Zhu et al. Journal of Translational Medicine 2014, 12:252 7
http://www.translational-medicine.com/content/12/1/252 "i'“ JOURNAL OF
TRANSLATIONAL MEDICINE

RESEARCH Open Access

AAV2/8-hSMAD3 gene delivery attenuates aortic
atherogenesis, enhances Th2 response without
fibrosis, in LDLR-KO mice on high cholesterol diet

Hongging Zhu', Maohua Cao', Jose A Figueroa®, Everado Cobos??, Barry F Uretsky',
Maurizio Chiriva-Internati** and Paul L Hermonat'"

Abstract

Background: Inflammation is a key etiologic component in atherogenesis and transforming growth factor beta 1
(TGF(31) is a well known anti-inflammatory cytokine which potentially might be used to limit it. Yet TGF(31 is pleiomorphic,
causing fibrosis, cell taxis, and under certain circumstances, can even worsen inflammation. SMAD3 is an important
member of TGFB1's signal transduction pathway, but is a fully intracellular protein.

Objectives: With the hope of attenuating TGF31's adverse systemic effects (eg. fibrosis) and accentuating its
anti-inflammatory activity, we proposed the use of human (h)SMAD3 as an intracellular substitute for TGF@1.

Study design: To test this hypothesis adeno-associated virus type 2/8 (AAV)/hSMAD3 or AAV/Neo (control) was tail vein
injected into the low density lipoprotein receptor knockout (LDLR-KO) mice, then placed on a high-cholesterol diet (HCD).

Results: The hSMAD3 delivery was associated with significantly lower atherogenesis as measured by larger aortic cross
sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-treated
controls. HSMAD3 delivery also resulted in fewer aortic macrophages by immunohistochemistry for CD68 and ITGAM, and
quantitative reverse transcriptase polymerase chain reaction analysis of EMR and [TGAM. Overall, aortic cytokine expression
showed an enhancement of Th2 response (higher IL-4 and IL-10); while Th1 response (IL-12) was lower with hSMAD3
delivery. While TGF(31 is often associated with increased fibrosis, AAV/hSMAD3 delivery exhibited no increase of collagen
1A2 or significantly lower 2A1 expression in the aorta compared with Neo-delivery. Connective tissue growth factor
(CTGF), a mediator of TGF1/SMAD3-induced fibrosis, was unchanged in hSMAD3-delivered aortas. In the liver, all three of
these genes were down-regulated by hSMAD3 gene delivery.

Conclusion: These data strongly suggest that AAV/hSMAD3 delivery gave anti-atherosclerosis therapeutic effect without
the expected undesirable effect of TGF@1-associated fibrosis.
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Background

TGEBL is an important anti-inflammatory cytokine
and is protective against various cardiac pathologies.
It has been identified to be protective against myocardial
ischemia-reperfusion injury [1,2], apoptosis of cardiomyo-
cytes [3], pro-inflammatory adhesion molecule expression
on the vascular endothelial cells [4], and foam cell formation
[5]. It also inhibits ox-LDL-induced expression of adhesion
molecules in endothelial cells [6]. Furthermore, it is well
established that TGEPL is a strong inhibitor of immune
response [7,8]. Taken together, TGF1 would seem to be a
logical candidate for an effective anti-atherogenesis gene. In
a previous study TGFB1““" gene delivery has shown effi-
cacy against atherosclerosis in the low density lipoprotein
receptor knockout (LDLR-KO) mice on high-cholesterol
diet (HCD) [9]. While we did not observe significant adverse
effects upon TGFB1*“T—gene delivery into LDLR-KO/HCD
animals, we did find certain higher cytokine levels.
Moreover, higher TGFB1 expression is well known to
be linked to adverse reactions such as fibrosis, infection,
cancer and increased infections, coupled with unwanted
immune effects (reviewed in [10]).

Another approach to use TGEFB1 therapeutically might
be to utilize the genes down-stream from TGEFP1 in its
signal transduction pathway(s), through which TGFfp1
acts. Previously, for example, we have shown that STAT3
gene delivery, down-stream of interleukin 10 (IL-10),
can substitute for IL-10 gene delivery in the inhibition of
atherosclerosis in a mouse model [11]. These downstream
genes would then code for intracellular proteins, usually
transcription factors, and have a more limited effect than a
systemically secreted protein. The mechanism would be
that such genes might enhance the effects of low level
endogenous TGFp1, and take the place of direct TGFp1°<*
gene delivery [9]. Thus, hopefully, by going through the
most desirable TGFP1*“" signal transduction pathway,
undesirable side effects (eg. fibrosis) would be avoided.
The anti-inflammatory abilities of TGFB1 work through a
number of signal transduction pathways, including
Ras-ERK, TAKI1-JNK Rho-Rac-cdc42, mothers against
decapentaplegic homologs (SMADs) 2, 3, 4, and others
[9]. While SMAD2, SMAD3 or SMAD4 might all be
proposed as substitute agents for TGFp1, perhaps the
most interesting and appropriate of these agents may be
SMAD3 [12]. SMAD3 knockout (KO) mice have a
phenotype that closely mimics that of the TGFP1 KO
mouse [13]. Moreover, SMAD3 KO mice display much
higher and systemic inflammatory cell infiltration [12].
While many studies suggest TGFp1 acts through SMAD3/
SMAD4, other studies suggest SMAD3 can act without
SMAD4, and can even compete with SMAD4 for binding
both protein and DNA targets [14]. This is likely due to
SMAD3’s ability to either homodimerize or heterodimerize
with SMADA4.
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Thus we hypothesized that SMAD3 might be a reasonable
intracellular substitute for TGFP1l with a more specific
signal transduction effect. It is unclear at what level SMAD3
is basally expressed in endothelial and smooth muscle cells,
but it is clear that SMAD3 can be induced in these cells
[15,16]. Thus, by inducing higher constitutive SMAD3 levels
in cardiovascular tissues, in particular, aortic smooth muscle
cells (the main target of adeno-associated virus in arteries,
AAV) [17], we should be able to enhance the effects
of endogenous secreted TGFP1l. Adeno-associated virus
(AAV), first investigated in 1984, is a useful tool for gene
delivery to study gene function / therapeutic effect [18-21],
and its expression is known to last at least 10 years in clin-
ical trials [22]. The predicted amino acid (aa) sequence
homology of mouse and human (h) SMAD3 is 99%, thus,
hSMAD3 was the choice as a therapeutic gene. In this
study we delivered the hSMAD3 gene using AAV type 8
(AAVS) capsid, which has been shown to be effective in
gene delivery into cardiovascular tissues by ourselves and
others [23-27]. Here we observed that AAV/hSMAD3
delivery resulted in efficacy in inhibiting atherosclerosis in
low density lipoprotein receptor knockout (LDLR-KO)
mice on high cholesterol diet (HCD), but without the
concomitant fibrosis associated with TGFpB1.

Methods

AAV vector construction and virus generation

The human (h) SMAD3 and calcitonin gene-related
protein (CGRP) cDNAs (obtained from Open Biosystems)
were ligated downstream from the cytomegalovirus imme-
diate early promoter within the gutted AAV vector dI3-97
to generate AAV/hSMAD3 and AAV/hCGRP, respectively.
The AAV/Neo vector has been described previously [28].
AAV2/8 virus (AAV2 DNA in AAV8 virion) was produced
using pDGS8 helper (TransIT transfection of 6 pg each of
pDG8 plus AAV vector plasmid into 10 cm plates of 293
cells), freeze-thawing the plates three times at 60 hours,
the virus concentrated (pelleted) by ultracentifugation,
and titered by dot blot hybridization analysis by standard
methodologies [29].

Animal treatments

LDLR KO mice (B6;129S7-Ldlr"™[]) were purchased
from Jackson Laboratories (Bar Harbor, ME, USA). Three
groups of male mice, composed of ten animals each at
8 weeks old, were injected with AAV/Neo (positive
control group), AAV/hSMAD3 or AAV/hCGRP virus
at a titer of 1x10' eg/ml via tail vein with 200 pl
virus per mouse, two booster injections were followed
at an interval of 5-6 days. High cholesterol diet (HCD) of
4% cholesterol and 10% Coco butter diet (Harlan Teklad,
Madison, Wis, USA) was provided from the first day
of injection and maintained for the entire study period.
Another group of mice fed with a normal diet was used as
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a negative control group. All experimental procedures
conform to protocols approved by the Institutional Animal
Care and Usage Committee of the Central Arkansas
Veterans Health Care System at Little Rock.

Ultrasound imaging

The Vevo 770 High-Resolution Imaging system
(Visualsonics, Toronto, Canada) with a RMV 707B
transducer was used for all direct aortic examinations
as described earlier [24,26,27,30]. Briefly, each mouse
was anesthetized with inhalation of 1.5% isoflurane
(Isothesia, Abbot Laboratories, Chicago, USA) with oxygen
and placed supine on a thermostatically heated platform to
maintain a constant body temperature. All legs were taped
to ECG electrodes for cardiac function monitoring.
Abdominal hair was removed using a chemical hair
remover (Church & Dwight Co., Inc, NJ, USA), pre-
warmed US gel (Medline Industries, Inc., Mundelein, USA)
was spread over the skin as a coupling medium for the
transducer. Image acquisition was started on B-mode; two
levels of the vessel were visualized longitudinally: thoracic
region and renal region. Thereafter, a short-axis view was
taken to visualize the same arterial site in a cross-sectional
view immediately. For each level, individual frames and cine
loops (300 frames) were acquired and recorded at distances
of 1 mm throughout the length of the aorta. Measurements
and data analysis was performed off line using the
customized version of Vevo 770 Analytical Software
from both the longitudinal and transverse images.

Tissue sampling, processing, and immuno-histochemistry
At 20 weeks after first injection of virus and on HCD, mice
were euthanized by CO2 exposure and exsanguinations to
collect blood. For immunohistochemistry analysis was
prepared as described earlier [6,29,30]. The aorta was
flushed with saline solution and fixed in 10% neutral-
buffered formalin (Sigma, St Louis, MO, USA). After
24 hrs, the fixed tissue was embedded by paraffin for
sectioning. After immunohistochemistry staining with
anti-CD68 or anti-ITGAM antibody with conjugated
horse radish peroxidase, photomicrographs were taken.
For real-time PCR analysis, the aorta sample were frozen
in liquid nitrogen and stored in -80°C.

Measurement of plasma cholesterol

Total plasma cholesterol of AAV/Neo and AAV/SMAD3
mice were measured by VetScan VS2 (Abaxis, Union City,
CA, USA) at the Veterans Animal Laboratory (VAMU).

RNA isolation and real-time qRT-PCR

Total aortic RNAs were extracted using Trizol re-
agent (Invitrogen Carlsbad, CA) and were treated
with DNase I (Invitrogen, Carlsbad, CA). Then cDNA
was synthesized using oligo(dT);g primers and RNase
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H-reverse transcriptase (Invitrogen, Carlsbad, Calif)
according to the manufacturer’s instructions. The specific
primers for qPCR analysis were synthesized by Integrated
DNA Technologies, Inc. (Coralville, IA). Real-Time
Quantitative PCR was performed using SYBR Green
PCR Master Mix kit on the Applied Biosystems Fast
7900HT real-time PCR system (Applied Biosystems,
Foster City, CA). The results were analyzed with SDS 2.3
software. Table 1 lists the primer set sequences used.

Western blot analysis

Tissue samples were collected after the mice were sacrificed.
Proteins were extracted from liver with the T-PER tissue
protein extraction reagent (Thermo Scientific). Protein
quantification was measured by the protein assay dye
reagent kit (Bio-RAD). Samples were loaded at equal
amount and were electrophoresed on 10% SDS-PAGE gels
and transferred to immune-blot PVDF membrane
(Bio-Rad). After blocking with 5% nonfat milk in 1 x TBST
buffer (10 mM Tris-Cl [pH 7.5], 150 mM NaCl, 0.1% Tween
20), membranes were incubated at room temperature for
1 hour with a monoclonal antibody specific to the SMAD3
(1:1000 dilution, Sigma-Aldrich) or a monoclonal antibody

Table 1 Primer sequences

GENE polarity 5'3'
Bactin sense ATCTGGCACCACACCTTCTAC
antisense GAAGGTCTCAAACATGATCTGG
COL1A2 sense CGTTCCCAAAGATGGTAGAT
antisense AGCCACCTCCGCTGACACCA
COL2A1 sense GAACATCACCTACCTACCACTG
antisense ATCCTTCAGGGCAGTGTA
CTGF sense GGAGAAGCAGAGCCGCCT
antisense CTGGTGCAGCCAGAAAGC
EMR sense AAGTATTCCAACTGCTCT
antisense ATTGGCCCTCCTCCACTA
IL-4 sense ATGTGCCAAACGTCCTCACA
antisense AGAACACTAGAGTTCTTCTT
IL-7 sense AAATGACAGGAACTGATAGT
antisense GACATTGAATTCTTCACTGA
IL-10 sense TACAGCCGGGAAGACAATAA
antisense AAGGAGTCGGTTAGCAGTAT
IL-12 sense AGAATCACAACCATCAGCAG
antisense TTCACTCTGTAAGGGTCTGC
[TGAM sense TCCAGAGGCTGTGAATAT
antisense CTTCTGAAAGTCAATGTTGT
SMAD3 sense GGTCCCTGGATGGCCGGT
antisense GGATTCACGCAGACCTCG

Shown are the indicated primer sets used to analyze gene expression
by QRT-PCR.
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specific to P-actin (1:1000 dilution, Sigma-Aldrich).
Membrane was then washed with 1xTBST buffer
(10 mM Tris-Cl (pH 7.5), 150 mM NaCl, 0.1% Tween
20) and incubated with 1:2000 dilution horseradish
peroxidase-conjugated secondary antibody (Sigma-Aldrich)
at room temperature for 1 hour. Proteins were detected
using the ECL system (Fisher-Scientific) and exposure to
X-Ray film (Phenix).

Results

HSMAD3 gene delivery and protein expression

We address the hypothesis that h\SMAD3 gene can serve
as a substitute for TGFB1. AAV/hSMAD3 (AAV serotype
8) was delivered by tail vein injection and the animals
placed on HCD (4% cholesterol, 10% coco butter). The
animals were then harvested/high resolution ultrasound
analyzed at 16—20 weeks post-injection/post HCD initiation.
shows that the delivery of hSMAD3 into the aorta, as
measured by Q-RT-PCR, was successful, being expressed
much higher in AAV/hSMAD3-treated animals. A western
blot analysis, in Figure 1B, was done for SMAD3 protein in
the liver of the various animal groups and it can be seen
that AAV/hSMAD3 infected animals had higher protein
levels (p <0.05). It should be noted that the primers used in
Figure 1A were specific for the hRSMAD3 gene present in
the AAV vector, while the western blot utilized antibody
which identified both endogenous mouse SMAD3 and
AAV gene therapy-derived human SMAD3. Figure 1C
shows that the blood cholesterol levels were high in both
groups on HCD, but that the AAV/hSMAD3-treated ani-
mals were statistically lower. Additionally, animal weights
were statistically similar in all groups (data not shown).

Analysis of aortic structure

High resolution ultrasound (HRUS) was then used to
analyze the aortas of at least eight animals per group.
Figure 2A shows that the aortic cross-sectional area was
significantly larger (» < 0.05) in the hSMAD3/HCD-treated
animals than the Neo/HCD-treated animals by HRUS.
Moreover, HRUS, as shown in Figure 2B, indicated that
aortic wall thickness was significantly lower (p < 0.05) in the
hSMAD3/HCD-treated animals than the Neo/HCD-treated
animals, consistent with lower atherosclerosis. Figure 2C
shows that the systolic blood velocity in the thoracic region
of the aorta was significantly lower (p<0.05) in the
hSMAD3/HCD-treated animals than the Neo/HCD-treated
animals, consistent with less severe atherosclerosis. In sharp
contrast to the effect of hSMAD3 delivery, another gene we
thought might have some therapeutic effect, calcitonin
gene-related peptide (CGRP), had no effect on systolic
aortic blood velocity. Thus, CGRP will not be further
studied. However, importantly, the results from the aortic
cross-sectional area, wall thickness and systolic blood
velocity were all consistent, all indicating there was
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Figure 1 Delivery of hSMAD3 and dietary effects. A. Relative
expression of the hSMAD3 gene to Ractin by real-time quantitative
PCR from aorta of 3 mice in each group. For gRT-PCR the quantity
of RNA for each gene was normalized to Ractin in the same sample.
Data shown are mean +/— SE. B. shows a western blot analysis of
protein from liver probed with anti-SMAD3 antibody. Note that both
A and B show increased SMAD3 levels in the AAV/hSMAD3-treated
animals. C. shows the levels of total cholesterol. Note that a HCD did
result in increased cholesterol.

significantly lower atherosclerosis associated with hSMAD3
gene delivery.

Analysis of macrophage trafficking

The level of macrophage trafficking into the aortic wall was
analyzed by immune-histochemistry using anti-CD68- and
anti-ITGAM antibody, as shown in Figure 3A and 3B,
respectively. For both macrophage markers there was
shown to a greater number of macrophages in the walls of
the Neo/HCD-treated than the SMAD3/HCD-treated ani-
mals. Macrophage invasion of the aorta was also quantified
by QRT-PCR for the expression of another macrophage
marker, EMR. As shown in Figure 3C, the level of EMR in
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Figure 2 Structural Analysis of the aorta. High resolution ultrasound (HRUS) was used to measure various aortic parameters. A. shows

quantification of the cross-sectional area for the thoracic region of the aorta in 3-5 animals from each animal group by HRUS with representative
captured images from the analysis just above. Note that the AAV/hSMAD3-HCD animals had a larger cross sectional area than the AAV/Neo-HCD
animals. B. shows quantification of the wall thickness of the aorta (thoracic region). Note that the AAV/hSMAD3-HCD animals have a thinner wall
thickness than the AAV/Neo-HCD animals. C. shows quantification of blood flow velocities in the lumenal center of the abdominal region of the
aorta in 3-5 animals from each group with representative captured images from the analysis just above. Note that the AAV/hSMAD3-HCD animals

have a much lower blood velocity than the AAV/Neo-HCD animals (or hCGRP-treated).

the SMAD3/HCD-treated animals was significantly lower
(p <0.05) than in Neo/HCD-treated animals. QRT-PCR
analysis of ITGAM, as another Mo/Mac marker, also
trended lower (p =0.67), consistent with the immune-
histochemistry data. Thus, these data, taken together,
indicate that macrophage levels are lower SMAD3/
HCD-treated animals than in Neo/HCD-treated animals.
Representative cleaned and unstained aortas are also
shown in Figure 4. Areas of plaque, high cholesterol, show
up as white areas, whereas normal aorta is translucent.
These aortas show that the AAV/Neo-HCD-treated aorta
had higher levels of lipid accumulation in contrast to

either the ND ctrl or to the AAV/SMAD3-HCD-treated
aorta (no quantification performed).

Immune status of the aortas

Related to macrophage and lipid accumulation, we
observed the expression of various Thl and Th2 cytokines
in the aortas in order to determine the aortas’ predominant
immune status. Figure 5A shows that Th2 cytokine IL-4
was significantly (p >0.05) higher in SMAD3/HCD-treated
animals than in the Neo/HCD-treated animals. Similarly,
IL-10 levels, another Th2 cytokine, trended higher in
the SMAD3/HCD-treated animals (Figure 5B). In contrast,
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Figure 3 Macrophage burden of aortic tissue. A. CD68 expression. CD68 is a marker of macrophages and thus is a general marker of
inflammation. Histologic sections of aorta from the indicated animal groups were analyzed for CD68 protein by immunohistochemistry using
anti-CDé8 antibody. Note that the AAV/hSMAD3-HCD-treated animals displayed a much lower brown CD68 signal than the AAV/Neo-HCD-treated
animals strongly suggesting lower inflammation. B. shows a similar analysis with anti-lTGAM antibody, another marker of macrophages, with similar
results to CD68. C. shows a QRT-PCR analysis of EMR expression, another macrophage marker. Note, again, macrophage levels were significantly lower
(p <0.05) in hSMAD3-treated animals than Neo-treated. D. shows a QRT-PCR analysis of ITGAM expression. Note, again, macrophage levels trended
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IL-7, a Thl cytokine, was unchanged in all group
(Figure 5C), while IL-12 (Figure 5D), yet another Thl
cytokine, trended lower SMAD3/HCD-treated animals
over Neo/HCD-treated animals. Thus, overall, these
data establish that a predominant Th2 response is
present in the aortas as a result of the SMAD3 delivery,
consistent with the known overall effect of TGFp1.

Analysis of collagen expression/fibrosis

Fibrosis is one of the most undesirable side effects of
TGEP1 expression. Thus, the possibility that SMAD3
might be useful as a TGFp1-substitute would hinge on
its ability to give therapeutic effect, without association
with adverse side effects. With our atherosclerosis model
we can only study the TGFf1 side effects of increased
cancer and infections with great difficulty. However,
status of fibrosis would be easy to study. Therefore,
in Figure 6A, the level of collagen 1A2 expression
was analyzed by QRT-PCR and no significant difference in
expression in the aortas was found between hSMAD3/
HCD- and Neo/HCD-treated animals. However, collagen
2A1 expression (Figure 6B) was significantly lower in
hSMAD3/HCD- than Neo/HCD-treated animals. The
lack of increased fibrosis was further substantiated
by observing connective tissue growth factor (CTGF)

expression, a known inducer of fibrosis, was unchanged
throughout all groups (Figure 6C). The effects of AAV/
hSMAD3-delivery were further analyzed directly in the
liver, a known target for fibrosis, as well as a known target
for AAV8-based gene delivery. In an analogous analysis to
the aorta, collagen 1A2, collagen 2A1 and CTGF were all
significantly down in AAV/hSMAD3-HCD-treated animals
in Figure 6D-F. In summary, Figure 6 demonstrates that
AAV/hSMAD3-delivery is associated with lower fibrosis,
not higher fibrosis, as is with TGFf1.

Discussion

The TGFB1/SMAD signaling pathway has been shown
to mediate immunosuppressive responses. This fact
suggests that SMAD3, one member of these down-
stream genes, might limit atherogenesis through its
anti-inflammatory effects. However, TGFf1/SMAD3
signaling is also pro-fibrotic [10]. Using AAV-based
gene delivery, we studied which of these effects was
dominant in vivo and if hRSMAD3 might be an intra-cellular,
non-systemic substitute for TGEP1 in treating/inhibiting
atherogenesis. As defined by larger aortic lumen, thinner
aortic walls, by lower systolic blood velocity, and lower
macrophage burden, hSMAD3-gene delivery clearly
resulted in a significant anti-atherogenic effect. While
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Figure 4 Visual inspection of representative aortas. Aortas from
the indicated animals were buffered formalin fixed, cleaned and
photographed. Note that the AAV/Neo-treated HCD aorta displays
much higher amounts of lipid accumulation (white areas) than the
AAV/hSMAD3-treated-HCD animals.

AAV8-delivered hSMAD3 expression was only approxi-
mately 0.3% mRNA expression compared to endogenous
Bactin expression, assuming that the average aortic cell
(smooth muscle) translates the Pactin and the hSMAD3
mRNAs at roughly the same efficiency and are roughly
equivalent to the average cultured fibroblast [31], then a
0.3% expression level appeared to result in, approximately
400 hSMAD3 molecules per minute per cell pro-
duced. However, this analysis doesn’t address that the
transduction level of AAVS8 after 20 weeks (less than
100%), nor the likelihood that smooth muscle cells
express more Pactin than fibroblasts. Thus the level of
hSMAD3 being produced specifically in AAV-transduced
cells is likely to be multiples higher than the 400
molecules per minute per cell.
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The level of hASMAD3 expression clearly affected intra-
aortic immune response. We observed that IL-4 was
significantly up, as expected, suggesting that Th2 response
is favored over Thl response. IL-10, another Th2
cytokine, also trended higher, in agreement with IL-4.
Correspondingly, IL-12, a Thl cytokine trended lower
in the hSMAD3-treated liver, consistent with higher
Th2 cytokines. The expression of IL-7, was technically
higher in hRSMAD3-treated aortas, but actually levels were
little changed. Thus, overall, the delivery of hSMAD3
resulted in a pro-Th2 intra-aortic response, as is known
for TGFP1 [32], and is believed beneficial for countering
atherogenesis [33].

While SMAD3 is most often linked with TGEP1 signaling,
there are other ligands which also involve SMAD3 in their
signal transduction pathways. One example is activin,
another member of the TGFP super family. Its effects are
on the reproductive system, insulin and muscle metabolism,
and enhancement of fibrosis [34]. However, these pathways
are not as extensively studied as TGEFP1. Additionally,
angiotensin II (Ang II), a well known blood pressure
regulator of the renin-angiotensin system, also signals
though SMAD3, but in a less direct manner. Ang II
signaling through ATIR, down-regulates SMAD7, a
negative regulator of SMAD3, and results in higher SMAD3
signaling. Yet, again, fibrosis is enhanced by Ang II [35].
Other ligands, such as inhibin may also signal through
SMAD3. Thus, SMAD3’s role in signal transduction
has been described in the title of one review article
as having “smaddening complexity” [36].

The purpose of using hSMAD3 gene delivery was to
provide the therapeutic effect of TGFp1, but with lower
adverse effects of fibrosis, cancer and infections. While
we can only study cancer and infection levels with great
difficulty in our model, we can more readily study fibrosis.
A major finding of this study was that collagen and
connective tissue growth factor (CTGF) expression
was unaffected or lower in the aorta, and significantly
lower in the liver, after AAV/hSMAD3 delivery (Figure 6).
We were surprised to find collagen 1A2 expression was
the same in Neo-HCD and hSMAD3-HCD-treated
aortas. Supporting these data, collagen 2A1 was signifi-
cantly higher in Neo-HCD than in hSMAD3-HCD-treated
aortas. Consistent with these data, CTGE, known to induce
SMAD3-associated fibrosis, was unchanged throughout
all groups. Even more telling, collagen 1A2, collagen
2A1, and CTGF expression were significantly lower in
hSMAD3-HCD-treated livers. There is evidence that
SMAD3, as it lowers fibrosis, may also lower cancer. SMAD3
knockout mice develop various cancers and SMAD3
expression is known to be cell cycle regulated by ras
[37]. Thus, a simple explanation may be that our
gene delivery of constitutive SMAD3 expression gives
a constant anti-proliferative effect, with fibrosis being
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Figure 5 Immune response status of aortas is Th2. A. shows a QRT-PCR analysis of IL-4 expression, a Th2 response cytokine. Note that IL-4
levels were significantly higher (p <0.05) in hSMAD3-treated animals than Neo-treated. B. shows a QRT-PCR analysis of IL-10 expression, another
Th2 response cytokine. Note, again, IL-10 levels trended higher in hSMAD3-treated animals than Neo-treated. C. shows a QRT-PCR analysis of IL-7
expression, a Th1 response cytokine. Note that IL-7 levels were higher (p <0.05) in hSMAD3-treated animals than Neo-treated, however, overall,
the changes were very minor. D. shows a QRT-PCR analysis of IL-12 expression, another Th1 response cytokine. Note IL-12 levels trended lower in
hSMAD3-treated animals than Neo-treated.

down-regulated along with cell proliferation. Leivonen
et al. [38] found that SMAD3 is specifically required
(not SMAD2 or SMAD4) for the induction of matrix
metalloproteinase-13 (MMP-13) by TGEPL [38]. Higher
MMP-13 levels are also associated with lower fibrosis
[39]. This latter signaling pathway and phenotype is also
more consistent with what we observe.

It must also be mentioned that our results are in
contrast with those of Kundi et al., [40], who found
increased fibrosis after adenovirus-based gene delivery
of SMAD3, following carotid injury in rats [40]. However,
the adenovirus vector used in the Kundi study is well
known to cause inflammation, NFkB induction and fibro-
sis during gene therapy experiments as well as clinically
[41-44]. Thus, when issues of inflammation and fibrosis
are possible the use of adenoviral vectors would not seem
to be ideal. It should also be mentioned our results are
consistent with those of Meng et al. 2012 [13], who found
that SMAD3-dimers could translocate to the nucleus
without SMAD4, and that SMAD3 were defective in
activating the COL1A2 promoter (and perhaps others). As
SMAD3 and SMAD4 recognize and bind the identical
palindromic promoter sequence during transcriptional
regulation (14), this suggests that the effects we see on
COL1A2 expression may simply be due to SMAD3

homodimers inhibiting the formation of transcriptionally
active SMAD3/SMAD4 heterodimers.

In conclusion, AAV-based hSMAD3 gene therapy
exceeded our expectations in providing the therapeutic
“good face” of TGFP1 over that of the bad (no fibrosis).
hSMAD3-therapeutic gene delivery was successful in redu-
cing the pathology of HCD, a prototype Western diet in
LDLR KO mice, both in reducing atherogenesis and enhan-
cing Th2 response. Yet, ASMAD3 delivery did this without
inducing the serious TGFP1l-associated adverse side effect
of fibrosis as measured by CTGF and collagen expression.
As of now, our main hypothesis is that the effects of AAV/
hSMAD3 gene delivery are driven by an increase in nuclear
SMAD3 homodimers and their resulting changes in tran-
scriptional regulation. Overall effects of hSMAD3 gene
delivery were without documented or noticed side effects.
However, atherosclerosis was not fully inhibited. Perhaps
increasing the extent of hSMAD3 gene delivery, or improv-
ing it’s level of expression can result in further down-
regulation of the disease state. Thus, further studies into the
use of AAV-based hSMAD3 gene delivery are warranted.

Conclusions
This animal study focused on the gene therapy manipu-
lation of the very powerful TGFP1 signal transduction
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Figure 6 Collagen (COL) and connective tissue growth factor (CTGF) expression in the aorta and liver. A. shows a Q-RT-PCR analysis of
COL1A2 expression in the aortas, a major marker of fibrosis. Note that COL1A2 levels were essentially the same in the aortas of both hSMAD3-HCD- and
Neo-HCD-treated animals. B. shows a Q-RT-PCR analysis of COL2A1 expression in aortas, another marker of fibrosis. Note that COL2A1 levels were
significantly lower in the aortas of both hSMAD3-HCD-treated than Neo-HCD-treated animals. C. shows a Q-RT-PCR analysis of CTGF expression in the
aortas, again, another marker of fibrosis. No significant change is seen in any experimental group. D, E, and F show an analogous Q-RT-PCR analysis of
COL1A2, COL2AT1, and CTGF expression, respectively, but this time in the liver. Note that all three genes are significantly down-regulated by hSMAD3

delivery compared to Neo control, fully consistent with lower fibrosis.

pathway for inhibiting atherosclerosis, by the delivery
of the human SMAD3 gene. SMAD3 is one of the
transcription factors through which TGEP1 acts. We
found that AAV2/8-hSMAD3 delivery did give efficacy in
inhibiting HCD-induced atherosclerosis in LDLR KO
mice. Moreover, significantly increased fibrosis was not
observed as is usually the case when direct, primary
TGFpB1-signalling is stimulated. Previously, we have shown
that, analogous to this study, AAV/STAT3 gene delivery,
with STAT3 being down-stream of interleukin 10 (IL10),
is similarly able to substitute for IL10, again, for inhibiting
atherosclerosis. Thus, through this strategy of using down-
stream signal transduction genes in place of their powerful
primary chemokines, we might be able to effect superior
treatment results.
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