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Inhibition of mitotic kinase Aurora suppresses
Akt-1 activation and induces apoptotic cell death
in all-trans retinoid acid-resistant acute
promyelocytic leukemia cells
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Abstract

Background: Aurora kinase ensures accurate chromosome segregation during cell cycle, maintaining genetic
integrity in cell division. VX-680, a small-molecule Aurora kinase inhibitor, interferes with mitotic entry and
formation of bipolar spindles. Here, we evaluated VX-680 as a potential agent for treatment of all-trans retinoid
acid (ATRA)-resistant acute promyelocytic leukemia (APL) in vitro.

Methods: CD11b expression was utilized to assess cell differentiation by flow cytometry. Immunofluorescence
staining was conducted to analyze formation of cell monopolar spindle. Cell proliferation was evaluated by MTT
assay. Sub-G1 population and Annexin V/PI staining were used to measure cell apoptosis. Hoechst 33342 staining
was applied for identifying morphological changes in nucleus of apoptotic cell. Aurora-A (Aur-A) activation and the
signaling pathways involved in apoptosis were detected by Western blot. JC-1 probe was employed to measure
mitochondrial depolarization.

Results: VX-680 inhibited Aur-A by reducing autophosphorylation at the activation site, Thr288, accompanied by
producing monopolar mitotic spindles in APL cell line NB4-R2 that was resistant to ATRA. In addition, we found
that VX-680 inhibited cell proliferation as assessed by MTT assay. Flow cytometry showed that VX-680 led to
apoptotic cell death in both dose- and time-dependent manners by either Sub-G1 or Annexin V/PI analysis.
Hoechst 33342 staining represented typical apoptotic cells with nuclear fragmentation in VX-680 treated cells.
Importantly, VX-680 inhibition of Aurora kinase suppressed Akt-1 activation and induced mitochondrial
depolarization, which eventually resulted in apoptosis by activation of caspase pathway, as indicated by increasing
proteolytic cleavage of procaspase-3 and poly ADP ribose polymerase (PARP) in NB4-R2 cells.

Conclusions: Our study suggested potential clinical use of mitotic Aurora kinase inhibitor in targeting ATRA-
resistant leukemic cells.

Background
Acute promyelocytic leukemia (APL), is characterized by
t (15; 17) chromosomal translocation resulting in a
fusion transcript of promyelocytic leukemia-retinoid
acid receptor a (PML/RARa). PML/RARa represents a
most curable subgroup of leukemia with the

introduction of all-trans retinoid acid (ATRA) therapy
[1,2]. ATRA binds to retinoic acid (RA) receptor, as a
result of activating the target genes such as the myeloid-
specific transcription factor C/EBP, thereby inducing dif-
ferentiation of myeloid leukemia cells [3,4]. Although
most APL patients respond to ATRA therapy, lack of
effective treatment presents a serious challenge in non-
ATRA responders.
Serine/threonine kinase Aurora family, including Aur-

ora (Aur)-A, -B and -C, are playing important roles in
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chromosome segregation during cell cycle and genetic
integrity in cell division [5,6]. Our previous study
showed Aur-A was of importance for mitotic entry and
formation of bipolar spindles [7]. Aur-A expression was
aberrantly found in many solid tumors such as prostate,
colon, pancreas, breast, and thyroid cancers [8-13].
Moreover, Aur-A expression level was correlated with
prognosis and advanced clinical stage in head and neck
squamous cell carcinoma [14,15]. Recently study showed
that Aur-A kinase was highly expressed in acute myeloid
leukemia (AML) patients and suppression of Aur-A
induced AML cells apoptosis [16].
Recently, Aurora kinase small-molecule inhibitors

have been considered as novel and potential anti-cancers
agents. VX-680, showed anti-cancer activity in vivo in
many solid cancers in preclinical experiment, and was
demonstrated to inhibit multiple myeloma growth, espe-
cially in patients with RHAMM overexpression, and
chronic myeloid leukemia (CML) with BCR-ABL muta-
tions [17-19]. However, the potential usage of VX-680
inhibition of Aurora kinase in ATRA-resistant APL
remains unknown.
Here we showed that Aurora kinase small-molecule

inhibitor VX-680 led to mitotic defects in spindle and
decreased expression of phosphorylated Aur-A at the acti-
vation site, Thr288 in APL cell line NB4-R2 that was resis-
tant to ATRA. VX-680 induced apoptosis in NB4-R2 cells
in both time- and dose-dependence. Importantly, we
found that VX-680 down-regulated Akt-1 activation and
induced mitochondrial depolarization, which resulted in
caspase-3 associated apoptotic cell death. Thus, Aurora
kinase inhibitor VX-680 offered as a novel therapeutic
agent in treatment of ATRA-resistant APL patients.

Materials and methods
Reagents and Cells culture
VX-680 (Kava Tech, CA) was dissolved in dimethlsulf-
oxide (DMSO) to a stock concentration of 430 μM and
stored at -20°C. Human APL NB4 and NB4-R2 cell
lines, provided by Shanghai Institute of Hematology,
Ruijin Hospital, were cultured in RPMI 1640 (Gibco)
supplemented with 10% fetal bovine serum (FBS;
Hyclone) at 37°C in a humidified 5% CO2 atmosphere.

Cell differentiation assessment
To measure CD11b expression, NB4 and NB4-R2 cells
(5 × 105/ml) were plated in 6-well dishes and cultured
with ATRA (1 μM). After 3 days, Cells were washed
twice with PBS and incubated with primary mouse
monoclonal CD11b antibody (Sigma) at 37°C for 1 hr.
Then, the cells were washed once with PBS, and incu-
bated with the secondary immunofluorescence antibody
(FITC) for 1 hr in dark. Expression of CD11b on cell
surface was measured by flow cytometry.

Immunofluorescence staining
NB4-R2 cells were incubated with VX-680 at 2 nM for
24 hr. Cells were fixed in cold methanol for 20 min at
4°C and permeabilized in 0.5% TritonX-100 in PBS at
room temperature (RT) for 15 min. Then cells were
incubated with 1% BSA for 1 hr at RT to block nonspe-
cific binding before the primary antibody reaction. Slides
were incubated with the primary antibody to Aur-A, a-
Tubulin at RT for 1 hr, followed by Alexa Flour 680 or
FITC 488 conjugated antibody. After counterstained
with DAPI (1 μg/ml), cells were visualized using a
microscope (1000 ×, Olympus).

Cell growth assay
Cell proliferation was assessed by MTT assay. NB4-R2
cells were plated in 96-well plates at 2.5 × 104 cells/ml
in a final volume of 200 μl and exposed to different
doses of VX-680 (0-10 nM) or ATRA. Sets of 5-wells
were used for each dose. 20 μl of MTT solution (Sigma,
5 mg/ml) was added to each well at 24 hr and 48 hr.
After cells were incubated at 37°C for another 4 hr, the
medium was removed and 150 μl DMSO was added to
solubilize the formazan. Finally, the absorbance (OD)
was measured using a multiwell plate reader (Bio-Rad
Microplate Reader).

Sub-G1 population assay
NB4-R2 cells were collected and washed twice with PBS,
then fixed by ice alcohol overnight at -20°C. Cells were
then resuspended with PI at a concentration of 1.0 ×
106 cells/ml. Quantification of Sub G1 population after
PI staining was carried out using a FACS flow cytometer
equipped with CellQuest software (BD).

Measurement of apoptosis by Annexin V/PI analysis
After collecting and washing twice with PBS, VX-680
treated or untreated NB4-R2 cells were resuspended in
the binding buffer (500 μl). FITC-Annexin-V (5 μl) was
added to the cells followed by addition of 5 μl PI
according to the protocol of the Annexin V-FITC/PI kit
(EMD Biosciences). The samples were then incubated
for 15 min in the dark at 4°C and subjected to flow
cytometry evaluation.

Identification and quantification of apoptotic cells with
Hoechst 33342
Nuclear morphology of control and VX-680 treated cells
was observed by staining cell nuclei with Hoechst 33342
(Sigma). Cells (at least 200 per slide) were incubated
with Hoechst 33342 (10 μg/ml) for 15 min at RT and
examined under a fluorescence microscope (Olympus)
by using the MNU2 filter. Apoptotic cells were charac-
terized by condensation of chromatin and/or nuclear
fragmentation.
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Mitochondrial membrane potentials assay
JC-1 probe was employed to measure mitochondrial
depolarization in NB4-R2 cells. Briefly, VX-680 treated
cells were incubated with an equal volume of staining
solution (5 μg/ml) at 37°C for 20 min and rinsed twice
with PBS. Mitochondrial membrane potentials were
monitored by determining the relative amounts of dual
emissions from mitochondrial JC-1 by flow cytometry.
Mitochondrial depolarization was indicated by an
increase in the green fluorescence and a decrease in the
red fluorescence intensity.

Western blot analysis
NB4-R2 cells were lysed in RIPA buffer. The protein
concentration was determined by Bradford method with
BSA (Sigma) as the standard. Equal amounts of cell
extract (40 μg) were subjected to electrophoresis in
SDS-polyacrylamide gel and transferred to nitrocellulose
membrane (Minipore). The membrane was blocked and
then incubated with GAPDH (from Ambion), p-Aur-A/
AIK (Thr288), cleaved PARP (Asp214), pAkt-1 (Ser473),
cleaved caspase-3 (Asp175) and pGSK-3 (Ser9) antibo-
dies (from Cell Signaling), at 4°C overnight, followed by
incubation for 1 hr RT with appropriate secondary anti-
bodies. Antibody binding was detected with an
enhanced chemiluminescence kit and ECL film.

Statistics
Statistical analysis was performed using SPSS version
11.0 (SPSS Inc.). The Student’s t-test was used to make

a statistical comparison between groups. The level of
significance was set at p < 0.05.

Results
Aurora kinase small-molecule inhibitor VX-680
significantly suppresses the proliferation in a number of
leukemic cell types
In order to demonstrate the specificity of Aurora inhibi-
tory VX-680 on leukemia, OCI-AML3, NB4, HL-60 and
ML-1 cells were treated with different doses of VX-680.
As showed in Figure 1, VX-680 could inhibit cell growth
rates in the 4 different leukemic cells we tested in a
dose-dependent manner (ranging from 1 nM to 10 nM)
after 24 hr treatment. However, VX-680 suppressed the
proliferation in some solid tumor cell types with less
potency, such as MCF-7 and Hela cancer cells (Figure
S1, Additional file 1), suggesting that VX-680 was a
potential anti-leukemic agent for various leukemic cell
types.

NB4-R2 cells are resistant to ATRA induced differentiation
Promyeloid leukemic cell lines NB4 and NB4-R2 were
treated with ATRA and cell differentiation was evaluated
by quantifying CD11b expression, a marker of myeloid
differentiation. After exposure of NB4 and NB4-R2 cells
to ATRA (1 μM) for 72 hr, a mean of 10.76% NB4 cells
were induced to express cell surface antigen CD11b. On
contrast, only 1.4% of NB4-R2 cells expressed CD11b
surface antigen (Figure 2A, B), confirming that NB4-R2
cells were resistant to ATRA-induced myeloid
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Figure 1 VX-680 significantly suppresses the proliferation in a number of leukemic cell types. OCI-AML3, NB4, HL-60 and ML-1 cells were
incubated with increasing doses of VX-680 (1, 2, 5 and 10 nM) for 24 hr. Cell viability was measured by MTT assay. Data summarized three
independent experiments, *p < 0.05, **p < 0.01, compared to control.
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differentiation. MTT assay further showed that ATRA (1
μM) significantly inhibited NB4 cells growth, while the
survival percentage was not statistically changed at this
concentration in NB4-R2 cells (Figure 2C), indicating
ATRA failed to inhibit NB4-R2 cells growth.

VX-680 decreases pAur-A at the activation site and
induces monopolar spindle in NB4-R2 cells
We studied the inhibition of Aurora kinases in NB4-R2
cells using VX-680. Aur-A activation was inhibited by
VX-680 at different concentrations (1 nM, 2 nM, 5 nM,
10 nM) in a dose-dependent manner in NB4-R2 cells
(Figure 3A). VX-680 (5 nM) significantly inhibited Aur-
A by reducing autophosphorylation at the activation
site, Thr288. Then, we examined the role of Aur-A inhi-
bition by VX-680 in the formation of spindles. As

assessed by immunofluorescence, control cells displayed
normal bipolar spindles, presenting a clearly visible
metaphase plate straddled by uniform radial arrays of
microtubules from opposite poles (Figure 3B). In the
contrast, VX-680 (2 nM) treated cells showed abnormal
monopolar spindles, suggesting that the inhibition of
Aurora kinase activity induced defects of mitotic spindle
in VX-680 treated cells.

VX-680 suppresses cell growth and induces cell apoptosis
in NB4-R2 cells
Next, we studied if VX-680 could suppress proliferation
in NB4-R2 cells in vitro. NB4-R2 cells were treated with
VX-680 at the concentration of 1 nM, 2 nM, 5 nM and
10 nM for 24 hr and 48 hr. Cell viability was assessed
by MTT assay. At the concentration of 5 nM and 10

Control                      ATRA 1( M)

NB4-R2 cells

Control                      ATRA (1 M)

NB4 cellsA

B C

Figure 2 NB4-R2 cells are resistant to ATRA induced differentiation. (A) NB4 and NB4-R2 cells were treated with ATRA (1 μM) for 3 days,
and CD11b-expressing population was measured by flow cytometry. (B) Data summarized three independent experiments, **p < 0.01, compared
to control. (C) NB4 and NB4-R2 cells were treated with ATRA (1 μM), and the proliferation was measured by MTT assay. Data summarized three
independent experiments, **p < 0.01, compared to control.
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nM, VX-680 significantly inhibited the growth of NB4-
R2 cells, with IC50 value of the anti-proliferation effect
of VX-680 at 7.10 nM for 24 hr and 4.29 nM for 48 hr
in NB4-R2 cells (Figure 4A).
We further assessed whether VX-680 could induce

apoptosis in NB4-R2 cells. Incubation of VX-680 (1 nM,
2 nM, 5 nM and 10 nM) led to an increased apoptosis
for 24 hr (7.3%, 10.45%, 31.9% and 48.27%, respectively)
and 48 hr (9.77%, 16.83%, 43.8% and 67.85%, respec-
tively) by assessing the sub-G1 population (Figure 4B).
In addition, apoptotic cells were also detected by both
Annexin V/PI staining and immunofluorescent staining
with Hoechst 33342. Annexin V/PI staining showed that
percentage of apoptosis were 3.66%, 5.52%, 15.83%,
24.43% respectively for 24 hr, and 4.35%, 7.47%, 32.77%,
90.4% respectively for 48 hr at the indicated doses of
VX-680 (Figure 5). Similarly, control cells which were

stained by Hoechst 33342 were uniformly blue in viable
cells, whereas the apoptotic cells showed bright blue
dots in the nuclei, representing the nuclear fragmenta-
tion, especially at VX-680 concentration of 5 nM and 10
nM (Figure 6). These results indicated that the apoptotic
NB4-R2 cells were induced by Aurora kinase small-
molecule inhibitor VX-680 in both dose- and time-
dependent manners.

VX-680 reduces mitochondrial membrane potentials and
induces cellular caspase activation in NB4-R2 cells
Further, we investigated the molecule events triggered
by Aurora inhibition. Reduction of mitochondrial mem-
brane potential is one of the molecule events for early
apoptosis. Changes in mitochondrial membrane poten-
tial was assessed by monitoring JC-1, which accumulates
in mitochondria forming red fluorescent aggregates at

DAPI  -tubulin  Aur-A   Merge

control
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24h
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Figure 3 VX-680 inhibits activation of Aur-A and induces monopolar spindle in NB4-R2 cells. (A) VX-680 inhibited phosphorylation of Aur-
A at Thr288 in NB4-R2 cell line. Cells were incubated with increasing doses of VX-680 for 24 hr and 48 hr and subjeceted to Western blot with
antibodies of pAur-A and GAPDH. (B) The morphology of mitotic spindle was shown by immunofluorescence staining with anti-a-tubulin
antibody and anti-Aur-A antibodies. Microtubules were stained as green, Aur-A protein as red, and nucleus as blue.
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high membrane potential, whereas exits mainly in cyto-
sol forming green fluorescent monomer, presenting a
collapse of membrane. In our study, VX-680 treated
cells showed loss of red fluorescence and production of
obvious green fluorescence, suggesting reduction of
mitochondrial membrane potentials. At different con-
centrations of VX-680 (1 nM, 2 nM, 5 nM and 10 nM),
the percentage of NB4-R2 cells emitted green fluores-
cence was 20.9%, 21.8%, 48.5% and 91.7%, respectively,
indicative of mitochondrial membrane depolarization in
a dose-dependent manner. In comparison, control cells
emitted mitochondrial red fluorescence with less green

fluorescence (Figure 7A). Western blot analysis showed
that inhibition of Aurora kinase with VX-680 for 24 hr
and 48 hr induced amounts of cleaved caspase-3 expres-
sion. The cleavage of the PARP polymerase, a major tar-
get for caspases, was also detected in VX-680 treated
cells. At dose of 5 nM, cleaved caspase-3 and PARP
expression was dramatically increased in NB4-R2 cells
(Figure 7B). Interestingly, VX-680-induced activation of
caspase pathway was correlated with down-regulation of
Akt-1 phosphorylation at the activation site, Ser473 and
decreased the level of phosphorylated GSK-3b at Ser9,
the downstream of Akt-1 (Figure 7B). Thus, VX-680
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Figure 4 VX-680 suppresses the proliferation of NB4-R2 cells and induces cell apoptosis. NB4-R2 cells were incubated with increasing
doses of VX-680 (1, 2, 5 and 10 nM) for 24 hr and 48 hr. (A) Cell viability was measured by MTT assay. (B) Sub-G1 population was detected by
flow cytometry. Data summarized three independent experiments, **p < 0.01, ***p < 0.001, compared to control.
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suppressed Akt-1 activation, reduced mitochondrial
membrane potentials and induced NB4-R2 cells apopto-
sis by activation of caspase pathway.

Discussion
Aurora kinases are important for the accurate execution
of mitotic events. Aur-A played a significant role in

ensuring the centrosome segregation and spindle assem-
ble [20,21]. The expression of Aur-A were commonly
increased in various malignant tumors [9,10]. Our
recent work has showed that inhibition of Aur-A
induced cell apoptotic death of laryngeal and oral squa-
mous cell carcinoma as well as nasopharyngeal carci-
noma [22-24]. In addition, Aur-A was overexpressed in
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Figure 5 VX-680 induces apoptosis of NB4-R2 cells by Annexin V/PI staining. NB4-R2 cells were treated with VX-680 at different
concentrations for 24 hr and 48 hr. (A) Apoptotic cells were measured by Annexin V/PI staining. (B) Data summarized three independent
experiments, **p < 0.01, ***p < 0.001, compared to control.
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bone marrow mononuclear cells (BMMCs) in a signifi-
cant proportion of de novo AML patients [16]. Small-
molecule Aurora kinase inhibitor VX-680 had anti-leu-
kemic effect for various leukemic cell types and was
considered to be a potential targeting agent (Figure 1).
However, the role of VX-680 in treating ATRA-resistant
APL cells has not been evaluated. In this study, we
showed that NB4-R2 cells were resistant to ATRA by
detecting expression of CD11b (Figure 2). VX-680

reduced the autophosphorylation of Aur-A at the activa-
tion site, Thr288 (Figure 3A) and caused formation of
monopolar structures in NB4-R2 cells (Figure 3B). In
both dose- and time-dependent manners, VX-680 sup-
pressed NB4-R2 cells growth (Figure 4A) and induced
cells apoptosis (Figure 4B, 5, and 6). Moreover, we
observed VX-680 induced mitochondrial depolarization
by flow cytometry (Figure 7A) and importantly, caspase
pathway was activated, which was associated with down-
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Figure 6 Morphological changes in nucleus after induction of apoptosis by VX-680. (A) VX-680 treated or untreated cells were stained
with Hoechst 33342, and observed by fluorescence microscopy (magnification, 400×). (B) Data summarized three independent experiments, ***p
< 0.001, compared to control.
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regulation of Akt-1 phosphorylation at the activation
site, Ser473 (Figure 7B). Our results suggest that VX-
680 is a potential novel agent for APL treatment, and
Aurora kinase may serve as a promising therapeutic tar-
get for ATRA-resistant APL patients.
APL is characterized by a balanced reciprocal translo-

cation between chromosomes 15 and 17, which results
in the fusion between PML gene and RARa. Since the

introduction of ATRA in the treatment and optimiza-
tion of the ATRA-based regimens, the complete
response (CR) rate was raised up to 90%-95% and 5-year
disease free survival (DFS) was to 74% [2,25-27]. How-
ever, resistance and relapse were still frequently
observed in APL cases after treatment with ATRA.
Alterations of the PML/RARa protein point mutation
have been the major ATRA-resistant mechanism
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Figure 7 VX-680 induces mitochondrial depolarization and cellular caspase activation in NB4-R2 cells. (A) VX-680 treated NB4-R2 cells
were stained with JC-1 probe and measured by flow cytometry. X- and Y-axes were indicative of monomer and aggregates, respectively. Data
shown is a representative of three independent experiments. (B) NB4-R2 cells were collected, lysed and subjected to Western blot analysis with
cleaved caspase-3, cleaved-PARP, pAkt-1 (Ser473), pGSK-3b (Ser9) specific antibodies. GAPDH was used as a loading control. Data shown is a
representative of three independent experiments.
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[28-30]. NB4-R2, is a ATRA-resistant subclone of the
NB4 APL cell line, which changes the amino acid
Gln903 to an in-phase stop codon, generating a trun-
cated form of PML/RARa which has lost 52 amino
acids at its C-terminal end [31]. In addition to the point
mutation, fusions with PLZF in t(11;17)(q23;q21)
expressed in APL cells may be other mechanisms of
resistance to ATRA [32]. Therefore, it is urgent to iden-
tify novel agents against ATRA-resistant APL.
Recently, many clinical drugs have been used in the

management of APL patients with ATRA-resistant, but
were associated with some severe adverse effects [33].
Emerging kinase small molecule inhibitors were tested
for potent anti-leukemic activity with less adverse
effects. VX-680 was designed to target the ATP-binding
site of the Aurora kinases, and was reported to be active
in anticancer therapy with affinity for Aur-A (Ki = 0.6),
B (Ki = 18), and C (Ki = 4.6) [34]. VX-680 also inhibited
other protein kinases, including Flt-3 (Ki = 30) and
MAPK (Ki > 1000), albeit with less potency. VX-680
reduced phosphorylation of Aur-A on its activation site
Thr288, therefore suppressing phosphorylation of mito-
tic Histone H3 at Ser10, arresting cell cycle in G2/M
phase and blocking proliferation in multiple tumor cell
types [22-24,34]. In addition, VX-680 induced formation
of monopolar spindles, a phenotype of inactive Aur-A
mutant [35], which led to mitotic catastrophe and apop-
tosis in cancer cell lines. We and others have demon-
strated additional mechanism of VX-680 inhibition of
Aurora in suppressing Akt activation, down-regulating
NF-�B activity, and subsequently reducing survival and
migration in malignant cells [24,36,37].
In this report, we found that VX-680 inhibited Aurora

kinase and presented anti-tumor activation in NB4-R2
cells, suggesting a possible novel and potent target in
treating ATRA-resistant APL. Here, we clearly showed
that VX-680 inhibited growth of NB4-R2 cells and
induced cell apoptosis in vitro in the concentration of
1-10 nM. At the dose range, VX-680 inhibited Aur-A
phosphorylation at Thr288. In addition, VX-680 des-
tructed the bipolar spindle structure, a typical phenotype
of Aurora suppression. Thus, our data demonstrated a
potential role of an Aurora inhibitor VX-680 in ATRA-
resistant APL targeted therapeutics.
Tumor cells apoptotic mechanism involves an interac-

tion of a number of key cellular regulatory pathways,
including cell proliferation pathway, cell survival path-
way, caspase activation pathway, tumor suppressor path-
way, death receptor pathway, mitochondrial pathway
and protein kinase pathway. Most cells apoptosis path-
way is through mitochondrial-mediated pathway, which
is mostly regulated by Bcl-2 family, including the anti-
apoptotic and pro-apoptotic factors, and subsequently
induces cell apoptosis by controlling the release of

cytochrome c from membrane of mitochondria [38]. In
our study we found that VX-680 induced the mitochon-
drial depolarization and finally resulted in caspase path-
way activation. Phosphatidylinositol 3-kinase (PI3K)/
AKT signaling pathway plays crucial roles in cell
growth, migration and invasion [24,37]. Akt is signifi-
cant for regulating growth factor-stimulated cell survival
response though its substrates proteins such as GSK-3,
Bad and forkhead transcription factors [39]. It has been
reported that high expression of Akt is relative with sur-
vival, proliferation of leukemic cells in AML and inhibi-
tion of activation of Akt can result in suppression of cell
growth [40,41]. In the present study, phosphorylation of
Akt-1 and GSK3b, the downstream of Akt-1, was
decreased in VX-680 treated NB4-R2 cells. In addition,
we also found that Akt signaling inhibitor API-2 could
inhibit Akt-1 phosphorylation and induced apoptosis
(data not show), indicating NB4-R2 cell apoptotic death
induced by VX-680 might be due to down-regulation of
Akt activation in NB4-R2 cells.

Conclusions
Taken together, we showed that Aurora kinase-directed
small-molecule inhibitor VX-680 suppressed cell growth,
and induced apoptosis in NB4-R2 cells, offering an
opportunity for a novel approach targeting Aurora sig-
naling pathway in ATRA-resistant APL treatment.

Additional material

Additional file 1: Figure S1 - VX-680 does not effectively suppress
the proliferation in MCF-7 and Hela cells. MCF-7 and Hela cells were
incubated with increasing doses of VX-680 (1, 2, 5 and 10 nM) for 24 hr.
Cell viability was measured by MTT assay. Data summarized three
independent experiments, *p < 0.05, compared to control.
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ATRA: all-trans retinoid acid; APL: acute promyelocytic leukemia; Aur: Aurora;
PARP: poly ADP ribose polymerase; PML/RARα: promyelocytic leukemia-
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