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Abstract

Background: Cardiovascular cell therapy represents a promising field, with several approaches currently being
tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study (“Bone marrow
derived cell therapy in the stable phase of chronic ischemic heart disease”) consists of fresh mononuclear cells
(MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard
Ficoll-Paque. Cells are tested for safety (sterility, endotoxin), identity/potency (cell count, CD45/CD34/CD133,
viability) and purity (contaminant granulocytes and platelets).
The aims of the present work were (1) to optimize the cell manufacturing process in order to reduce contaminants
and (2) to implement additional assays in order to improve product characterization and evaluate product stability.

Methods: BM-MNC were isolated by density gradient centrifugation on Ficoll-Paque. The following process
parameters were optimized throughout the study: gradient medium density; gradient centrifugation speed and
duration; washing conditions.
Differential cell count was performed by an automated hematology cell analyzer. Immunophenotype and cell
viability were determined by flow cytometry. Functional hematopoietic and mesenchymal precursors and cells
with angiogenic potential were assessed by colony-forming assays, cell invasion capacity by a fluorimetric assay.
Sterility was tested using an automated microbial detection system, endotoxin by a kinetic chromogenic Limulus
amebocyte lysate test. T-test was used for statistical analysis.

Results: A new manufacturing method was set up, based on gradient centrifugation on low density Ficoll-Paque,
followed by 2 washing steps, of which the second one at low speed. It led to significantly higher removal of
contaminant granulocytes and platelets, improving product purity; the frequencies of CD34+ cells, CD133+ cells
and functional hematopoietic and mesenchymal precursors were significantly increased.
The process was successfully validated according to Good Manufacturing Practices.
The resulting ATMP mainly consisted of viable MNC including CD34+ and CD133+ cell subsets (2.98% ± 1.90%
and 0.83% ± 1.32%, respectively), CD184/CXCR4+ cells (34% ± 15%), CD34+/CD133+/CD309+ endothelial precursors
(44 ± 21 in 106 total cells), cells with invasion capacity, functional hematopoietic and mesenchymal precursors, cells
with angiogenic potential; it was stable for 20 hours at 10°C.
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Conclusions: The methodological optimization described here resulted in a significant improvement of ATMP
quality, a crucial issue to clinical applications in cardiovascular cell therapy.

Keywords: Cell therapy, Bone marrow cells, Stem cells, Good manufacturing practices, Cardiovascular diseases
Background
Cardiovascular cell therapy represents a promising field,
with several approaches currently being tested for the
treatment of both heart disease and peripheral vascular
diseases [1-3]. According to current European regula-
tions [4-6], cell-based products such as bone marrow
(BM)-derived cells for cardiovascular applications are
defined as advanced therapy medicinal products (ATMP)
and must be prepared according to Good Manufacturing
Practice (GMP) standards. In this context, the development
and validation of properly designed cell manufacturing and
testing methods [7,8] are of paramount importance for suc-
cessful translational research. The manufacturing process
has to be carefully defined and validated to ensure product
consistency [7]. A suitable Quality Control (QC) strategy
has to be designed for every specific ATMP, aiming at
evaluating its safety, identity, purity and potency [7-9].
Safety testing should encompass sterility and lack of endo-
toxin, at least. The identity test panel includes cell morph-
ology and immunophenotype. These tests also provide
information on ATMP purity, as they detect undesirable
impurities such as contaminating cell types. Potency is de-
fined as a measure of biological activity. A potency assay
should be based on a defined biological effect closely re-
lated to the mechanism(s) responsible for the functional
benefits [7]. Cell viability is an important component of the
potency of cell-based ATMP; however, additional parame-
ters of biological activity should also be tested [10].
Release specifications (i.e. acceptance criteria to be met

by a product lot in order to be administered to a patient)
need to be defined for safety, which is generally evaluated
by assays described in European Pharmacopoeia (EP)
(compendial assays), and for crucial parameters such as
cell viability. For other parameters, mostly evaluated by
non-compendial assays developed on a product-specific
basis, data may be recorded for information only, at least
during the initial phases of clinical development.
Our Cell Therapy Unit, authorized since 2008 for the

production of ATMP, is focused on development activ-
ities aimed at modifying research grade cell products to
obtain high quality, clinical grade cell products.
The ATMP for the ongoing METHOD study (“Bone

marrow derived cell therapy in the stable phase of
chronic ischemic heart disease”) [11] (ClinicalTrials.gov
Identifier: NCT01666132; initial feasibility phase: 8/10
patients treated) consists of fresh mononuclear cells
(MNC) isolated from autologous BM by density gradient
centrifugation; cells are formulated in 5% human serum
albumin (HSA) and tested for safety (sterility, endo-
toxin), identity/potency (cell count, CD45/CD34/CD133,
viability) and purity (evaluation of contaminant granulo-
cytes (GRA) and platelets (PLT).
The aims of the present work were (1) to optimize the

manufacturing process in order to reduce contaminants;
and (2) to set-up additional identity and potency assays
in order to improve product characterization and evalu-
ate product stability.
These improvements were crucial to the upcoming

second phase of the METHOD trial, as well as to planned
clinical trials, such as the CIRCULATE study (“Bone
Marrow Derived Cell Therapy in Peripheral Artery Dis-
ease”) in patients with critical limb ischemia. They have
been explicitly requested by Swiss regulatory authorities
(Swissmedic).
Methods
BM harvesting and MNC isolation
Iliac crest BM was harvested in the patients who had been
enrolled in the clinical trials SWISS-AMI (ClinicalTrials.
gov Identifier: NCT00355186) [12,13] and METHOD
(ClinicalTrials.gov Identifier: NCT01666132) [11] (target
BM volume: 50 mL and 110 mL, respectively). Due to lim-
ited availability of iliac crest BM samples, sternal BM (vol-
ume: 54 ± 20 mL; n = 71) collected during cardiac artery
bypass grafting surgery was used for the majority of devel-
opment experiments, as preliminary results demonstrated
a close similarity of sternal and iliac crest BM with respect
to most analytical parameters (data not shown). All pa-
tients signed informed consent for BM donation. To
prevent clotting, 1 mL of a solution containing 1000
international units of heparin (Drossapharm AG, http://
www.drossapharm.ch) was added to each 10 mL BM
sample. The BM was filtered through a 100 μm cell
strainer (BD Biosciences, http://www.bdbiosciences.com)
and diluted 1:2 in Dulbecco Phosphate Buffered Saline
without Ca2+ and Mg2+ (D-PBS) (LiStarFish, http://www.
listarfish.it). MNC were isolated by density gradient centri-
fugation on Ficoll-Paque PREMIUM (GE Healthcare,
http://www.gelifesciences.com), followed by washing in
D-PBS; 5% HSA (CSL Behring AG, http://www.cslbehring.
ch) was used as formulation medium, and filtration
through a 70 μm cell strainer (BD Biosciences) was
performed as final process step.

http://www.drossapharm.ch
http://www.drossapharm.ch
http://www.bdbiosciences.com
http://www.listarfish.it
http://www.listarfish.it
http://www.gelifesciences.com
http://www.cslbehring.ch
http://www.cslbehring.ch
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Several process parameters were optimized throughout
the present study: gradient medium density; gradient
centrifugation speed and duration; washing conditions.
The following density gradient media were used: Ficoll-
Paque PREMIUM 1.077 (density: 1.077 g/L), thereafter
indicated as standard Ficoll-Paque, and Ficoll-Paque PRE-
MIUM 1.073 (density: 1.073 g/L), thereafter indicated as
low density Ficoll-Paque.

Differential cell count
An automated hematology cell analyzer (ABX Micros
60, Horiba medical, http://www.horiba.com/medical) was
used to determine total White Blood Cells (WBC), per-
centages of lymphocytes (LYM), monocytes (MON),
GRA, PLT, and Hematocrit. MNC were calculated by
adding up LYM and MON. The test was carried out ac-
cording to EP [14].
GRA removal, PLT removal and MNC yield were cal-

culated according to the following formulas:

% PLT removal ¼ total pre manipulation PLT−total post manipulation PLT
total pre manipulation PLT

� 100

% GRA removal ¼ total pre manipulation GRA−total post manipulation GRA
total pre manipulation GRA

� 100

%MNC yield ¼ total post manipulation MNC
total pre manipulation MNC

� 100

Immunophenotype & cell viability
Immunophenotype (CD45 and CD34, Beckman Coulter,
https://www.beckmancoulter.com; or Miltenyi Biotec,
https://www.miltenyibiotec.com; CD133, Miltenyi Bio-
tec; CD184/CXCR4: BD Biosciences) and cell viability
(7-AAD, Beckman Coulter or PI, Miltenyi Biotec) were
determined by flow cytometry (FC 500 System, Beckman
Coulter or MACSQuant Analyzer, Miltenyi Biotec). The
tests were run according to EP [14,15].
Endothelial progenitor cells (EPC) were determined

using a commercial kit (“EPC enrichment and enumer-
ation kit”, Miltenyi Biotec) specifically designed for the
enumeration of circulating EPC from peripheral blood,
cord blood, leukapheresis products, or EPC from BM,
based on the expression of CD34, CD133 and CD309
(VEGFR-2/KDR).
Table 1 Preliminary experiments: gradient centrifugation par
(n = 5)

Gradient medium Centrifugation parameters

Standard Ficoll-Paque (1.077 g/L) 719 × g, 20°C, 20’

400 × g, 20°C, 30’

Five sternal bone marrow samples were processed in parallel with the same gradie
reported as mean ± standard deviation. No statistically significant differences were
PLT: Platelets; GRA: Granulocytes; MNC: Mononuclear cells (lymphocytes +monocyte
Colony-forming cell (CFC) assay
For the enumeration of hematopoietic stem cell precur-
sors, cells were suspended in Methocult® H4034 (StemCell
Technologies, http://www.stemcell.com), then seeded in
35 mm dishes (1–2 × 104 viable cells/dish) and incubated
at 37°C, 5% CO2. After 14 days, plates were microscopic-
ally scored for the presence of colonies. The assay was
carried out according to EP [16].
Colony-forming unit-fibroblast (CFU-F) assay
For the enumeration of mesenchymal stem cell precur-
sors, cells were suspended in Mesencult®-XF (StemCell
Technologies), then seeded in 100 mm dishes (5 × 105,
1 × 106, 2 × 106 viable cells/dish) and incubated at 37°C,
5% CO2. After 14 days, plates were fixed with methanol
(International VWR, https://ch.vwr.com), stained with
Giemsa solution (Merck, http://www.merck.com) and
scored for the presence of colonies.
Colony-forming unit-endothelial cell (CFU-EC) assay
For the enumeration of angiogenic precursors, cells were
suspended in Complete CFU-Hill medium (StemCell
Technologies), then seeded in fibronectin-coated 6-well
plates (BD Biosciences) at 5 × 106 viable cells/well, and
incubated at 37°C, 5% CO2. After 2 days, non-adherent
cells were collected, transferred onto fibronectin-coated
24-well plates (106 viable cells/well) and incubated for
5 days. The wells were then fixed with methanol (Inter-
national VWR), stained with Giemsa solution (Merck) and
scored for the presence of colonies.
Invasion assay
Cells were labelled with BD™ DilC12(3) (BD Biosciences),
suspended in X-Vivo 10 (Lonza, http://www.lonza.com),
then seeded (106 cells/w) in BD Biocoat™ Matrigel™ inva-
sion chambers as well as control inserts (BD Biosciences)
in 24 well plates; complete CFU-Hill liquid medium
(StemCell Technologies) was added to the wells, below
the inserts. After 24 hours at 37°C, 5% CO2, the fluores-
cence of invading cells was determined by a bottom fluor-
escence plate reader (Infinite F200, Tecan, http://www.
tecan.com). The Invasion Index was calculated as follows:
ameters do not affect impurities’ removal nor cell yield

% PLT removal % GRA removal % MNC yield

93.73 ± 1.63 96.02 ± 3.05 24.15 ± 22.90

92.05 ± 1.36 93.41 ± 1.64 27.41 ± 15.98

nt medium but using different centrifugation parameters, as indicated. Data are
detected (p > 0.05, paired T-test).
s).

http://www.horiba.com/medical
https://www.beckmancoulter.com
https://www.miltenyibiotec.com
http://www.stemcell.com/
https://ch.vwr.com
http://www.merck.com
http://www.lonza.com
http://www.tecan.com
http://www.tecan.com


Table 2 Preliminary experiments: using a low density gradient medium ameliorates granulocytes’ removal (n = 5)

Centrifugation parameters Gradient medium % PLT removal % GRA removal % MNC yield

400 × g, 20°C, 30’ Standard Ficoll-Paque (1.077 g/L) 91.49 ± 7.14 94.55 ± 3.75 21.03 ± 16.14

Low Density Ficoll-Paque (1.073 g/L) 91.84 ± 7.82 97.28 ± 2.12** 12.12 ± 9.45*

Five sternal bone marrow samples were processed in parallel using the same centrifugation parameters but different gradient media, as indicated. Data are
reported as mean ± standard deviation. *p < 0.05; **p < 0.01, paired T-test.
PLT: Platelets; GRA: Granulocytes; MNC: Mononuclear cells (lymphocytes +monocytes).

Radrizzani et al. Journal of Translational Medicine 2014, 12:276 Page 4 of 12
http://www.translational-medicine.com/content/12/1/276
mean Relative Fluorescence Units of cells invading through Matrigel
mean Relative Fluorescence Units of cells invading through control inserts

� 100

Sterility
The test was carried out according to EP [17] using an au-
tomated microbial detection system (BacT/ALERT® 3D,
bioMérieux, http://www.biomerieux.com). Results were
released not less than 7 days after sample inoculum.

Bacterial endotoxins
This test was carried out according to EP [18] with
a chromogenic technique using a synthetic peptide-
chromogenic substrate complex cleaved by the reaction
of endotoxins with Limulus amebocyte lysate. The en-
dosafe®-PTS™ system (Charles River, http://www.criver.
com) was used.

Statistical analysis
Statistical analysis was performed with the two-tailed
unpaired or paired t-test (Microsoft Excel software), as
indicated in the text.

Results
The BM-MNC manufacturing method currently used in
the ongoing feasibility phase of the METHOD trial [11]
is based on density gradient centrifugation (719 × g, 20’
at 20°C) on standard Ficoll-Paque (1.077 g/L), followed
by 3 washing steps (582 × g, 10’ at 4°C).
The resulting product is composed of WBC with mor-

phological characteristics of LYM (mean value ± stand-
ard deviation (SD)), 53% ± 16%), MON (15% ± 4%), and
GRA (32% ± 18%) (n = 8). The PLT/WBC ratio is 4 ± 2.
The MNC fraction comprising LYM and MON is con-
sidered the active fraction, whereas GRA and PLT repre-
sent impurities. For all 8 clinical lots produced so far,
Table 3 Preliminary experiments: low speed washing improve

Washing speed % PLT removal % MNC yield

400 × g 91.59 ± 8.74 13.43 ± 9.26

100 × g 95.11 ± 4.12** 10.69 ± 8.29**

Mononuclear cells were isolated from 14 bone marrow samples through density gr
phosphate buffered saline without Ca2+ and Mg2+; for the last washing step, each s
and 100 × g, as indicated.
PLT: Platelets; MNC: Mononuclear cells (lymphocytes +monocytes); CFC: Colony Form
Data are reported as mean ± standard deviation. *p < 0.05; **p < 0.01, paired T-test.
CFC assay was performed on 8 product batches only, CFU-F and Invasion assays on
the levels of impurities were in compliance with product
release specifications (GRA ≤ 75%, PLT/WBC ≤ 40; see
below). Nonetheless, minimization of such impurities is
desirable. Thus, development experiments were initiated
to optimize the BM-MNC manufacturing process.
Preliminary tests performed on a limited number of

samples indicated that gradient centrifugation parame-
ters (relative centrifugation force and duration) may not
affect process performance in terms of impurity clear-
ance or cell yield (Table 1); however, changing the gradi-
ent medium may improve GRA removal (Table 2), while
adding a low-speed washing step may improve PLT
removal efficiency, with no negative impact on product
potency (Table 3).
Based on such initial results, a new manufacturing

method was designed, relying on the use of low-density
Ficoll-Paque (1.073 g/L) as the gradient medium. The
gradient step (400 × g, 30’ at 20°C) was followed by 2
washing steps at 20°C, of which the second one was per-
formed at low speed (washing #1: 400 × g; #2: 100 × g)
in order to reduce the possibility that PLT may sediment
together with MNC and be recovered in the cell pellet.
The new manufacturing method was compared with

the previous one in terms of overall efficiency (Table 4).
It resulted in significantly improved removal of contam-
inant PLT and GRA (p < 0.01). On the other hand, the
MNC yield was diminished.

Product purity
The new processing method resulted in improved prod-
uct purity (Table 5): MNC were significantly increased
(p < 0.01), mainly due to an increased MON fraction,
whereas contaminant GRA were significantly reduced
(p < 0.01). The mean PLT/WBC ratio was not signifi-
cantly affected (p > 0.05); however, its variability was
drastically reduced.
s platelets’ removal (n = 14)

CFC/106 cells CFU-F/106 cells Invasion index

11 310 ± 2 847 18 ± 10 37 ± 14

12 620 ± 2 581* 18 ± 10 47 ± 7

adient on standard or low density Ficoll-Paque, then washed in Dulbecco’s
ample was divided in 2 aliquots that were centrifuged in parallel at 400 × g

ing Cells; CFU-F: Colony Forming Units-Fibroblast.

4 product batches only.

http://www.biomerieux.com
http://www.criver.com
http://www.criver.com


Table 4 New manufacturing method overall efficiency:
improved contaminants’ removal

% PLT
removal

% GRA
removal

% MNC
yield

Current method (n = 43)a 89 ± 7 91 ± 4 25 ± 11

New method (n = 24)b 97 ± 1** 95 ± 3** 13 ± 7**

Data are reported as mean ± standard deviation.
PLT: Platelets; GRA: Granulocytes; MNC: Mononuclear
cells (lymphocytes +monocytes).
ailiac crest samples (n = 33) + sternal samples (n = 10); bsternal samples only;
**p < 0.01 (unpaired T-test).
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Such results allowed us to update product release
specifications for crucial identity/purity parameters, as
summarized in Table 6. The new specifications were set
on the basis of results observed during process develop-
ment (reported in Table 5, bottom line). The highest
acceptable values of LYM and MON were defined con-
sidering the corresponding experimental mean values
minus 2 SD. The highest acceptable values of GRA and
PLT/WBC were defined based on the corresponding
experimental mean values plus 2 SD.
All the characterization results obtained on product

lots manufactured during process development accord-
ing to the new method (Table 7; n = 20) were in compli-
ance with the new specifications.

Immunophenotype
The new manufacturing method led to significantly higher
percentages (p < 0.01) of CD34 and CD133 expressing
cells (Figure 1A), accounting for 2.98% ± 1.90% and
0.83% ± 1.32% of cells, respectively, in the new ATMP
(Table 7; n = 18). Among CD34+ cells, 53% ± 10% were
CD133+ (n = 8), in agreement with data reported for
adult BM [19]. The product also contained a consist-
ent fraction (34% ± 15%; n = 18) of cells expressing
CD184/CXCR4, the receptor for stromal cell-derived
factor-1 (SDF-1), a functional marker of BM-MNC [20].
CD34+/CD133+/CD309+ EPC (Table 7) accounted for
0.004% of WBC (44 ± 21 cells in 106 total cells). Release
specifications were not defined for the immunophenotype-
specific parameters; data are collected for information only.

Product potency
The product potency was evaluated by assessing cell
viability, invasion capacity and presence of functional
hematopoietic precursors, mesenchymal precursors, and
Table 5 New manufacturing method: improved product purit

% Lymphocytes % Monocytes

Current Method (n = 43)a 48 ± 13 (21–71) 9 ± 3 (5–15)

New Method (n = 24)b 52 ± 11 (34–69) 15 ± 4 ** (8–22)

Data are reported as mean ± standard deviation (range).
MNC: Mononuclear cells (lymphocytes +monocytes); PLT: Platelets; WBC: White Bloo
ailiac crest (n = 33) and sternal (n = 10) bone marrow samples; bsternal samples only
cells with angiogenic potential using CFC, CFU-F, and
CFU-EC assays, respectively. The new manufacturing
method significantly improved product potency in
terms of functional hematopoietic (CFC, Figure 1B; p <
0.01) and mesenchymal precursors (CFU-F, Figure 1C;
p < 0.01), but not invasion capacity (Figure 1D; p > 0.05).
The new ATMP (Table 7) was characterized by high

cell viability (90% ± 5%), well above the 70% specifica-
tion, which is considered the minimum acceptable value
for cell therapy products [21].
It contained hematopoietic progenitor cells (CFC, 6

998 ± 4 363 colonies/106 cells), mesenchymal progenitor
cells (CFU-F, 56 ± 40 colonies/106 cells), cells with angio-
genic potential (CFU-EC, 31 ± 19 colonies/106 cells) and
cells with invasion capacity (invasion index 47% ± 18%);
no specifications were defined for such parameters.
GMP validation
The new manufacturing method was validated by per-
forming three production runs and testing the resulting
BM-MNC preparations as summarized in Table 8. Three
independent BM samples (100 ± 26 mL) were processed
according to GMP in the classified area dedicated to
sterile manufacturing, giving rise to 3 BM-MNC lots
(18.5 ± 0.1 mL) that were tested in the GMP QC area.
Defined specifications were in place for safety (sterility,
bacterial endotoxins), identity/purity (LYM, MON, GRA,
PLT/WBC, Hematocrit), and cell viability. The corre-
sponding analytical methods were validated according to
GMP for appropriate characteristics including specificity,
repeatability, and intermediate precision [22,23]. For the
three BM-MNC lots, results of all of these tests com-
plied with specifications (Table 8).
The process guaranteed product sterility, absence of bac-

terial endotoxins, consistent appearance, integrity of the
primary containers, and consistent product purity. GRA
(15-27%) were well below the new highest acceptable value
(55%) and the PLT/WBC ratio (5–6) was within the new
specification (≤10). The product mainly consisted of
MNC (73-85%) and contained cells expressing CD34
(2.94-8.95%) and CD133 (1.42-4.25%). Cell viability was
74-99%. In terms of potency, the product showed de-
tectable functional hematopoietic (CFC) and mesenchy-
mal (CFU-F) precursors as well as cells with invasion
capacity.
y

% MNC % Granulocytes PLT/WBC

57 ± 15 (26–84) 43 ± 14 (16–74) 6 ± 5 (1–28)

66 ± 11** (42–85) 34 ± 11** (15–58) 5 ± 2 (2–10)

d Cells.
; **p < 0.01 (unpaired T-test).



Table 6 New specifications for product release
% Lymphocytes % Monocytes % Granulocytes PLT/WBC

Current
specification

≥ 25 ≥ 4 ≤ 75 ≤ 40

Updated
specification

≥ 30 ≥ 8 ≤ 55 ≤ 10

PLT: Platelets; WBC: White Blood Cells.
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In summary, validation results were consistent with those
obtained during product development and characterization.
Accordingly, we considered that the new manufacturing
process was successfully validated for safety, purity, identity
and potency aspects.

Stability study
In order to define product shelf-life, a real-time stability
study was performed at 10°C, previously identified in
our lab as the optimal storage temperature for fresh
BM-MNC (data not shown). A practical approach was
used: stability specifications corresponded to release
specifications (sterility: absence of bacterial growth,
endotoxin ≤ 5.0 EU/ml, cell viability ≥ 70%, LYM ≥ 30%,
MON ≥ 8%, GRA ≤ 75%, hematocrit ≤ 3.0). The stability
study was also extended to functional parameters not
yet subjected to release specifications. As additional sta-
bility criteria, the maximum decrease of each parameter
relative to the corresponding baseline value was set at
Table 7 Product characterization after optimization of cell pr

Parameter Spec. Mean

Cell concentration (WBC/ml) FIO 1.60 × 107

Lymphocytes (%) ≥ 30 62

Monocytes (%) ≥ 8 14

Granulocytes (%) ≤ 55 24

Platelet concentration (PLT/ml) FIO 2.66 × 107

PLT/WBC ≤ 10 1.75

RBC concentration (RBC/ml) FIO 2.23 × 107

RBC/WBC FIO 1.67

Hematocrit (%) ≤ 3 0.29

CD45+/CD34+ (%) FIO 2.98

CD45+/CD133+ (%) FIO 0.83

CD133+ among CD34+ cells (%) FIO 53

CD45+/CD184+ (%) FIO 34

EPC/106 WBC (CD34+/CD133+/CD309+) FIO 44

Cell viability (%) ≥ 70 90

CFC (colonies/106 cells) FIO 6 998

CFU-F (colonies/106 cells) FIO 56

CFU-EC (colonies/106 cells) FIO 31

Invasion (invasion index) FIO 47

WBC: White Blood Cells; PLT: Platelets; RBC: Red Blood Cells; EPC: Endothelial Progen
CFU-EC: Colony Forming Units-Endothelial Cells; FIO: For information only.
25% (i.e. relative value ≥ 75%, see Figure 2). All the cell
batches tested were in compliance with stability specifi-
cations for at least 20 hours (data not shown). For all
parameters, differences between results obtained at base-
line, 20 hours, and 24 hours were not significant. Relative
values remained ≥75% of baseline until 20 hours for cell
concentration (Figure 2A), viability (Figure 2B), MNC
(Figure 2C), CD34+ cells (Figure 2D), CFC (Figure 2E),
invasion (Figure 2G) and CFU-EC (Figure 2H), whereas
some CFU-F values were between 50 and 75% (Figure 2F).
According to these results, the product shelf life was set at
20 hours.
Discussion
This work focused on the development and validation of
a novel GMP manufacturing and testing strategy for BM-
MNC as ATMP for cardiovascular cell therapy. Our goals
were (1) to optimize the process in order to reduce con-
taminant GRA and PLT, and (2) to set-up additional iden-
tity and potency assays in order to better characterize the
cell product and evaluate its stability.
In our product, the MNC fraction comprising LYM

and MON is considered the active component, whereas
PLT and GRA represent impurities. The role of PLT
within a cell therapy product is controversial, presumably
due to their complex biology: they may exert potential
ocessing

SD n Min Max

1.04 × 107 20 4.40 × 106 4.39 × 107

12 20 41 83

4 20 8 23

10 20 6 49

2.42 × 107 20 2.50 × 106 9.60 × 107

0.90 20 0.39 3.84

1.32 × 107 16 1.00 × 107 6.30 × 107

0.41 16 0.77 2.27

0.18 15 0.10 0.85

1.90 18 0.80 7.74

1.32 18 0.02 4.26

10 6 40 68

15 9 10 57

21 5 12 60

5 18 79 98

4 363 7 1 417 14 400

40 7 11 131

19 12 6 61

18 12 25 85

itor Cells; CFC: Colony Forming Cells; CFU-F: Colony Forming Units-Fibroblasts;



Figure 1 New manufacturing method: improved product immunophenotype and potency. Sternal bone marrow samples were processed
according to the current or the new manufacturing method, as indicated, then tested as follows: (A) Immunophenotype, to detect CD34+ and
CD133+ stem cells. (B) Colony Forming Cell assay (CFC), to detect hematopoietic precursor cells. (C) Colony Forming Unit-Fibroblast assay (CFU-F),
to detect mesenchymal precursor cells. (D) Invasion assay, to detect cells with invasion capacity. Data are expressed as mean values; error bars
represent standard deviations; *p < 0.05; **p < 0.01, unpaired T-test.
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beneficial effects on cell engraftment and tissue regener-
ation [24], but also negative effects. For example, in the
context of the REPAIR-AMI trial, the number of contam-
inating PLT in the BM-MNC product was reported to in-
versely correlate with LVEF recovery in patients after cell
therapy, even though this negative effect of PLT was less
pronounced than that of contaminant RBC; on the con-
trary, contaminant neutrophils had no significant impact
[25]. Regardless of the therapeutic effect, BM-MNC purity
is an important parameter with respect to the interpret-
ation of the results of clinical trials. Increasing the product
purity has been also specifically requested by regulatory
authorities. The majority of development experiments
were performed using sternal BM samples, harvested from
patients undergoing cardiac surgery involving sternotomy.
Such samples, showing a close similarity to iliac crest sam-
ples with respect to most analytical parameters, were
more easily available in our clinical context with respect
to iliac crest BM.
The previous manufacturing protocol used in the ini-

tial phase of the METHOD study [11] and in the “Swiss
multicenter intracoronary stem cells study in acute myo-
cardial infarction clinical trial” (SWISS-AMI) [12,13]
was derived from prior studies [26] with minor modifi-
cations. The new BM-MNC manufacturing protocol
relies on the use of a low-density variant of Ficoll-Paque,
i. e. Ficoll-Paque PREMIUM 1.073, which was selected
based on previous evidence that BM-MNC isolated by
Ficoll-Paque with different densities may differ in com-
position [27]. In agreement with Grisendi et al. [27], we
observed that low-density Ficoll-Paque leads to cells
with higher mesenchymal stem cell clonogenic potential
compared to standard Ficoll-Paque (Figure 1C). How-
ever, those authors reported a similar recovery of total
nucleated cells for the two media, whereas in our hands
the MNC yield was significantly reduced using the new
protocol (Table 4), presumably due to the effect of low-
density Ficoll-Paque (Table 2). Nevertheless, this limita-
tion is offset by several advantages including higher pur-
ity (Table 5) and higher content of hematopoietic and
mesenchymal precursors in cell products manufactured
with the new method (Figure 1).



Table 8 GMP process validation

Parameter Specification Results – Lot Number:

002.12 004.12 005.12

Visual control: appearance Limpid; absence of
micro aggregates,
colorless to slightly hematic

Limpid, absence of micro
aggregates, colorless

Limpid, absence of micro
aggregates, colorless

Limpid, absence of micro
aggregates, colorless

Integrity of primary container Intact Intact Intact Intact

Sterility No growth No growth No growth No growth

Bacterial endotoxins (EU/ml) < 5.00 < 5.00 < 5.00 < 5.00

Cell concentration (WBC/ml) FIO 1.20 × 106 2.40 × 106 1.25 × 106

Lymphocytes (%) ≥ 30 71 57 61

Monocytes (%) ≥ 8 14 16 14

Granulocytes (%) ≤ 55 15 27 25

Platelet concentration (PLT/ml) FIO 6.30 × 106 1.50 × 107 7.50 × 106

PLT/WBC ≤ 10 5 6 6

Hematocrit (%) ≤ 3 0.1 0.1 0.05

CD45+/CD34+ (%) FIO 2.94 8.41 8.95

CD45+/CD133+ (%) FIO 1.42 3.8 4.25

Cell viability (%) ≥ 70 74 84 99

CFC (colonies/106 cells) FIO 2 450 9 850 11 550

CFU-F (colonies/106 cells) FIO 44 55 36

Invasion (invasion index) FIO 35 59 47

EU: Endotoxin Units; WBC: White Blood Cells; PLT: Platelets; CFC: Colony Forming Cells; CFU-F: Colony Forming Units-Fibroblasts; FIO: For information only.
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Unlike Grisendi et al. [27], we evaluated additional
methodological aspects besides the gradient medium.
Gradient centrifugation parameters were adjusted (from
719 × g, 20’ at 20°C to 400 × g, 30’ at 20°C) to better
adhere to the Ficoll-Paque manufacturer’s instructions;
such adjustment itself had no impact on overall process
performance (Table 1).
The washing procedure was also modified (from three

washing steps at 582 × g, 10’ at 4°C, to two washing
steps at 400 × g and 100 × g, respectively, both at 20°C),
on the basis of Ficoll-Paque manufacturer’s indications
suggesting two centrifugations, one of which may be
performed at low speed to improve PLT removal. In our
hands, the use of a low-speed centrifugation step indeed
contributed to PLT abatement, even though it further
reduced MNC yield (Table 3). The filtration steps were
not optimized as they do not affect process performance
(data not shown). The purpose of the initial filtration
(100 μm) is to remove cell clumps or BM tissue fragments
that could interfere with subsequent process steps, while
the goal of the final filtration (70 μm) is to withdraw pos-
sible cell aggregates from the final product. Overall, the
new method significantly ameliorated product quality.
With respect to the QC strategy applied in most pre-

vious BM-MNC cardiovascular cell therapy studies
[2,28,29], our approach is more stringent in terms of
safety, as in those studies cells were tested for sterility/
microbiological contamination [30-34] but not for endo-
toxin. Endotoxin testing is important because high endo-
toxin levels as a result of bacterial contamination and/or
improper quality of manufacturing materials and re-
agents cannot be ruled out a priori. Moreover, this is the
only safety test which yields results before fresh product
infusion, since microbiological assays take 7 days or
longer. The specification for endotoxin (<5 Endotoxin
Units/mL) has been set according to EP [35].
Cell viability was evaluated in most trials [26,30,32,34,

36-44] and defined release criteria were reported by some
authors, e.g. > 70% viable cells in the FOCUS-CCTRN
trial [30,31] and > 80% in the REPAIR-AMI trial [31]. In
our case, the specification was set at ≥ 70% in accordance
to recent FDA guidelines [21].
Cell immunophenotype (mainly CD45 and CD34) was

analyzed in most previous studies [30-34,36,39,41-44],
even though no release specifications were reported. We
extended the immunophenotypic analysis to include not
only CD133, a stem cell marker expressed by a subset of
CD34+ cells [19,45] but also CD184/CXCR4 (SDF-1 re-
ceptor), a marker of functional BM-MNC activity. Seeger
et al. [20] reported that injection of CXCR4+ BM-MNC
in mice with hindlimb ischemia significantly improv-
ed the recovery of perfusion compared to injection of
CXCR4-negative BM-MNC; likewise, capillary density
was significantly increased in mice treated with CXCR4+



Figure 2 (See legend on next page.)

Radrizzani et al. Journal of Translational Medicine 2014, 12:276 Page 9 of 12
http://www.translational-medicine.com/content/12/1/276



(See figure on previous page.)
Figure 2 Product stability. Nine sternal bone marrow samples were processed according to the new manufacturing method. The resulting
product batches entered a stability program: they were stored at 10°C, and tested at 0-6-20-24 hours, for the following parameters: (A) Cell
concentration. (B) Cell viability. (C) Percentage of mononuclear cells (MNC) (lymphocytes +monocytes). (D) Percentage of CD34+ cells. (E) Colony
Forming Cell assay (CFC), to detect hematopoietic precursor cells. (F) Colony Forming Unit-Fibroblast assay (CFU-F), to detect mesenchymal
precursor cells. (G) Invasion assay, to detect cells with invasion capacity. (H) Colony Forming Unit-Endothelial Cell assay (CFU-EC), to detect cells
with angiogenic potential Data are expressed as relative values in respect to time 0. Each dot represents a single batch (identified by a distinct

color), while black dashes indicate mean values. Relative value %ð Þ ¼ value at the indicated time point−value at time 0
value at time 0 x 100.
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BM-MNC. The higher migratory capacity of such cells
and the release of paracrine factors may have contrib-
uted to tissue repair [20]. A correlation between in vitro
cell potency and long term clinical outcome has been re-
cently shown for BM-MNC therapy of acute myocardial
infarction [46].
In the present study, the presence of CD34+ CD133+

CD309+ EPC [47] was evaluated on representative BM-
MNC batches (Table 7, n = 5); however, it is not part of
the QC release panel due to the limited number of avail-
able cells in clinical batches and the relatively high cell
number required for this analysis.
In terms of functional cell characterization, we in-

cluded in QC release panel colony-forming assays for
both hematopoietic (CFC) and mesenchymal precursors
(CFU-F), along with testing of invasion capacity, which
were assessed in the REPAIR-AMI study [25] and, in part,
in the PROVASA study [39]. In addition, we performed
the CFU-EC assay to detect “angiogenic cells” [48].
In previous studies, limited data on cell characteristics

may have hampered the assessment of critical cell prod-
uct parameters. The poor product characterization also
limited the evaluation of product comparability among
cardiovascular cell therapy studies, thus contributing to
variable clinical results [28]. It is well known that BM-
MNC isolated through density gradient consist of a
mixture of various cell subsets with different phenotype
and function [49,50], including progenitor/stem cells
such as hematopoietic stem cells, mesenchymal stem
cells, EPC, multipotent adult mesenchymal progenitors
and embryonic-like stem cells. The cell subsets respon-
sible for beneficial effects of total BM-MNC in several
clinical studies are not yet identified [20,51]. It is also un-
known whether selected BM-derived cell subpopulations
may be superior to unfractionated BM populations con-
taining a mixture of differentiated and less differentiated
cells, potentially enhancing their effect by cross-talking
with each other [51].
Based on these considerations, our immunophenotypic

and functional analysis of clinical grade BM-MNC may
well contribute to the identification of product character-
istics having impact on the clinical outcome in different
patient populations, thus facilitating the identification of
product critical quality attributes and the definition of re-
lease specifications for further clinical studies [52].
The last part of our work focused on product stability,
an issue particularly relevant in the case when a freshly-
derived cell product is delivered to the patient. Due to
the peculiar nature of the product (live cells, intrinsic
inter-batch variability due to differences among patients,
limited product availability), the stability study was per-
formed at the storage temperature only (10 ± 5°C), as ac-
celerated and stressed conditions recommended in
general stability guidelines [53,54] were considered not
applicable for viable cells. Both release parameters and
characterization parameters not yet subjected to release
specifications were evaluated within the context of sta-
bility testing (Figure 2). Overall, the results suggested
that the product shelf-life could be set at 20 hours. This
time frame abundantly covers the time necessary for the
release of the product: pre-infusion testing (endotoxin,
cell concentration, cell viability, immunophenotype) gen-
erally requires approximately 2 hours, or 4 hours in case
of retesting due to deviations or non-conformities; the
remaining 16 hours may cover the transport to the clin-
ical site and/or infusion delay due to clinical issues.
A limitation of the present study is the lack of in vivo

experiments to demonstrate the superiority of BM-MNC
manufactured according to the new protocol in terms of
therapeutic potential. It could be interesting to address
this issue in future pre-clinical studies, in animal models
of hind limb ischemia or myocardial infarction.
Principles detailed in Swiss and European regulations

for ATMP [4-6], as well as in the applicable European
Medicinal Agency guidelines [7] and GMP guidelines
[55], were taken into consideration throughout our devel-
opment work. This approach allowed us to fulfil requests
formulated by the competent regulatory authorities in
view of the upcoming second phase of the METHOD trial
[11] and of the new CIRCULATE study. Based on the re-
sults summarized here, included in the quality section of
Investigational Medicinal Product Dossier, the CIRCU-
LATE clinical trial was successfully submitted and recently
got authorization.
Conclusions
Methods for BM-MNC production and testing have
been optimized and validated according to GMP. In par-
ticular, the manufacturing process has been redesigned,
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resulting in higher product purity and activity. Add-
itional identity and potency assays have been set up in
order to extend product characterization and evaluate
product stability: an extended QC panel has been estab-
lished, encompassing safety, identity/purity, and potency.
Release specifications have been updated and product
shelf-life has been defined based on experimental results
obtained during development and GMP validation. The
present work represents an example of constructive co-
operation between a cell therapy manufacturing site and
regulatory authorities, whose valuable inputs have been
considered during product development.
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