
REVIEW Open Access

Calcium-sensing receptor and calcium kidney
stones
Giuseppe Vezzoli1†, Annalisa Terranegra2†, Francesco Rainone1, Teresa Arcidiacono1, Mario Cozzolino2,
Andrea Aloia2, Elena Dogliotti2, Daniele Cusi2 and Laura Soldati2*

Abstract

Calcium nephrolithiasis may be considered as a complex disease having multiple pathogenetic mechanisms and
characterized by various clinical manifestations. Both genetic and environmental factors may increase susceptibility
to calcium stones; therefore, it is crucial to characterize the patient phenotype to distinguish homogeneous groups
of stone formers. Family and twin studies have shown that the stone transmission pattern is not mendelian, but
complex and polygenic. In these studies, heritability of calcium stones was calculated around 50%
Calcium-sensing receptor (CaSR) is mostly expressed in the parathyroid glands and in renal tubules. It regulates the
PTH secretion according to the serum calcium concentration. In the kidney, it modulates electrolyte and water
excretion regulating the function of different tubular segments. In particular, CaSR reduces passive and active
calcium reabsorption in distal tubules, increases phosphate reabsorption in proximal tubules and stimulates proton
and water excretion in collecting ducts. Therefore, it is a candidate gene for calcium nephrolithiasis.
In a case-control study we found an association between the normocitraturic stone formers and two SNPs of CaSR,
located near the promoters region (rs7652589 and rs1501899). This result was replicated in patients with primary
hyperparathyroidism, comparing patients with or without kidney stones. Bioinformatic analysis suggested that the
minor alleles at these polymorphisms were able to modify the binding sites of specific transcription factors and,
consequently, CaSR expression.
Our studies suggest that CaSR is one of the candidate genes explaining individual predisposition to calcium
nephrolithiasis. Stone formation may be favored by an altered CaSR expression in kidney medulla involving the
normal balance among calcium, phosphate, protons and water excretion.
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Calcium nephrolithiasis: one or more disorders?
According to modern criteria, calcium nephrolithiasis
can be considered as a multifactorial disorder, including
different groups of patients, homogeneous for their final
phenotype but heterogeneous for their intermediate
phenotypes and pathogenetic mechanisms. Therefore, it
appears as a complex disease that may develop change-
able clinical manifestations in urine composition, bone
involvement, stone composition, age at onset and other
intermediate phenotypes [1,2]. Both genetic and envir-
onmental factors may increase susceptibility to calcium

stones, but the weight of each factor may vary in differ-
ent patient groups [1]. Therefore, it is crucial to charac-
terize and properly define the patient phenotype in
order to distinguish homogeneous groups of stone
formers.
Studies on families and twins showed the genetic

determination of nephrolithiasis. Stone formers were
more common among the first-degree relatives of stone-
forming patients than healthy individuals. Concordance
for stones was greater among monozygous than dizy-
gous twins. In both studies, hereditary of calcium stones,
defined as the proportion of the phenotipic variance
depending on genes, was approximately 50% [3-6].
Family analysis also showed that the transmission pat-

tern of calcium stones is not mendelian, but complex
and polygenic, although 3 decades ago the first studies
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proposed an autosomal dominant hereditary transmis-
sion [3,4]. The pattern of the hereditary transmission
has not been ascertained yet, but it is likely that multi-
ple genes having a small causal effect may contribute to
increase susceptibility to stones. Effects of these genes
could be additive and calcium kidney stones may
develop when the sum of their effects exceeds the
threshold of stone formation in urine [2,6]. This hypoth-
esis does not imply the involvement of “major genes”
having a necessary and predominant role in stone for-
mation [7,8].

Genetic approach to calcium stones and the
calcium-sensing receptor
In our preliminary clinical approach to the disease, we
evaluated the association of calcium nephrolithiasis with
the polymorphisms of 10 candidate genes, selected on
the basis of the knowledge of the possible role of their
products in stone formation.
We selected genes of two calcium pumps of the

plasma membrane (ATP2B2 and ATPB1), the anion
channel (SLC4A1), the calcium-sensing receptor (CaSR),
a phosphate carrier (SLC34A1), the vitamin D receptor
(VDR), two dicarboxylic acid carriers (SLC13A1 and
SLC13A2), the lysosomial H-pump (ATP6N1B), the cal-
cium channel of the distal tubule (TRPV5). We chose 2-
6 biallelic polymorphisms on each gene (Unpublished
data). We only found an association between calcium
stones and rs1501899 (G > A), a SNP located on the
first intron of the CaSR gene. The minor allele A at
rs1501899 was more frequent in stone formers than
healthy subjects [9].
CaSR gene (chr. 3q13.3-21) encodes for a protein of

1078 aminoacids present in the plasma membrane as a
dimer. CaSR is a member of the G-protein coupled
receptors and its structure has 3 different domains
[10,11]. The extracellular domain (612 aminoacids)
binds extracellular calcium through its multiple negative
charges; the transmembrane part (250 aminoacids) has 7
membrane-spanning domains; the intracellular tail (216
aminoacids) interacts with the G-proteins and filamin A
to translate within the cells the signal produced by the
extracellular calcium binding [12,13]. The CaSR gene
has two different promoters (P1 and P2), whose func-
tional differences are not yet known. Each promoter
contains responsive elements to vitamin D receptor and
interleukin 1 that stimulate CaSR gene transcription and
CaSR expression [14,15].
The CaSR binds extracellular calcium with a low affi-

nity (EC50 3 mM in vitro), however, the binding is a
highly cooperative process (Hill coefficient is around 3)
allowing the CaSR to function as a sensitive detector of
extracellular calcium [16]. These properties render
serum calcium (1.2 mM in healthy people) the main

activator of CaSR in the human body and enable human
cells to modulate their function on extracellular calcium.
This process takes mainly place in parathyroid and kid-
ney tubular cells regulating calcium concentrations in
extracellular fluid. Thanks to its sensitivity to multiple
cations, the CaSR behaves as a sensor of extracellular
ions: employed as a salinity receptor in fishes, it evolved
as a regulator of calcium homeostasis in humans
[10,17,18].
CaSR stimulates distinct intracellular signaling path-

ways according to the different G proteins interacting
with it. Its interaction with the Gq protein activates the
C phospholipase, which releases inositol triphosphate
(IP3) and diacylglycerole (DAG) from phospholipids.
IP3, after binding to its specific membrane receptors,
stimulates calcium release from the stores in the endo-
plasmic reticulum, while DAG stimulates the protein
kinase C (PKC) activity [12,19]. CaSR interaction with
protein Gqa activates phospholipase A2 and stimulates
the production of arachidonic acid and 20-hydroxy-
eicosa-tetra-enoic acid (HETE) [20]. Furthermore, CaSR
interaction with Gi protein inactivates phospholipase A2
and inhibits cAMP production. Therefore, through these
and other pathways, CaSR may influence cell function,
but also cell proliferation and gene expression [21,22].
CaSR is a ubiquitous protein, mostly expressed in the

parathyroid glands and in renal tubules, especially distal
tubules [23]. Thanks to its presence, parathyroid cells
regulate the PTH secretion according to the serum cal-
cium concentrations. The increase in extracellular cal-
cium concentrations stimulates CaSR and inhibits PTH
secretion and cellular proliferation [10,16]. The opposite
occurs when the serum calcium concentration decreases,
thus explaining the proliferation of parathyroid cells
after prolonged periods of hypocalcemia and secondary
hyperparathyroidism, like those occurring in chronic
renal failure [24].

CaSR in the kidney
In the kidney, the CaSR performs different tasks
depending on the various tubular segments in which it
is located (figure 1) [25]. It is expressed on the luminal
membrane of the proximal tubular cells where it senses
the increase in calcium luminal concentrations and inhi-
bits cAMP production induced by PTH [23,26]. In prox-
imal tubules, PTH causes phosphate excretion by
internalization and degradation of phosphate reabsorp-
tion carriers (NPT2c and NPT2a) in subapical vesicles
derived from brush border. In-vitro microperfusion stu-
dies of single mouse proximal tubules showed that
CaSR limits PTH activity and decreases urinary loss and
luminal concentrations of phosphates [27].
CaSR is expressed on the basolateral membrane of the

thick ascending limb of Henle loop [26]. In this tubular
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segment, a sodium-potassium-chloride carrier (NKCC2)
couples the inward transport of these three ions through
the apical membrane. The activity of NKCC2 is sus-
tained by the sodium-potassium-pump in the basolateral
membrane and by the low-conductance potassium chan-
nels (ROMK) in the apical membrane [21]. ROMK
allows potassium ions recycling from cytoplasm into the
tubular lumen, thus sustaining the positive luminal
charge of the electric gradient between interstitium and
tubular lumen. This electric gradient becomes the driv-
ing force for paracellular reabsorption of sodium and
calcium [21]. In in-vitro studies on microdissected or
isolated microperfused tubules from laboratory animals,
CaSR activation by serum-interstitial calcium enhanced
the intracellular production of arachidonic acid and
HETE that can inactivate the potassium ROMK channel
and the Na-K-2Cl cotransporter [20]. The inactivation
of these carriers inhibited the passive reabsorption of
sodium, potassium and chloride and blocked the potas-
sium recycling to the lumen through the specific ROMK
channel [20,21]. This mechanism dissipates the positive
luminal electrical potential generated by potassium recy-
cling and decreases the passive calcium reabsorption
(figure 2). In thick ascending limbs isolated from dogs,
CaSR also inhibited the phosphorilation of claudin-16

through a mechanism mediated by the decrease in the
protein kinase A activity. The unphosphorilated form of
claudin-16 was not expressed in tight junctions and its
absence reduced the tight junction permeability to cal-
cium and magnesium, thus amplifying the calciuric
effect of CaSR [28]. In cortical segment of the thick
ascending limb, explored in mice by single tubule
microperfusion experiments, CaSR decreased the PTH-
dependent passive calcium reabsorption through the
apical membrane by antagonizing the PTH-stimulated
cAMP production (figure 2) [29].
In the distal convoluted tubule, CaSR is located on

the basolateral membrane of tubular cells and in cul-
tured dog cells from this tubular segment CaSR was
found to reduce the active calcium reabsorption by
interfering with the calcium pump function through a
phospholipase C dependent mechanism. The signaling
pathway for this effect requires activation of Gq pro-
teins [30].
In the collecting duct, CaSR is expressed on the apical

membrane of the principal and intercalated cells [23,31].
In cultured mouse principal cells, CaSR altered the traf-
ficking of aquaporin 2 (AQP2) and reduced the urine
concentrating ability by antagonizing vasopressin activity
and the cAMP-dependent activation of protein kinase A

Figure 1 CaSR is located on the basolateral membrane of the tubular cells in the thick ascendent limb of Henle loop and in the distal
convoluted cortical tubule, where it senses serum calcium and reduces calcium reabsorption when activated by serum calcium
increase. In proximal tubules and collecting ducts it is located on the apical membrane and its activation by the increase in tubular fluid
calcium may protect against calcium-phosphate precipitation.
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[32]. In intercalated cells, the stimulation of CaSR with
an agonist promoted urinary acidification in mice,
through the activation of the proton pump enhancing
proton secretion in urine [33].
The analysis of the described CaSR functions in the

kidney suggests that in the ascending limb and distal
convolute tubule CaSR is sensitive to serum calcium
because of its location on basolateral membrane of
tubular cells. Here, the CaSR modulates calcium reab-
sorption according to the serum levels of calcium so
that its increase may be compensated by the CaSR-
mediated inactivation of both passive and active distal
calcium reabsorption. Nevertheless, a high calcium
excretion is potentially dangerous for the kidney as it
increases the probability of calcium-phosphate precipi-
tation inside the kidney. This probability especially
increases in the papilla, where the fluid concentration
is unusually high. To prevent possible dangerous con-
sequences caused by high calcium excretion, CaSR
might induce the modifications counterbalancing the
tubular function. In proximal tubules, the

antiphosphaturic effect reduces the phosphate load to
the distal tubular segments, where CaSR decreases cal-
cium reabsorption. In the collecting duct, CaSR pro-
motes urinary salt dilution and acidification, both
necessary to favor the solubility of calcium-phosphate
salts [34]. These effects appear to be an integrated sys-
tem able to prevent calcium-phosphate precipitation in
kidney tubules and complications like nephrocalcinosis
and the formation of calcium-phosphate stones. This
hypothetical system is supported by experiments in
tubular cells or tubules from laboratory animals, but
their relevance has not yet confirmed in humans [35].
This system, if confirmed, seems to be specifically
dedicated to the control of calcium-phosphate precipi-
tation within kidney tubules, which are the principal
bivalent ions in human body. However, it could also
prevent interstitial precipitation of calcium-phosphate
salt in kidney medulla to form Randall’s plaque that is
an apatite deposit in papillary interstitium on which
calcium-oxalate stones may develop after ulceration of
urothelium covering it [36,37].

Figure 2 CaSR is expressed on the basolateral membrane in the thick ascending limb of Henle loop (left panel) and in the cortical
distal convoluted tubule (right panel). In the thick ascending limb of Henle loop, CaSR inactivates the luminal potassium recycling through
the ROMK channels. This effect dissipates the positive luminal electrical potential that is the driving force for passive paracellular calcium
reabsorption. In this nephron segment, CaSR also inhibits the phosphorilation of caludin-16, which can be expressed in tight junctions only after
phosphorilation. The absence of claudin-16 reduces the tight junction permeability to calcium and magnesium and, as a consequence, passive
calcium reabsorption.In the cortical distal convoluted tubule, CaSR reduces calcium pump activity (PMCA) and calcium active reabsorption.PLA2
is phospholipase A2, AA is arachidonic acid, 20-HETE is 20-hydroxi-eicosa-tetraenoic-acid, PLC is phospholipase C, PKA is protein kinase A. Split
lines express the enhancing (plus sign) or inhibitory (minus sign) pathways activated by CaSR.
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CaSR gene polymorphisms and kidney stones
The relevance of CaSR in calcium homeostasis and our
preliminary findings about stone former genotyping led
us to study more in depth the possible role of CaSR
gene polymorphisms in calcium kidney stones forma-
tion. For this purpose, we selected stone forming
patients presenting a normal excretion of citrate,
because the pathogenetic effect leading to calcium-phos-
phate precipitation may be predominant compared to
the function performed by the precipitation inhibitors,
among which urine citrate is one. On the contrary,
urine calcium and phosphate promote salt precipitation
and CaSR, influencing their tubular handling, may affect
urine saturation for their salts [37].
Our study included 463 patients affected by both cal-

cium phosphate and oxalate stone disease of which 312
were normocitraturic and 151 hypocitraturic, and 213
healthy subjects. All of them were genotyped for 21 bial-
lelic polymorphisms mapping the whole CaSR gene at a
distance of 5-10 kb [9]. The frequency of the minor
allele was > 10%. Our results showed that, in addition to
the intronic polymorphism rs1501899 (G > A), the poly-
morphism rs7652589 (G > A) was associated to the nor-
mocitraturic stones and to a greater stone rate (figure
3). Their minor alleles were more common in normoci-
traturic stone formers than in healthy subjects or hypo-
citraturic stone formers [9].
In order to confirm this study, we replicated it on a

second sample of patients presenting primary hyperpar-
athyroidism (PHPT). These patients frequently suffer
from stone disease, as they are hypercalciuric (and
hypercalcemic) and normocitraturic. This study com-
pared 157 PHPT patients forming kidney stones and
175 PHPT patients not forming stones. Also in this
population polymorphisms rs7652589 and rs1501899
were associated with the presence of stones [38].
Polymorphisms rs7652589 and rs1501899 are respec-

tively at 11000 kb before P1 and at 4600 kb after P2
(figure 3). This location led us to assume their possible
influence on CaSR genetic translation and CaSR expres-
sion. They could directly modify the effect of transcrip-
tion factors, or be in linkage with other promoter
polymorphisms changing CaSR gene promoter function.
To confirm this suggestion, we performed a bioinfor-
matic analysis exploring the potential influence of
rs7652589 and rs1501899 on specific transcription fac-
tors. Findings of our analysis suggested that the minor
alleles at these polymorphisms were able to modify the
binding sites of specific translational factors and, conse-
quently, the transcription efficacy [9].
Further genotype analysis in normocitraturic patients

showed that calcium stones were associated with poly-
morphisms located within P1, whereas P2 polymorph-

isms were not associated [39]. These findings suggest
that a deficiency in CaSR function may occur in stone
formers, caused by a qualitative alteration of the expres-
sion and by a defect in P1 activity. Variant alleles in the
P1 promoter or transcription regulatory region could
support this defect.

Critical points in the relationship between CaSR
and kidney stones
The hypothesis we are proposing is based on association
findings and has to be supported by functional data
that, confirming it, could clarify the influence of the
polymorphisms on the gain or loss of the CaSR
expression.
Some data indicate that minor alleles at the associated

polymorphism lead to a loss of CaSR expression in the
kidney. Supporting this finding, serum levels of PTH
were lower in normocitraturic stone formers than in
homozygous patients for the variant allele at rs7652589
and rs1501899 [9]. This result agreed with a decreased
CaSR expression, as only this condition may lead to a
deficient inhibition of the PTH secretion and production
in parathyroid glands. Furthermore, we measured CaSR
mRNA in the healthy medulla samples from nephrec-
tomies affected by kidney cancer. In homozygous sub-
jects for the minor allele at rs7652589 and rs1501899
we found a lower quantity of CaSR mRNA than in sub-
jects with any other genotype at these polymorphisms
[39]. These findings are indirect indications that ana-
lyzed polymorphisms give rise to a possible reduction in
CaSR expression. Nevertheless, they do not demonstrate
their influence on the promoter activity. At the moment,
we are carrying out experiments directly estimating the
function of the CaSR promoter in the presence of these
polymorphisms. Promoter function will be estimated in
transfected cells with plasmids containing CaSR gene
promoter and luciferase gene. The level of luciferase
activity will give an evaluation of the promoter function.

Missense CaSR gene polymorphisms and stones
Three missense polymorphisms of the CaSR gene have a
significant frequency in general population. They are
located on exon 7 and are A986S (rs1801725, G > T),
R990G (rs1042636, A > G) and Q1011E (rs1801726, C >
G). Few studies considering CaSR as a candidate-gene
tested the frequency of their alleles in nephrolithiasis. A
study was performed in 223 Canadian idiopatic calcium
stone formers genotyped for A986S and R990G. It
observed significant Hardy-Weinberg disequilibrium at
the R990G locus in cases, but not in controls, and
attributed this disequilibrium to the association of the
polymorphism with stones. Carriers of the 990G allele
had an eightfold increase of stone risk [40]. Another
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Figure 3 The CaSR gene (chr 3q13.3-21) spans 103 kb and encodes the CaSR protein of 1078 amino acids. Exons are shown as either
unfilled boxes (untranslated regions (UTR)), or filled boxes (protein coding regions). Exons 1a and 1b encode alternative 5’-UTRs. Exons 2-7
encode the CaSR protein. Exon 2 encodes the translation start codon (ATG) and the NH2-terminal part of the CaSR. Exon 7 encodes the stop
codon (TAA) and the COOH-terminal part of the CaSR. rs7652589 (G > A, position 123371778) is located ~11000 bp upstream of P1 in the 5’-
flanking region of the CASR gene. rs1501899 (G > A, position 123390018) is located 4668 bp downstream of P2 within intron 1 of the CASR
gene.

Vezzoli et al. Journal of Translational Medicine 2011, 9:201
http://www.translational-medicine.com/content/9/1/201

Page 6 of 9



study was carried out in a group of 99 Iranian recurrent
stone formers and observed a significantly higher fre-
quency of the 986S, 990G and Q1011 alleles in stone
formers [41]. Two other studies found a significant asso-
ciation between the 990G allele and stones in Italian
patients with primary hyperparathyroidism [42,43].
R990G was also associated with primary hypercalciuria,
a disorder predisposing to calcium kidney stones, and
the association was observed both in stone formers and
in stone free subjects [44,45]. This allele was recognized
to cause a gain of CaSR function in transfected embrio-
nic kidney cells HEK-293 [45].
These findings confirm that CaSR gene polymorph-

isms may be involved in calcium nephrolithiasis, but
propose an intriguing scenario in which stone formation
appears to be favored by an activating polymorphism
(R990G) and by polymorphisms decreasing expression
of the CaSR gene. Despite their apparently opposite
effect, both polymorphisms could predispose to calcium
nephrolithiasis. Today, we have no sufficient knowledge
to explain this puzzle, that, to be resolved, needs experi-
ments evaluating the CaSR activity in kidney tubules
and the functional effect of the variant alleles at these
polymorphisms. An initial contribution was given by a
study in knockout mice for the calcium channel TRPV5
[33]. TRPV5-/- mice were hypercalciuric, but did not
form calcium stones or precipitate; they developed cal-
cium-phosphate precipitate in collecting ducts only after
inhibition of H-pump activity that hampers urine acidifi-
cation. The use of allosteric agonist of CaSR in these
mice showed that CaSR stimulated H-pump activity in
collecting ducts and allowed to maintain urine stability.
TRPV5-/- mice were also polyuric because the stimula-
tion of CaSR by luminal calcium antagonized vasopres-
sin activity in collecting ducts [33].

Conclusions
Our studies suggest that CaSR is a candidate gene to
explain individual predisposition to calcium kidney
stones [8]. Stone formation may be favored by a reduced
CaSR expression in kidney medulla altering the normal
balance among calcium, phosphate, protons and water
excretion. This defect may cause the intratubular preci-
pitation of calcium-phosphate crystals and the conse-
quent calcium-phosphate stone formation [46]. It could
also predispose to calcium-phosphate precipitation in
the papillary interstitium, and the possible consequent
formation of the Randall’s plaque on which calcium-
oxalate stones develop [47].
More extensively, our findings indicate that CaSR

could prevent deposition of calcium-phosphate salts in
tissues. Immunohistochemistry studies and RT-PCR
showed that CaSR expression is decreased in calcified
arteries from both uremic and non-uremic patients

[48,49]. Studies on rats showed that CaSR agonists (e.g.
cinacalcet) could inhibit arterial calcification stimulated
by vitamin D [50]. A slower progression of arterial calci-
fications was observed in uremic hemodialyzed patients
on cinacalcet treatment [51] that could explain improv-
ing in patient mortality [52].
These data suggest a physiopathological role of CaSR

in protecting human tissues against the risk of calcifica-
tion, a risk induced by the condition of supersaturation
in body fluids. The functional importance of CaSR is
highlighted by the fact that a CaSR precursor is detect-
able in unicellular organisms where it senses environ-
mental salinity. The evolution of this molecule provided
human beings with a cellular calcium sensor used by
kidney and parathyroid cells to keep serum calcium
within the normal range. CaSR anticalcification function
becomes more complex in human kidney where it con-
tributes to the paracrine regulation of ions and water
excretion, thus protecting against calcium-phosphate
precipitation. Its anticalcification activity has been
hypothesized also in arteries but its mechanism has still
to be ascertained and understood.
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