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Abstract

Activation of the PISK/AKT pathway, a common mechanism in all subtypes of endometrial cancers (endometrioid
and non-endometrioid tumors), has important roles in contributing to epithelial-mesenchymal transition (EMT) and
cancer stem cell (CSC) features. MicroRNAs (miRNAs) are small non-coding RNA molecules that concurrently affect
multiple target genes, and regulate a wide range of genes involved in modulating EMT and CSC properties. Here
we overview the recent advances revealing the impact of miRNAs on EMT and CSC phenotypes in tumors including
endometrial cancer via regulating PI3K/AKT pathway. MiRNAs are crucial mediators of EMT and CSC through
targeting PTEN-PI3K-AKT-mTOR axis. In endometrial cancer cells, miRNAs can activate or attenuate EMT and CSC

by targeting PTEN and other EMT-associated genes, such as Twist1, ZEBT and BMI-1. More detailed studies of miRNAs
will deepen our understanding of the molecular basis underlying PI3K/AKT-induced endometrial cancer initiation
and progression. Targeting key signaling components of PI3K/AKT pathway by restoring or inhibiting miRNA
function holds promise as a potential therapeutic approach to suppress EMT and CSC in endometrial cancer.
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Introduction

Endometrial cancer (EC) is the most common invasive
neoplasm of the female genital tract in the United States
and many other developed countries. In 2014, there are
about 52630 new cases and 8590 deaths due to this neo-
plasm [1]. Although Asian women have a lower risk of
EC compared to those in the US and other western
countries, the incidence of EC in Shanghai and in Japan
has substantially increased [2,3].

A dualistic model of EC has been proposed, broadly
classified into type 1 (approximately 75% of cases, endo-
metrioid EC) and type 2 non-endometrioid tumors
(serous and clear-cell histology) [4]. Most type 1 ECs are
usually diagnosed early and have a good prognosis [5].
Type II ECs tend to invade surrounding tissue and
metastasize, with a lower 5-year survival rate [5-8]. At
the molecular level, type 1 ECs often show PTEN loss
and mutations in PI3KCA and KRAS [9-12], and type 2
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cancers commonly exhibit mutations in p53 [13] and
HER-2 overexpression [14].

However, this model has been challenged by the find-
ings that many tumors actually show combined or over-
lapping clinical, pathological and molecular features of
both classification types [15,16], suggesting that a com-
mon molecular mechanism involved in both types of
cancers may exist. Consistent with this, recent molecular
researches have shown that dysregulation of the PI3K/
AKT signaling was found in all subtypes of EC, and asso-
ciated with more aggressive disease [17-19]. Therefore,
effective blocking of the PI3K/AKT pathway may be
therapeutically valuable in the treatment of EC.

The epithelial-mesenchymal transition (EMT) program
plays important roles in promoting tumor cell invasion,
chemoresistance and cancer stem cell (CSC) properties
[20,21]. Accumulating genetic and cancer biology evi-
dence demonstrate that PI3K/AKT pathway is a central
mechanism controlling EMT/CSC features, despite its
definite effects on cancer cell proliferation and survival
[22-25]. For example, activation of PI3K/AKT pathway
was detected in radioresistant prostate cancer cells with
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enhanced EMT/CSC phenotypes, and the combination
of PI3K inhibitor with radiotherapy induced more apop-
tosis in radioresistant cells, along with decreased expres-
sion of EMT/CSC markers and PI3K/AKT signaling
proteins [26]. Squamous cell carcinoma lines expressing
an active form of AKT produce a transcription factor
Snail, which is known to promote EMT via the repres-
sion of E-cadherin gene [27].

MicroRNAs (miRNAs) are small non-coding RNA mo-
lecules that post-transcriptionally control the translation
and stability of mRNAs. Individual miRNA can concur-
rently bind to multiple mRNAs and affect their expression
[28]. Loss of tumor suppressive miRNAs and/or gain of
oncogenic miRNAs lead to tumorigenesis and progres-
sion. In the last decade or so, miRNAs have emerged as
key regulators of a wide range of genes and signals
involved in modulating EMT/CSC properties, such as the
PI3K/AKT pathway [29,30].

In this review, we highlight the recent advances un-
raveling novel roles of miRNAs in the regulation EMT/CSC
phenotypes of tumor cells through targeting PI3K/AKT
pathway, focusing on the potential impact of miRNAs
on EMT/CSC characteristics of EC cells via targeting
this pathway.

Activation of PI3K/AKT signaling promotes EMT and CSC
in EC

Among three classes of PI3Ks, only classes IA PI3Ks are
found to be involved in human cancers [31]. PI3K is a
dimeric enzyme and consist of regulatory p85 and cata-
lytic subunit p110 subunits [32]. Numerous important
mechanisms for PI3K/AKT activation include activated
receptor tyrosine kinase (RTK), RTK-induced KRAS acti-
vation, and genetic abnormalities in specific component
of the pathway, such as loss of PTEN tumor suppressor
(through deletion, gene methylation and protein stabil-
ity) and PI3KCA (p110a) mutation or gene amplification
[33,34]. The AKT kinase family has three highly hom-
ologous isoforms: AKT1, AKT2 and AKT3 [35]. Studies
in breast cancer and EC cells have identified contradict-
ory effects of AKT1 and AKT2 on cancer cell motility
[36-38]. The mammalian target of rapamycin (mTOR) is
a critical regulator that controls cell growth, prolifera-
tion, migration and invasion through two complexes,
mTORC1 and mTORC2 [39,40]. Although activated
PI3K/AKT pathway promotes mTORC1 activation,
mTORCI1 hyperactivation also leads to feedback inhi-
bition of the PI3K/AKT signaling [20] (Figure 1).

In addition to affecting cell proliferation and survival,
recent data suggest that dysregulation of PISK/AKT
pathway can upregulate the expression of known EMT
inducers such as EZH2, BMI-1, Snail and Slug, ulti-
mately promoting EMT and CSC features [41,42]. In
immortalized mouse embryonic fibroblasts, PTEN loss
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results in elevated the levels of both EZH2 and BMI-1
[41]. AKT/Snail signaling activation is mechanistically
associated with the acquisition of EMT/CSC properties
in cisplatin-resistant lung cancer cells [42].

It has been become apparent that attenuated PTEN
expression leads to constitutive activation of the PI3K/
AKT pathway, which consequently contributes to tumori-
genesis and metastasis of EC. Homozygous deletion of
PTEN in PTEN''~ mice leads to rapid formation of EC
[43]. Consistent with this, conditional ablation of PTEN in
mouse uterus is sufficient to activate the PI3K/AKT path-
way and accelerate cancer cell invasiveness [44]. Further-
more, diminished AKT1 activity dramatically inhibits
endometrial tumorigenesis caused by PTEN deficiency
[45]. These reports indicate that hyperactivation of PI3K/
AKT due to PTEN loss is a key mechanism driving
initiation and invasive growth of EC.

Loss of PTEN expression is more frequently associated
with metastatic malignancy [46] and worse prognosis of
patients with EC [47]. When PTEN gene is stably trans-
fected into PTEN-mutated human EC cells, cell prolife-
ration is markedly inhibited, accompanied by a decreased
level of phosphorylated-AKT (p-AKT) expression [48].
Decreased p-AKT and increased apoptosis are detected
in EC cells with mutated PTEN in the presence of PI3K
inhibitor Wortmannin [49]. Collectively, these in vivo
and in vitro evidence suggests that the role of PTEN
loss-of-function in facilitating PI3K/AKT-dependent endo-
metrial carcinogenesis and progression.

Moreover, in those ECs where PTEN protein is
retained, mutations in PI3K pathway members, such as
PIK3CA, PIK3RI (p85a) or PIK3R2 (p85p), can functio-
nally mimic the PTEN loss, resulting in marked in-
creases in p-AKT levels [50]. Although KRAS mutations
are common in endometrioid ECs, it seems that KRAS
activates independent events from PI3K/AKT pathway
aberrations [50]. Epidermal growth factor receptor (EGFR)
acts upstream of PISK/AKT signal [51] and could play an
initiating role to stimulate EMT in EC cells via upregula-
ting Snail protein expression [52]. Transient transfection
of constitutively active form of AKT into uterine carcino-
sarcoma cells results in the transactivation of Slug, which
in turns downregulates E-cadherin expression [53].

Taken together, these studies suggest that activation of
the PIBK/AKT pathway (possibly through PTEN loss,
PI3K mutations and EGFR activation) can trigger the
invasive, EMT phenotypes of EC cells through modula-
ting the expression of EMT inducer genes.

Interactions between PI3K/AKT and other signaling
molecules regulate EMT/CSC

Oncogenes such as BMI-1 and EZH?2 seem to act as both
upstream regulators and downstream targets of PI3K/AKT
pathway. The interactions between these EMT-inducing
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Figure 1 Regulatory networks of miRNAs and PI3K/AKT pathway in controlling EMT and cancer stemness in human tumors including
endometrial cancer. Activation of PI3K/AKT signaling plays an essential role in promoting EMT and cancer stem cell phenotypes. Interactions
between PI3K/AKT and other pathways regulate EMT/CSC. MiRNAs function as both upstream mediators and downstream effectors to affect PI3K/
AKT pathway activities. References showing the regulatory interactions are indicated. Verified interactions in endometrial cancer were underlined.

factors and PI3K/AKT pathway have been studied, and are
required for the induction of EMT in tumor cells.
Overexpression of BMI-1 promotes resistance to cis-
platin by increasing PI3K/AKT activity in osteosarcoma
cells [54]. Likewise, another study of human nasopha-
ryngeal epithelial cells suggest that BMI-1 transcription-
ally downregulates the expression of PTEN and induces
EMT through direct association with the PTEN locus

[55]. However, in prostate cancer cells, PTEN reduces
the function of BMI-1 to prevent tumorigenesis, which
can be attributed to its interaction with BMI-1 in the
nucleus [56], indicating that a PTEN/BMI-1 double-
negative feedback loop may occur and govern EMT/CSC
in certain types of cancer.

EZH2 has been reported to be required for CSC main-
tenance [57], and its overexpression often correlates with
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advanced stages and poor prognosis in diverse cancer
types [58]. EZH2 has been identified as a downstream
effector of PI3K/AKT pathway, and its depletion inhibits
invasion and EMT in metastatic colon cancer cells [59].
However, in colon cancer stem cells the treatment with
EZH2 inhibitor DZNep actually increased PTEN expres-
sion, decreased p-AKT expression and induced cell
apoptosis [60]. These data suggest that the upregulation
of EZH2 as a consequence of PI3K/AKT activation
might increase PI3K/AKT activity by downregulating
PTEN levels in CSC-like cell populations.

These studies demonstrate that feedback loops or
cross-talks between PI3K/AKT pathway and other
EMT/CSC-associated signaling are complex, and appear
to be highly context-dependent. More studies are needed
to characterize the relationship between PI3K/AKT and
other important pathways in controlling EMT/CSC
properties of EC cells (Figure 1).

MiRNAs control EMT/CSC by targeting PI3K/AKT signaling
in EC

As miRNAs can bind to their mRNA targets with perfect
or imperfect complementary, one miRNA may concur-
rently influence multiple target genes in the same pathway
or different cellular signaling pathways [61]. Therefore, de-
livery of tumor suppressor miRNAs and/or silencing
oncogenic miRNAs could be a promising way to rectify
aberrations in the responsible signaling pathways related
to EC.

Microarray-based miRNA profiling has been success-
fully performed to indentify a miRNA profile distinct
from normal endometrium [62]. Dysregulated miRNA
levels correlate with patient prognoses in EC [63]. Of
importance, miRNAs have been reported to target
multiple key components in the PI3K/AKT pathway in
human tumors [39,64] (Figure 1), as elaborated below.

PTEN

PTEN has been shown to be a direct target of miR-21 in
human liver cancer [65]. Inhibition of miR-21 increases
the expression of PTEN tumor suppressor, and decreases
liver cancer cell proliferation, migration, and invasion
[65]. Incidentally, miR-21 is also overexpressed in EC tis-
sues, and downregulates PTEN expression via binding to
the 3" -untranslated region (UTR) of PTEN mRNA, lead-
ing to promoted cell proliferation of EC cells [66]. In
addition, miR-221 and miR-222, by targeting PTEN and
raising p-AKT expression, enhances cellular migration
and tumorigenicity of lung and liver cancer cells [67].
MiR-261a/217 induces EMT and increases the stem-like
cell population and metastatic ability of liver cancer cells
by targeting PTEN [68]. MiR-144 was reported to
increase cell proliferation, migration and invasion in
nasopharyngeal carcinoma through repression of PTEN
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[69]. Interestingly, miR-26a and miR-92a can promote
cell proliferation of prostate cancer by regulating PTEN
and its downstream PI3K/AKT signals [70]. MiR-205
interacts with PTEN mRNA and downregulates its
expression in nasopharyngeal carcinoma cells [71]. MiR-205
expression is increased in ECs, and associated with decreased
expression of PTEN and poorer patient overall survival
[72]. This data implies a possible binding of miR-205 to
PTEN 3'-UTR in EC cells. In another experiment,
transfection of EC cells with miR-183 (a miRNA predicted
to target PTEN) decreases PTEN protein expression [62].
However it is unclear whether miR-183 could directly
suppress the 3'-UTR of PTEN in EC cells.

PI3K

In vivo and in vitro evidences support the tumor suppres-
sor role for miR-375 in colorectal cancers [73]. MiR-375
levels are down-regulated in colorectal cancer cell lines
and tissues [73]. The reporter assay confirms that miR-
375 inhibits colorectal cancer cell growth through the
downregulation of PIK3CA expression [73]. MiR-1, which
is downregulated in lung cancer cell, suppresses cancer
cell proliferation, migration, and invasion by targeting
PI3KCA and decreasing p-AKT levels [74]. Furthermore,
overexpression of miR-7 inhibits liver cancer cell growth
and metastasis in vitro and in vivo by suppressing PI3KCD
(p1108) 3'-UTR [75]. PIK3R1 is mutated in 43% of endo-
metrioid ECs and 12% of non-endometrioid ECs [76]. Ex-
pression of mutant PI3KR1 protein leads to constitutive
activation of PI3K/AKT signal [76]. Study in diffuse large
B-cell lymphoma cells suggests that PI3KR1 is a direct tar-
get of miR-155 [77]. MiR-126 expression is decreased in
colon cancer cells when compared to normal human
colon epithelia. Forced overexpression of miR-126 sup-
presses tumor cell growth by repressing PI3KR2 [78].

AKT

AKT is a direct target of miR-143 that mediates its growth
inhibition effects in bladder cancer cells [79]. Additionally,
miR-133a serves as a negative regulator of breast cancer
cell proliferation through targeting EGEFR, thereby in-
directly suppresses the levels of p-AKT [80]. Some miRNAs
can function as downstream effectors of AKT, as evidenced
by the rapid downregulation of miR-21 following the inhi-
bition of the AKT pathway in colon and breast cancer cells
[81]. These findings indicate that miR-21 suppresses PTEN
that decreases AKT activity, resulting in the up-regulation
of miR-21. Thus, miR-21 might modulate AKT expression
by forming a double-negative feedback loop involving
tumor suppressor PTEN [81].

mTOR
Several miRNAs were shown to regulate mTOR in tumor
cells, including miR-7 [75], miR-99a, miR-100 and miR-
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101. In childhood adrenocortical tumors, miR-99a and
miR-100 directly target mTOR 3'-UTR, and the inhibition
of mTOR signaling by Everolimus greatly attenuates
tumor cell growth in vitro and in vivo [82]. Furthermore,
introduction of miR-101 reduces anaplastic large-cell
lymphoma cell proliferation though direct repressing
mTOR [83].

EMT inducers

Numerous miRNAs act as negative regulators of EZH?2,
such as let-7 family members [84] and miR-101 [85].
Let-7 family members including let-7a, -7b, —7c and -7d
could strongly inhibit EZH2 3'-UTR luciferase activity,
and repress clonogenic ability and sphere-forming cap-
acity [84]. Restoration of miR-101 expression prevents
the migration, invasion and proliferation of prostate
cancer cells through the inhibition of EZH2 [85]. In ag-
gressive EC cells, miR-101 has been found to inhibit
EMT and CSC characteristics via a direct suppression of
EZH2 [86]. BMI-1 is a direct target of miR-128 [87],
miR-200c [88] and miR-194 [89]. These miRNAs block
tumor cell self-renewal, drug resistance and metastasis.
Expression levels of miR-194 are downregulated in ECs
and associated with favorable survival [90]. Enforced
expression of miR-194 inhibits EMT phenotype and EC
cell invasion by targeting BMI-1 [89]. MiR-200 family
members reverse the EMT features of breast cancer cells
through repressing ZEB1 [91]. In EC cells, we previously
identified 23 miRNAs that were downregulated by
mutant p53 [92]. Among them, miR-130b, which is
decreased in ECs relative to adjacent normal tissues, is
capable of targeting the key EMT promoter gene ZEBI
and reverting mutant p53-induced EMT/CSC features of
EC cells [92]. Another mutant p53-reponsive miR-106b
can suppress EMT and cell invasion by modulating
Twistl in aggressive EC cells [93]. MiR-30a is down-
regulated in lung cancer and inhibits EMT by targeting
Snail [94]. MiR-1 [95] or miR-124 [96] has been found
to inhibit tumor cell invasion and EMT via regulation of
Slug, which transactivates the promoter of oncogene
miR-221 in breast cancer cells [97].

Collectively, dysregulation of miRNAs contributes to
altered expression of multiple genes within the PI3K/
AKT pathway and are implicated in acquisition of inva-
sive, EMT and CSC phenotype of tumor cells, supported
by direct or indirect interactions between miRNAs and
their target genes. However, studies evaluating the
regulation of PI3K/AKT signal by miRNAs and thera-
peutic impact of miRNAs in EC are still rare.

Combining miRNAs with PI3K/AKT inhibitors

Members of PI3K/AKT signaling (PTEN and mTOR) are
either feedback-regulated or cross-talks to other signa-
ling cascades [98]. Therefore, drugs targeting the PI3K/
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AKT pathway may more effectively treat tumors when
used in combination with other targeted therapies, such
as MEK inhibitors [99]. As certain miRNAs exhibit clear
anti-tumor effects, one might expect the combining use
of miRNAs and PI3K/AKT pathway inhibitors could
enhance treatment efficacy. For example, overexpression
of miR-100 coordinately represses the protein levels of
mTOR and its upstream regulator FGFR3, and enhances
the inhibitory effect of Everolimus on ovarian cancer cell
viability [100]. In addition, a recent study suggests that
the treatment of lymphoblastoid cells with mTOR inhi-
bitors (Rapamycin and Everolimus) upregulates miR-10a
expression, which in turn desensitizes cells to mTOR
inhibitors response [101], indicating that miR-10a
knockdown might improve the therapeutic effects of
mTOR inhibitors. Thus, the combined use of PI3K/AKT
inhibitors and miRNAs would be an attractive and pos-
sible therapeutic option.

EMT and tumor growth

A reversion of EMT, or MET is believed to allow tumor
cells to restart their proliferation in the metastatic site
[102]. Snail-induced EMT attenuates the cell cycle [103],
and turning off Twistl was found to increase prolifera-
tion in an in vivo skin tumor model [104]. However,
Snail expression correlates with E-cadherin downregula-
tion, actually increases proliferation in the hair bud
where skin cells maintain the epithelial phenotype [105],
thus the profound remodeling of the cytoskeleton
(complete EMT) could be linked to decreased cell proli-
feration [106], whereas incomplete or transient activa-
tion of the EMT program might conversely induce cell
proliferation. Consistent with this notion, complete and
incomplete EMT phenotypes have been identified in hu-
man cancers, and associated with worse and relatively
better survival rates, respectively [107,108]. Interestingly,
EC cells undergo EMT tend to exhibit enhanced proli-
feration, invasiveness and cell scattering (rather than a
complete conversion to a mesenchymal morphology)
[86,109,110], implying that a partial EMT program may
often occur in EC cells. In addition, certain EMT in-
ducer such as Twistl cooperates with co-factors to
promote tumor cell proliferation by abrogating cellular
senescence [111]. These studies suggest that EMT
processes, possibly induced by PI3K/AKT pathway, may
confer increased EC cell invasion without inhibiting cell
proliferation.

Conclusions

Growing evidence suggests that PI3K/AKT activation is
vital to the induction of EMT and CSC properties in
tumor cells. MiRNAs control cancer initiation, progres-
sion and metastasis, and function as both upstream
mediators and downstream effectors to affect PI3K/AKT
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pathway activities. Introduction of tumor suppressive or
knockdown of oncogenic miRNAs would be a promising
approach to inhibiting the PI3BK/AKT pathway in EC.
The combination of miRNAs with PI3K/AKT inhibitors
and inhibitors against other signals that cross-talk with
PI3K/AKT pathway, might yield promising therapeutic
effects.

Challenges of miRNA-based therapies in EC probably
include the risk of unintended off-target effects [20], the
necessity of eliminating CSC as well as non-CSC tumor
cells [112], and the identification of alterations in the 3'-
UTR of target gene, such as shortened 3'-UTR sequence
and 3'-UTR mutations, which could disrupt the binding
capacity of a certain miRNA [113-115]. Next-generation
sequencing technologies have been used to identify some
miRNAs that are expressed in a tissue-specific manner
[116,117], raising the possibility that tissue-specific miR-
NAs might be used to specifically target tumor cells and
avoid off-target effects. Our new knowledge of the roles
of miRNAs and their targets in regulating PI3K/AKT
pathway will expand the utility of miRNAs for suppress-
ing EMT and CSC in EC.
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