Chao et al. Journal of Translational Medicine (2015) 13:29
DOI 10.1186/512967-015-0389-0

-&i‘&- JOURNAL OF
B TRANSLATIONAL MEDICINE

RESEARCH Open Access

Inhibition of human diffuse large B-cell lymphoma
growth by JC polyomavirus-like particles delivering
a suicide gene

Chun-Nun Chao'?", Yih-Leh Huang?', Mien-Chun Lin'*, Chiung-Yao Fang®, Cheng-Huang Shen®*, Pei-Lain Chen®,

Meilin Wang’, Deching Chang'" and Chih-En Tseng®”

Abstract

vectors for DLBCL.

inhibit the growth of DLBCL in vitro and in vivo.

Background: Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of aggressive B-cell
non-Hodgkin lymphoma. About one-third of patients are either refractory to the treatment or experience relapse
afterwards, pointing to the necessity of developing other effective therapies for DLBCL. Human B-lymphocytes are
susceptible to JC polyomavirus (JCPyV) infection, and JCPyV virus-like particles (VLPs) can effectively deliver
exogenous genes to susceptible cells for expression, suggesting the feasibility of using JCPyV VLPs as gene therapy

Methods: The JCPyV VLPs packaged with a GFP reporter gene were used to infect human DLBCL cells for gene
delivery assay. Furthermore, we packaged JCPyV VLPs with a suicide gene encoding thymidine kinase (TK) to

Results: Here, we show that JCPyV VLPs effectively entered human germinal center B-cell-like (GCB-like) DLBCL
and activated B-cell-like (ABC-like) DLBCL and expressed the packaged reporter gene in vitro. As measured by the
MTT assay, treatment with tk-VLPs in combination with gancyclovir (GCV) reduced the viability of DLBCL cells by
60%. In the xenograft mouse model, injection of tk-VLPs through the tail vein in combination with GCV administration
resulted in a potent 80% inhibition of DLBCL tumor nodule growth.

Conclusions: Our results demonstrate the effectiveness of JCPyV VLPs as gene therapy vectors for human DLBCL and
provide a potential new strategy for the treatment of DLBCL.
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Background

Diffuse large B-cell lymphoma (DLBCL) is one of the
most common types of aggressive B-cell non-Hodgkin
lymphoma (B-NHL) and accounts for about 31% of
adult B-NHLs in western countries [1]. Based on differ-
ent gene expression profiles, DLBCL includes germinal
center B-cell-like (GCB-like) and activated B-cell-like
(ABC-like) DLBCL [2]. Overall survival of patients with
GCB-like DLBCL is better than that of patients with
ABC-like DLBCL [3]. Conventionally, the mainstay of
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multi-agent chemotherapy for DLBCL is the CHOP
regimen, consisting of cyclophosphamide, doxorubicin,
vincristine, and prednisone [4]. In recent years, the
addition of the anti-CD20 monoclonal antibody rituxi-
mab to CHOP has led to an improvement in patient
survival [5]. However, around one-third of patients with
advanced-stage DLBCL will be still refractory to therapy
or will relapse after early response to treatment [6]. As
the majority of DLBCL patients with relapsed disease or
resistance to modern multi-agent therapy will eventu-
ally succumb to lymphoma, it is essential to develop
novel modalities for DLBCL treatment.

In its basic concept, gene therapy is transferring a piece
of genetic material into a target cell for the purpose of cur-
ing or slowing the progression of disease [7]. Much
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progress has been made to date in gene therapy for cancer,
which has resulted in many clinical trials [8,9]. Therefore,
gene therapy may offer new treatment options for patients
with hematological malignancies. Many of the gene ther-
apy approaches have been designed on the basis of known
genetic lesions of hematological cancers. A BCL-2 gene
translocation is found in almost all follicular lymph-
omas and in some diffuse large cell lymphomas [10,11].
In Burkitt’s lymphoma, a translocation of the C-MYC
oncogene leads to its overexpression [12]. Accordingly,
antisense oligonucleotides specific for BCL-2 and C-
MYC are among the current gene therapy approaches
for lymphomas [13,14]. Other gene therapy approaches in-
clude those that enhance the immune response through
IL-2, IL-12 [15,16], that express the suicide gene herpes
simplex virus (HSV) thymidine kinase [17], and that use
oncolytic viruses [18]. Although these gene therapy strat-
egies have been shown to inhibit lymphoma growth, the
gene transfer efficiency is generally low; thus, the develop-
ment of more effective gene-transducing strategies is vital.

Virus-like particles (VLPs) are made of viral proteins
and structurally resemble viral capsids, but do not con-
tain viral genetic materials; yet VLPs have similar infec-
tious pathways as virions [19,20]. The ability of VLPs to
package nucleic acids makes them promising vectors for
gene therapy [21]. Applications of polyomavirus-derived
VLPs in diagnostics, vaccine development and gene deliv-
ery have been recently reviewed [22]. One human poly-
omavirus, the JC virus (JCPyV), can be found in the
peripheral lymphocytes of healthy individuals [23] and has
been shown to infect and replicate in B cells and to poten-
tially become latent in the infected B cells [24]. The major
JCPyV structural protein VP1 can self-assemble into a
VLP structure when expressed in E. coli [25], yeast [26], or
insect cells [27] and has a non-sequence-specific DNA-
binding property [28]. It has recently been demonstrated
that the JCPyV VLP was able to package plasmid DNA of
larger size [21] and achieve higher gene transfer efficiency
[29] when an E. coli-based in vivo packaging system was
used. Therefore, it should be possible to use JCPyV VLPs
to deliver genes of interest to tissue types that are the nat-
ural hosts of this virus for gene therapy purposes.

Recent research has revealed the presence of JCPyV
DNA and protein in DLBCL tissues of the gastrointestinal
tract [30], indicating that DLBCL cells are susceptible to
JCPyV infection. Therefore, the JCPyV VLP may be able
to deliver genes into human DLBCL cells for therapeutic
purposes. In this study, we examined the ability of JCPyV
VLPs to deliver either a reporter gene or a suicide gene to
DLBCL cells and bring about the expression and func-
tional effects of the gene in the transduced cells. We fur-
ther assessed the ability of suicide gene—carrying JCPyV
VLPs to target human DLBCL tumors in a xenograft ani-
mal model and inhibit the tumors’ growth, in order to
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gauge the potential of the JCPyV VLP to serve as a gene
therapy vector for human DLBCL.

Methods

Cell lines

Human GCB-like DLBCL, Toledo (CRL-2631) and HT
(CRL-2260), cell lines were purchased from the Biore-
source Collection and Research Centre (Hsinchu, Taiwan).
ABC-like DLBCL, SU-DHL-2 (CRL-2956), was purchased
from ATCC (Manassas, VA). Cells were maintained in
RPMI 1640 medium containing 2 mM L-glutamine, 1.5 g/L
sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and
1 mM sodium pyruvate and supplemented with 10% fetal
bovine serum (hereinafter referred to as complete culture
medium).

Preparation of green fluorescent protein-VLPs (gfp-VLPs)
and thymidine kinase-VLPs (tk-VLPs)

JCPyV VLPs in which plasmids expressing green fluores-
cent protein (pEGFP-N3; BD Biosciences Clontech, CA)
and thymidine kinase (pUMVCI1-tk; Aldevron, ND) were
packaged were prepared as described by Chen et al
[29]. In short, the above plasmids were propagated in and
packaged into VLPs in E. coli that expressed JCPyV VP1,
and the VLPs were purified from the E. coli lysates by 20%
sucrose cushion and CsCl velocity gradient centrifuga-
tions. The fractions collected were dialyzed against Tris-
buffered saline (10 mM Tris—HCl, pH 7.4, 150 mM NaCl)
and analyzed for VLP content by the hemagglutination
method, and the VLPs were concentrated by using Cen-
tricon filters (Millipore, Billerica, MA). VLPs packaged
with pEGFP-N3 or pUMVCI-tk were named gfp-VLPs
or tk-VLPs, respectively.

Pseudoinfection of human DLBCL cells with gfp-VLPs
DLBCL cells were washed twice with phosphate-buffered
saline (PBS), suspended in 50 ul PBS, and incubated with
10 pg of gfp-VLPs for 1 h at 4°C. Afterward, the cells were
washed twice with cool PBS and cultured in complete cul-
ture medium at 37°C and 5% CO, for 72 h. Green fluores-
cent protein expression was detected with a confocal
microscope (LSM 510, Carl Zeiss, Thornwood, NY).

Analysis of cytotoxicity of tk-VLPs in human DLBCL cells

The growth-inhibiting effect of tk-VLPs on Toledo cells
was assessed with the MTT assay as follows. Toledo cells
cultured in 96-well flat-bottom microtiter plates (BD Bio-
sciences Clontech, San Diego, CA) at 1 x 10* cells per well
in complete culture medium were pseudoinfected with
tk-VLPs at 1 pg per well. After gancyclovir (GCV) (Cyme-
ven; Roche, Palo Alto, CA) was added to a final concentra-
tion of 10 pg/ml to a subset of the wells, leaving other wells
without GCV as a control, the cells were incubated at 37°C
with 5% CO,. At 2, 3, 4, and 5 days after pseudoinfection,
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the cells were collected by centrifugation, washed twice
with PBS, suspended in complete culture medium con-
taining 100 pl of 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, a tetrazole; Sigma, St.
Louis, MO), and then cultured at 37°C with 5% CO, for
1 h. Afterward, the cells were centrifuged to facilitate the
removal of the medium and additives, 100 pl of dimethyl
sulfoxide was added to the wells and allowed to incubate
for 30 min, and the absorbance of each well was then mea-
sured in a spectroscope (Biotek Instruments, Winooski,
VT) using a 595 nm filter.

Analysis of human DLBCL tumor targeting by gfp-VLPs in

a SCID mouse model

Four-week-old male SCID mice were purchased from
the BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) and
housed and maintained in controlled, specific pathogen—
free airflow cabinets. The mice were given water and
standard chow ad libitum and kept on a 12 h light/dark
cycle. All animal procedures were performed according to
approved protocols and in compliance with the recom-
mendations for proper care and use of laboratory animals
of the Institutional Animal Care and Use Committee of
National Chung Cheng University.

Ten million Toledo cells were subcutaneously inocu-
lated into each SCID mouse. After 1 month, the Toledo
tumor—bearing mice were intravenously injected with
gfp-VLPs at 105 pg per injection every three days, six
times in total. The VLP inoculation dosage was deter-
mined by titration at the beginning of the study. After
the entire course of VLP treatment was completed
(18 days after the first VLP injection), the mice were
anesthetized and their tumor nodules were removed and
embedded in optimum cutting temperature compound
(Sakura Finetek USA, Inc., Torrance, CA). Frozen sec-
tion was performed to give slices of 6 um thickness.
Green fluorescent protein expression was detected with
a ZEISS AXioskop2 upright fluorescence microscope
(Carl Zeiss, Thornwood, NY).

Analysis of inhibition of human DLBCL tumor growth by
tk-VLPs in a SCID mouse model

To induce the formation of human DLBCL tumor nod-
ules in mice, Toledo cells were harvested from subcon-
fluent cultures, washed once with a serum-free medium,
resuspended in PBS, and injected subcutaneously into
the right flank of SCID mice at 1 x 10 cells per mouse.
One month later, the Toledo tumor—bearing mice were
randomized into four groups of four mice each and sub-
jected to different treatment combinations: tk-VLPs with
or without GCV; control (non-transgene-carrying) VLPs
with or without GCV. tk-VLPs or control VLPs were ad-
ministered intravenously at 105 pg per injection every
three days, three times in total. GCV was administered

Page 3 of 9

by intraperitoneal injection (300 mg kg™') every three
days after the first tk-VLP or control VLP injection. The
mice were euthanized when the tumors reached a vol-
ume of approximately 10,000 mm?, and the tumors were
removed and weighed.

Statistical analysis

Data were expressed as mean + standard deviation. Data
analysis was performed using Student’s t-test and by
one- or two-way ANOVA, with a P-value <0.05 being
considered to represent a significant difference.

Results

Confirmation of reporter gene transfer by JCPyV VLPs
into DLBCL cells in vitro and in a heterotopic xenograft
mouse model

In order to evaluate the suitability of JCPyV VLPs as
gene transfer vectors for DLBCL therapy, we first
needed to determine if the VLPs can enter DLBCL cells
just as native JCPyV virions can. Thus, we tested JCPyV
VLPs carrying the green fluorescent protein gene, or
gfp-VLPs, for gene transduction activity using Toledo
and HT cells (GCB-like) and SU-DHL-2 (ABC-like) as
cell models. DLBCL cells in culture were treated with
gfp-VLPs, and reporter gene expression was assessed
72 h later by examination under a fluorescence micro-
scope. As shown in Figure 1, JCPyV VLPs not only en-
tered the target cells but also transferred the green
fluorescence gene to the cells and led to its expression,
indicating the feasibility of using these VLPs as vectors
for exogenous gene delivery to both GCB-like and ABC-
like DLBCL cells for expression. As any future therapeutic
application of JCPyV VLPs requires their effectiveness
to be demonstrated in an animal model, we next tested
whether the VLPs can reach DLBCL tumors in living
animals via blood circulation, by using severe com-
bined immunodeficiency (SCID) mice as an animal
model. SCID mice were subcutaneously injected in the
flank with Toledo cells, and after solid tumors had
formed, the mice were injected through the tail vein
with gfp-VLPs every three days for three cycles. After-
wards, the tumor nodules were removed, embedded in
optimum cutting temperature compound, frozen-
sectioned, and examined under a fluorescence micro-
scope. As shown in Figure 2, JCPyV VLPs that were
introduced into the blood circulation not only gained
entry into the Toledo tumor nodules but also trans-
ferred the green fluorescence gene to the tumor cells,
resulting in the proper expression of the gene therein.
These results show that JCPyV VLPs are able to effect-
ively deliver the exogenous genes they carry to human
DLBCL cells for expression.
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Figure 1 Transduction of the green fluorescent protein gene into human DLBCL cells by JCPyV VLPs in vitro. GCB-like, Toledo (A) and HT
(B), and ABC-like, SU-DHL-2 (C), DLBCL cells were infected with control VLPs or with gfp-VLPs. The expression of green fluorescent protein in the
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Cytotoxic activity of combined tk-VLPs and ganciclovir
(GCV) in DLBCL cells in vitro

The DLBCL treatment strategy currently in clinical use
(R-CHOP) promises greater therapeutic success by com-
bining several chemotherapeutic agents with a monoclo-
nal antibody, but the efficacy of this therapy has been
limited by chemoresistance arising from the genetic het-
erogeneity of the tumor cell populations. For this reason,

we chose to exploit the higher proliferative activity of all
tumor cells relative to normal cells by employing the sui-
cide gene therapy approach with the JCPyV VLP vectors.
Our chosen therapeutic gene, HSV-1 thymidine kinase, is
a nucleoside kinase that, by adding a phosphate group to
the prodrug GCV and consequently disrupting chain
elongation during DNA replication, serves as a suicide
gene for actively replicating tumor cells, with relatively

VLP

gfp-VLP

Figure 2 Transduction of the green fluorescent protein gene into human DLBCL tumor nodules by JCPyV VLPs in a xenograft mouse
model. Human DLBCL-xenografted mice were administered control VLPs or gfp-VLPs intravenously. The DLBCL tumor nodules were frozen-sectioned,
and the expression of green fluorescent protein was visualized with a fluorescence microscope.
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little effect on normal cells. We purified JCPyV VLPs
packaged with the thymidine kinase gene, or tk-VLPs, and
assayed them in combination with GCV for cytotoxicity in
human DLBCL cells in vitro. As shown in Figure 3, the
growth of DLBCL cells was increasingly inhibited with in-
creasing days of treatment with combined tk-VLPs and
GCV, reaching an inhibition rate of 60% after 5 days of
treatment relative to the control treatment with PBS. No
growth inhibition was observed with tk-VLP or GCV
treatment alone. These results show that JCPyV VLPs are
able to deliver the thymidine kinase gene to human
DLBCL cells for expression and produce a strong cyto-
toxic effect in combination with GCV.

Inhibition of human DLBCL growth by tk-VLPs in a
xenograft mouse model

After confirming the growth-inhibiting effect of our sui-
cide gene approach on human DLBCL cells in vitro, we
further assessed whether the tk-VLP treatment is similarly
effective in vivo and thus potentially therapeutically useful
As before, we used SCID mice as an animal model by sub-
cutaneously implanting Toledo human DLBCL cells into
the mice, and began the testing of tk-VLPs one month
later when tumor nodules had formed. tk-VLPs were
injected into the mice intravenously to allow the VLPs to
reach the DLBCL tumors via blood circulation and trans-
duce the target cells with the thymidine kinase gene; GCV
was injected into the mice the next day to activate the
cytotoxic activity of the suicide gene, completing the first
cycle of treatment. This treatment cycle was repeated
every three days for a total of three cycles, after which the
subcutaneous nodules were removed and weighed to
measure the therapeutic effect of the tk-VLP/GCV com-
bination. As revealed by our results, the size of the tumor
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nodules at the end of the treatment course averaged more
than 4 g for all control treatment groups, but was on aver-
age less than 1 g for the tk-VLP/GCV combination group
(Figure 4A,B), amounting to a rate of tumor growth inhib-
ition of at least 80% for the combination treatment. Collect-
ively, our results show that our JCPyV VLP vector and
suicide gene therapy strategy can indeed inhibit the growth
of DLBCL tumors in a highly effective manner both in vitro
and in vivo, indicating the potential of our novel system to
become a useful treatment strategy for DLBCL.

Discussion

In this study, we demonstrate both in vitro and in vivo
that JCPyV VLPs can enter human DLBCL cells and ex-
press the exogenous genes they carry with high effi-
ciency, as evidenced by the expression of the green
fluorescent reporter, and can deliver the thymidine kin-
ase suicide gene into DLBCL cells to induce cell death
in the presence of GCV. In our animal model, tk-VLPs
injected through the tail vein were able to reach xeno-
grafted DLBCL tumor nodules via blood circulation and
induce cytotoxicity in the nodules in the presence of
GCV, resulting in a drastic 80% reduction in tumor
growth. These results strongly support the promise of
tk-VLPs as a gene therapy strategy for DLBCL.

DLBCL is the most common, aggressive subtype of B-
NHL [31] and is conventionally treated with CHOP
chemotherapy. While the majority of patients initially re-
spond well to CHOP, approximately 50% of the patients
eventually relapse and will die without timely transplant-
ation [32]. DLBCL patients differ widely in sensitivity to
chemotherapy, which can be attributed to the genetic het-
erogeneity of DLBCLs [33], and chemoresistance in lymph-
omas can involve not only the overexpression of the MDR
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Figure 3 Cytotoxic effect of tk-VLPs on human DLBCL cells. The viability of DLBCL cells at different days after various treatments was
assessed by the MTT assay. The treatment combinations included PBS followed by PBS (PBS/PBS), PBS followed by GCV (PBS/GCV), control VLPs
followed by GCV (VLP/GCV), the pUMVC1-tk plasmid followed by GCV (tk/GCV), tk-VLPs followed by PBS (tk-VLP/PBS) and tk-VLPs followed by
GCV (tk-VLP/GCV).
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Figure 4 Inhibition of human DLBCL tumor nodule growth by tk-VLPs in a xenograft mouse model. The human DLBCL-xenografted mice
were intravenously administered control VLPs or tk-VLPs in the presence or absence of GCV. (A) Gross pictures of tumor nodules from each
treatment group. (B) Quantification of tumor weights for the different treatment groups. *, P < 0.05.

multidrug pump but also certain molecular pathways
[34,35]. One known pathway is the PI3K/AKT signaling
pathway, which plays an important role in the proliferation
and chemoresistance of non-Hodgkin lymphomas [36,37].
Deregulation of this pathway is often observed in DLBCLs
and has been associated with poor prognosis [38-40]. Be-
cause of the important role mTOR plays in the AKT
pathway, it has become a therapeutic target in DLBCL
treatment [41]. In a phase II clinical trial, the mTOR
inhibitor everolimus was found to produce an overall
response rate of 30% in relapsed patients [42]. Overex-
pression of antiapoptotic proteins of the BCL-2 family

has also been linked to chemotherapy resistance in B-
cell lymphoma [43,44]. BCL-2 overexpression was de-
tected in 20% of DLBCL patients [45,46] and has been
associated with a higher relapse rate and shorter disease-
free survival [47,48]. In a phase II study, a BCL-2—specific
antisense oligonucleotide in combination with rituximab
achieved an overall response rate of 42% in B-NHL pa-
tients [49]. In addition, activation of Src family kinases
(SFK) is also known to induce B cell activation and sur-
vival [50,51]. The active form of SFK was found in over a
third of DLBCL patients, suggesting the possibility of
treating relapsed B-NHL patients with the SFK inhibitor
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dasatinib [52]. The above-mentioned molecular pathways
alone point to the highly heterogeneous nature of
DLBCLs, and yet other pathways have been shown to lead
to drug resistance in B-NHL [53]. Thus, agents against
new molecular targets and multitargeted combinatorial
therapies may offer new hope for drug-resistant relapsed
patients. It has been reported that JCPyV VLPs are able to
package and deliver small molecules to the target cells for
therapeutic purposes [54-56]. Therefore, it is also possible
to package and deliver an antisense oligonucleotide or
siRNA against BCL-2 or small molecule drugs, such as
everolimus and dasatinib, to diminish drug-resistant re-
lapse of DLBCL.

Suicide gene therapy generally consists of two steps:
an exogenous enzyme-expressing gene is first transferred
to tumor cells via a vector; an inactive prodrug is then
administered that is converted by the exogenous enzyme
into a lethal drug, which kills the tumor cells [57]. A
number of prodrug activation systems are being studied,
such as the GCV-converting HSV thymidine kinase
(HSV-TK) [58]; cytosine deaminase, which converts the
nontoxic 5-fluorocytosine into 5-fluorouracil [59]; E. coli
purine nucleoside phosphorylase with its prodrug sub-
strate 6-methylpurine-2'-deoxynucleoside [60]; nitrore-
ductase/5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954)
[61]; and linamarase/linamarin [62]. Among the most
promising of suicide gene therapy systems is HSV-TK/
GCV [63], which is cell cycle-dependent and affects
only dividing cells, a particularly advantageous feature
for cancer therapy applications. When expressed in
cells, HSV-TK metabolizes GCV to GCV monopho-
sphate, which is further phosphorylated by endogenous
cellular kinases to form the toxic metabolite GCV tri-
phosphate [64]. GCV triphosphate inhibits DNA poly-
merase and causes DNA chain termination, thereby
blocking DNA replication and inducing tumor cell
death. It has been shown that incorporation of GCV tri-
phosphate into DNA leads to cell cycle arrest in the S
and G2 phases and consequently apoptosis [65]. The
antitumor activity of the HSV-TK/GCV gene therapy
system has been demonstrated in many animal models
of cancer, including leukemia [66], glioma [67], bladder
cancer [68], and colon adenocarcinoma [29]. These
promising findings have resulted in pre-clinical studies
of this therapy system for various types of cancer
[69-72] and suggests its potential applicability in the
treatment of B-NHL.

Recent research on JCPyV VLPs has shown them to
be promising gene therapy vectors [73]. JCPyV VLP-
mediated gene transfer has been used to induce apop-
tosis in polyomavirus-transformed cells [56], and to in-
hibit native virus replication in JCPyV-susceptible cells
[54]. Besides their broad applicability in gene therapy,
JCPyV VLP vectors also have the advantage of being
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relatively easy to prepare and safe. JCPyV VLPs can be
produced in an E. coli expression system on a large scale
at low cost [25], and the in vivo DNA packaging method
developed for them [29], which replaces in vitro osmotic
shock [74], not only increases their packaging efficiency
but also eliminates the risk of viral virulence from pack-
aging the viral genome, as well raising the size limit of
the packaged DNA fragment to 9.4 kbp [21]. All the
above evidence suggests that JCPyV VLPs make excel-
lent gene delivery vectors. Therefore, in this study, we
used JCPyV VLPs as the vectors for carrying out the
HSV-TK/GCV system, exploiting the intrinsic ability of
the VLPs to seek out naturally susceptible cells in vivo.
We found that tk-VLPs introduced into mice by tail
vein injection were indeed able to specifically target
subcutaneous human DLBCL nodules and cause them
to shrink (Figure 4), but mouse cells are not susceptible
to JCPyV VLPs infection. These results indicate that the
JCPyV VLPs were able to protect their packaged HSV-
TK DNA during transit in the systemic circulation and
deliver the DNA to the target DLBCL cells for expres-
sion. JCPyV VP1 contains three external loops in its
surface structure [73,75]. The surface loops may be re-
sponsible for immune recognition. Therefore, modifica-
tion of the surface domains of JCPyV VLPs may avoid
immune recognition in the future.

Conclusions

In summary, we have demonstrated here that the JCPyV
VLP can be used as a gene delivery vector for gene ther-
apy for human DLBCL both in vitro and in vivo. Al-
though many aspects remain to be improved before
practical application, tk-VLPs have the potential to be-
come a therapeutic choice for human B-cell lymphomas
in the future.
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