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Abstract

Background: Codon usage in genomes is biased towards specific subsets of codons. Codon usage bias affects
translational speed and accuracy, and it is associated with the tRNA levels and the GC content of the genome.
Spontaneous mutations drive genomes to a low GC content. Active cellular processes are needed to maintain a
high GC content, which influences the codon usage of a species. Loss-of-function mutations, such as nonsense
mutations, are the molecular basis of many recessive alleles, which can greatly affect the genome of an organism
and are the cause of many genetic diseases in humans.

Methods: We developed an event based model to calculate the risk of acquiring nonsense mutations in coding
sequences. Complete coding sequences and genomes of 40 eukaryotes were analyzed for GC and CpG content,
codon usage, and the associated risk of acquiring nonsense mutations. We included one species per genus for all
eukaryotes with available reference sequence.

Results: We discovered that the codon usage bias detected in genomes of high GC content decreases the risk of
acquiring nonsense mutations (Pearson’s r = -0.95; P < 0.0001). In the genomes of all examined vertebrates,
including humans, this risk was lower than expected (0.93 ± 0.02; mean ± SD) and lower than the risk in genomes
of non-vertebrates (1.02 ± 0.13; P = 0.019).

Conclusions: While the maintenance of a high GC content is energetically costly, it is associated with a codon
usage bias harboring a low risk of acquiring nonsense mutations. The reduced exposure to this risk may contribute
to the fitness of vertebrates.

Background
Codon usage bias in genomes is relevant for organisms.
It influences the translation speed and thus gene expres-
sion [1]. Artificially deoptimized codon usage can
decrease gene expression and create an attenuated viral
virulence that may be used for vaccine production [2].
HIV-1 modifies the tRNA pool of the infected cells to
increase translation efficiency of its own genes [3].
Initial studies on codon usage bias were based on few
genes in single species: lists of the codon usage [4],
determination of the number of codons used in genes
[5], and models, such as the codon adaptation index
(CAI). The CAI compared the codon usage of each gene
with an “optimal” codon usage, which is inferred from
high-expression gene sets [6]. Whole genome sequen-
cing data and newer algorithms have allowed

researchers to overcome previous limitations, study
more genes, and classify genes in more detailed cate-
gories [7]. Codon usage bias is associated with tRNA
concentration [8] and also the GC content of genomes
[9-12].
Loss-of-function mutations, such as nonsense muta-

tions, are the molecular basis of many recessive disor-
ders, conditions that stem from non-functional gene
products or, in case of null alleles, a lack of gene pro-
ducts. Nonsense mutations cause the premature stop of
translation with shortened and often non-functional
proteins. As part of the RNA surveillance, nonsense-
mediated decay efficiently eliminates any mRNA that
harbors nonsense mutations [13]. For example, loss of
tumor suppressor genes have been recognized as a key
mechanism in many cancers [14]. Retaining one func-
tional allele of critical genes is essential for survival.
Still, null alleles are common: the blood group O is a
widely recognized and clinically relevant example [15].* Correspondence: bill.flegel@nih.gov
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Rare null phenotypes of blood groups have been used to
identify null alleles in large populations using routine
clinical methods [16,17].
We wondered if the codon usage bias in organisms is

associated with a propensity of acquiring nonsense
mutations. The consequence of a single nucleotide sub-
stitution, like a synonymous, missense or nonsense
mutation, is intrinsic in the genetic code. Based on this
association, we developed a method to calculate the risk
of acquiring nonsense mutations in coding sequences
(CDS) relative to an unbiased random codon usage. We
applied this method to investigate the codon usage in
the whole genome sequences of 40 eukaryotic species.

Methods
Risk of acquiring nonsense mutations
We used an event based model to estimate the risk of
acquiring nonsense mutations by a single nucleotide
substitution. A score ω of {0, 1, 2} was determined for
each of the 61 non-termination codons based on the

number of possible single nucleotide substitutions that
lead to a stop codon (Figure 1). For this study, the
count cxxx and risk score ωxxx of each codon xxx, with x
of {A, C, G, T}, was used to determine a risk score Ωse-

quence for all coding sequences (CDS) of a species:

�sequence =
∑
xxx

cxxx · ωxxx (1)

To account for the different proteins encoded by the
genomes of different species, Ωrandom was calculated for
comparison assuming an unbiased usage of codons,
which was deduced by the number of amino acids aa
(xxx) encoded by codon xxx and synonymous codons,
and the number of codons encoding this amino acid nsy-
nonymous,(xxx):

�random =
∑
xxx

aa(xxx)
nsynonymous,(xxx)

· ωxxx (2)

Based on these equations, the parameter “stop risk
factor” F was calculated for the entire set of CDS in the

Figure 1 Genetic code and risk of acquiring nonsense mutations. The codons of the standard genetic code are listed along with the 20
amino acids and the three stop codons. A risk score ω is shown as ω = 0 (yellow), ω = 1 (orange), and ω = 2 (red). The list is sorted according
to the mean risk of the codons encoding a specific amino acid.
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species’ genome:

F =
�sequence

�random
(3)

This F defines the risk of acquiring nonsense muta-
tions for each species relative to the risk with an
unbiased codon usage. With the intention to compare
the risk of acquiring nonsense mutations among various
species, we concluded that a random codon usage was
the most neutral denominator. These calculations
allowed a novel approach to study codon usage bias in
whole genomes.

GC and CpG contents
GC content was calculated as C+G per total nucleotide
count, and CpG content as number of CpG dinucleo-
tides per total nucleotide count. The CpG content of
genomes was comparable to the results of a recent in
silico study [18] for Pan troglodytes, Mus musculus, Rat-
tus norvegicus, Bos taurus, Canis lupus familiaris, and
Danio rerio. Our calculated figures for CpG content
match the data obtained by the original in vitro method
[19,20].
The expected GC content for the CDS was calculated

with the number of codons n in the CDS and GC con-
tentxxx denoting the GC content of the codon xxx:

expected GC content =
1
n
·
∑
xxx

aa(xxx)
nsynonymous,(xxx)

· GC contentxxx (4)

The expected CpG content was calculated as
described [21]:

expected CpG content =
(
GC content

2

)2

(5)

Database and species selection
The NCBI table Eukaryotic Genome Sequencing Pro-
jects (March 30, 2010) [22] was used to include all spe-
cies with a genome status “complete” or “assembly” and
an available RefSeq. We restricted analysis to one spe-
cies per genus (Additional file 1, Figure S1 and Table
S1). Sequence data represent NCBI RefSeq database
release 40 (March 2010) for 39 species plus GRCh37.p2
(August 2010) for the human genome [23].

Software
We developed a script driven software package, which
parsed the genomic data (FASTA for nucleotide
sequences and GenBank flatfile for meta-data including
CDS definitions) and calculated the parameters defined
in this study, in particular the stop risk factor F. In
total, 145 GB of data were analyzed.

Algorithms
(i) Data selection. The whole genomes of the species
were scanned by the software. Non-standard code
sequences, in particular mitochondrial sequences, were
excluded from analysis. (ii) Analysis of the whole gen-
omes. Nucleotide count, GC content and CpG content
were calculated for the genomic sequences of the ana-
lyzed species. Non-ACGT nucleotides (3.8%) were
excluded. (iii) Analysis of CDS. CDS were used as
defined in the RefSeq [23]. CDS were excluded that
were incomplete at their 5’ or 3’ end (4.2%) or contained
errors (non-triplets 1.3%, no stop codon 0.5%, non-
ACGT nucleotides 0.4%). If CDS were associated with
an identical geneID, like in splice variants, the longest
CDS was used and the alternate sequences (multiples,
13.0%) excluded (Additional file 1, Table S2). F, GC
content, CpG content and relative codon collection
usage were calculated for the CDS.

Statistical analysis
Results are shown as mean and standard deviation
(mean ± SD) or 95% confidence interval (CI) based on
the normal distribution, which was tested by D’Agos-
tino-Pearson. We evaluated correlations by Pearson’s
correlation coefficient r and compared the GC content
of CDS and genomes among species groups by two-
sided Mann-Whitney U test. P < 0.05 was considered
statistically significant. Statistical analysis was done with
MedCalc (MedCalc Software, Mariakerke, Belgium).

Results and Discussion
We analyzed the whole genomes and CDS of 40 eukar-
yotes (Additional file 1, Tables S1 to S4) to determine
the stop risk factor F using the propensity of each
codon to acquire a nonsense mutation (Figure 1).

Risk F of acquiring nonsense mutations
F deviated from the risk of an unbiased codon usage,
which is represented by F = 1.0 (Figure 2). All 10 verte-
brates had an F < 1.0 and were clustered (0.93 ± 0.02,
range 0.91 - 0.96), while the F of all 30 non-vertebrates
was higher and ranged widely (1.02 ± 0.13, range 0.82 -
1.37; P = 0.019). Fifteen non-vertebrate species had an F
> 1.0.

F and GC content
F correlated strongly and inversely with the GC content
of the CDS (Figure 3; Pearson’s r = -0.95; P < 0.0001).
The inverse correlation of F and GC content is
explained by the nucleotide composition of the three
stop codons: TAA, TAG, and TGA. The GC content of
these three codons is only 2/9, while the expected mean
is 1/2. Codons with a high GC content have a nucleotide
composition that greatly differs from those of stop
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codons. In comparison, codons with a low GC content
are more similar to the stop codons. Hence, codons
with a high GC content have on average a lower risk of
acquiring a nonsense mutation (Additional file 1, Table
S5).
The GC content of codons correlates with the overall

GC content of the genomes in many species [9,12,24].
This was confirmed by our data (Additional file 1,
Tables S3 and S4). Genes and gene families occur more
frequently in genome regions with a high GC content
[25,26]. Both observations have been attributed to
mechanisms that enrich the GC content, e.g. the

increased recombination rates in GC rich regions [27].
High GC content is also associated with increased gene
density [28,29], shorter introns [26,28], and longer exons
[30].
However, CpG hypermutability, a tenfold increased

mutation risk at the position of CpG dinucleotides,
causes genomes to drift from a high GC content to a
high AT content [31,32]. Active cellular processes are
therefore needed to maintain a high GC content [33].
Silencing of specific repair enzymes in S. typhimurium
strains increases the mutation rate 6-fold to 100-fold
with 98% of the mutations converting GC to AT; organ-
isms with AT rich genomes have been explained by the
lack of these repair enzymes [34]. Despite knowing sev-
eral mechanisms to increase and maintain a high GC
content in a genome, the utility of a high GC content
for an organism is not obvious. The maintenance of a
high GC content costs energy and inflicts CpG hyper-
mutability, but is associated with a low risk of acquiring
nonsense mutations.

F and CpG content
The genomes of all 10 vertebrates had a low risk of
acquiring nonsense mutations - as shown by a low F -
while maintaining a low CpG content along with a low
CpG hypermutability (Figure 4). This observation is
counterintuitive: low F correlated generally with a high
GC content (Figure 3) and the associated high CpG
content typically inflicts a high risk for mutations. How-
ever, all 10 vertebrates expressed a high GC content
while keeping the CpG content low in their CDS. The
ratio of observed and expected CpG content was lower
in the 10 vertebrates (mean 0.48, 95% CI 0.45 - 0.51)
than in the 30 non-vertebrates (mean 0.82, 95% CI 0.74
- 0.89; P = 0.0001). With the single exception of the
fungus E. cuniculi (F = 0.94 and CpG content = 0.034),
harboring the smallest genome in this study, all other
29 non-vertebrate species were exposed either to a high
F or to a high CpG content in their CDS (Figure 4).

F and codon usage
In the 10 vertebrates, codon usage was consistently
biased towards codons without risk of acquiring non-
sense mutations (Figure 5). Codon usage bias can con-
trol translation speed and protein folding, increase the
efficiency of protein synthesis [1], and be influenced by
tRNA concentrations in many species [8]. Nonsense
errors that occur during translation delay protein synth-
esis and cost energy [35]. Use of specific codons is cru-
cial near splice sites because even synonymous
mutations at splice sites can lead to splice variants caus-
ing phenotypical changes [36] or diseases [37]. The pre-
ferred usage of codons with lower risk of acquiring
nonsense mutations may indicate an additional driving

Figure 2 Stop risk factor F in the coding sequences (CDS) of 40
species. F characterizes the relative risk of acquiring nonsense
mutations and is shown for 40 species in 5 groups. The black bar
represents the mean. The CDS in a species with an unbiased codon
usage has an F = 1.0 (dotted line).

Figure 3 GC content of CDS relative to F. The correlations are
shown between the GC content of all CDS in 40 species and the
stop risk factor F. The species are grouped like in Figure 2: protozoa
(△), plants (□), fungi (○), invertebrates (▲), and vertebrates (●). The
CDS in a species with an unbiased codon usage has an F = 1.0
(dotted line).
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force for codon usage bias at the genomic level. Indeed,
this was found in all vertebrates.

Conclusions
We show that the codon usage bias in genomes of high
GC content is associated with a low risk of acquiring
nonsense mutations. Despite their high GC content, the
10 vertebrate genomes had a low CpG content of < 0.04
(Figure 4). The low risk of acquiring nonsense muta-
tions combined with a low exposure to CpG hypermut-
ability [38] is unique in vertebrates. It was not a
common feature in the 30 examined non-vertebrates. A
low risk of acquiring nonsense mutations may have

advantages for organisms with relatively long lifespans
and small numbers of offspring.
Calculating F is a novel tool for addressing codon

usage bias in genes and genomes. Here we applied this
approach for comparing the whole genomes among
species. F can be applied to study GC content shift
within the genome of one species [10]. F should also
provide novel insights in the analysis of individual
genes, like oncogenes and evolutionary conserved
genes. Based on the fact that a very low F indicates a
gene with a low risk of acquiring nonsense mutations,
F may be used as a screening tool among the genes
with presently unknown function. First, genes with a
very low F may more likely belong to the set of crucial
genes, whose loss is deleterious for an organism. Sec-
ond, genes with a very high F may have a large num-
ber of null alleles in the population, which allows a
wider variety of recessive alleles to become phenotypi-
cally expressed. Third, the fitness of a species is not
just influenced by mutations in its germ line but also
in the organism’s somatic cells, which could be evalu-
ated using our novel method.
We restricted our current approach to nonsense

mutations. It is feasible to broaden our technique and to
encompass missense mutations. While nonsense muta-
tions are a more stringent criterion than missense muta-
tions, more codon usage bias could be explained by
including unfavorable non-conservative missense muta-
tions in the analysis.
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Figure 4 CpG content of all CDS in 40 species relative to F.
Symbols are identical to Figure 3: protozoa (△), plants (□), fungi (○),
invertebrates (▲), and vertebrates (●). The CDS in a species with an
unbiased codon usage has an F = 1.0 (horizontal dotted line). All
vertebrates have a CpG content < 0.04 (vertical dotted line).

Figure 5 Relative codon usage for amino acids that can be
encoded by codons of various ω (○ for codons with ω = 0; ●
for codons with ω = 1 or ω = 2). The usage of these codons is
shown relative to a random codon usage of 1.0 (dotted line).
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