

invasive techniques. The major advantage of MRI is that it
provides high-resolution, three-dimensional images of tis-
sue structure, as well as functional and metabolic informa-
tion. Furthermore, MRI is performed in vivo without the
use of any ionizing radiation, allowing for repeated study.
Several advanced MRI methods have been introduced to
monitor the structural [13], functional [14,15] as well as
biochemical changes in various diseases. Magnetic reson-
ance spectroscopy (MRS), which provides the information
about the biochemical signatures, is an additional import-
ant clinical research tool to assess and characterize disease
pathophysiology [16,17].
Using MRS, enriched metabolites (e.g. 13C enriched) can

be used to probe endogenous reaction kinetics. Latest
advances in chemical exchange saturation transfer (CEST)
MRI show promise in detecting several endogenous
metabolites and proteins with substantially enhanced
sensitivity (at least an order of magnitude) compared to
conventional MRS [18-25]. Recent developments in hyper-
polarized imaging based on dynamic nuclear polarization
(DNP) of 13C enriched pyruvate are yielding highly prom-
ising preclinical results [26,27] exploring in vivo reactions
in oncology and other disease conditions. Some very pre-
liminary results showing the promise of these methods in
addressing clinical problems in patients have been demon-
strated [28].
Optical imaging is another emerging imaging modality

with high potential for improving diseases diagnosis and
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treatment, which can be readily set up at the patient’s bed-
side or in the operating room [4,29-31]. Optical imaging
uses non-ionizing radiation and offers potentially to image
organs, tissues as well as smaller structures including cells
and molecules using their unique photon absorption or
scattering profiles. It also differentiates between native soft
tissue and tissue labeled with endogenous or exogenous
probes based on their wavelength dependent photon ab-
sorption or scattering pattern [32-35]. Despite limitations
in their spatial resolution, optical imaging methods offer
capabilities for studying functional and molecular events
in different pathophysiological conditions. There are sev-
eral techniques in optical imaging that are currently being
used both in research and clinical setting for evaluating
various diseases and therapeutic responses [30,36-38]. Po-
tentially, optical imaging can also be combined with other
imaging modalities to improve the patient’s clinical
management.
PET, SPECT and near-infrared reflectance fluorescence

optical imaging techniques have relatively high sensitiv-
ity and can detect compounds with concentrations in
micro- to pico-molar range [7]. Despite the high sensi-
tivity these methods are beset by a relatively low spatial
resolution (5 to 10 mm in clinical setting). Also, in many
cases the emitting ligands may lose the specificity. One
issue with nuclear medicine techniques is the use of nu-
clear radiation, which precludes their repeat use in short
time spans. On the other hand, MRI provides high
spatial resolution (in hundreds of micrometers range),
but is relatively insensitive, in comparison to nuclear
medicine techniques mentioned above; it requires con-
centrations of metabolites to be detected to be in the
millimolar range and few endogenous molecules or me-
tabolites can be imaged [39].
A milestone in the field of diagnostic imaging is the

emergence of integrated structural and functional modal-
ities such as combined PET-CT and PET-MRI [40,41].
These integrated modalities provide concurrent structural,
molecular and functional information, improve the multi-
modal imaging correlations and ease the patient burden
for multiple imaging sessions.
Combining these advanced imaging techniques will re-

sult in improved precision of the data that are intrinsically
more sensitive to the underlying pathophysiology than the
morphological features available in routine structural im-
aging. Over the years, all these powerful imaging tech-
niques have been improving the way the diseases are
diagnosed, therapeutic responses are monitored and dra-
matically enhancing the practice of medicine making it
more prognostic, preventative and personalized. Despite
these advances, many technological innovations in these
imaging modalities are still in research setting. Transfer-
ring these technologies into clinical setting requires an in-
tense collaborative effort between researchers in imaging
physics, instrumentation, image processing, biologists,
chemists, and regulatory bodies as well as clinicians from
all branches of medicine. This journal section facilitates
communication of advances in translating the imaging
modalities from mere research tools to clinical setting. We
welcome research articles from all the stakeholders in this
field.
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