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Abstract

Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in
developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a
promising tool for their treatment by promoting tissue repair and protection from immune-attack associated
damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce
immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may
arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded
human adipose-derived mesenchymal stem cells (hAdMSCs) of 10 patients with autoimmune associated tissue
damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis,
atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol
for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High
expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without
measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing
characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of
therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties
of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-
vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical
studies are needed that take into account the results obtained from case studies as those presented here.
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Introduction
In the 21st century, live expectancy has rapidly pro-
gressed as has the number of previously uncommon dis-
eases with no treatment. Stem cell based therapies are
suggested to be able to repair and regenerate tissues in
diseases associated with age, changed life style and envir-
onmental exposure, such as autoimmune disease and

stroke. In particular, mesenchymal stem cells (MSCs)
have been applied to treat these diseases [1-3]. However,
the lack of optimized culture protocols for achieving suf-
ficient number of cells, safety issues concerning ex-vivo-
expanded cells, the possible reduction in potency of stem
cells derived from aged people and patients with autoim-
mune disease has put into question clinical applications
of autologous stem cells in these patients.
In order to apply human autologous adipose tissue

derived MSC (hAdMSC) in the clinical setting, we
developed a standardized protocol to isolate and cul-
ture-expand AdMSC from minimal amounts of fat in
vitro, achieving sufficient cell numbers for multiple
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therapeutic inventions [4]. Expanded AdMSCs main-
tained the potency for effective differentiation indepen-
dently of donor age and disease status [5]. The
confirmed genetic stability and in vivo safety of ex-vivo-
expanded hAdMSCs in animal models and patients [4]
indicate that AdMSCs from older persons are applicable
for autologous therapy and are comparable to those
derived from young donors [5]. Furthermore, we investi-
gated the migration ability of hAdMSCs and their in
vivo homing in animal model after systemic infusion.
MSC include a number of stem cells with an inherent

ability for self-renewal and differentiation potential for
mesodermal and other embryonic lineages, including
adipocytes, osteocytes, chondrocytes, hepatocytes, neu-
rons, muscle cells and epithelial cells [6-8], depending
on the surrounding microenvironment. A large body of
evidence demonstrated that MSC commonly have
immunomodulatory and anti-inflammatory properties
[9-12]. While the differentiation properties of MSC
seem to dependent on microenvironmental clues in
vivo, the immunomodulatory effects appear to be rather
intrinsic and thus present an attractive basis for the
therapy of autoimmune and inflammatory diseases by
systemic infusion. Moreover, intrinsic properties of MSC
demonstrated secretion of various factors, modulation of
the local environment and activation of endogenous
progenitor cells [13,14]. Hence, MSC therapy evoked
therapeutic promises for graft-versus-host disease
(GVHD), systemic lupus erythematosus (SLE), rheuma-
toid arthritis (RA), multiple sclerosis (MS), diabetes,
myocardial infarction, thyroditis and different types of
neurological disorders, among others [15-23].
Various routes of administration of MSCs, including

intravenous (i.v.) [24], intraarterial [25] or intracerebral
[26] were reported for stem cell application. Of these
routes, i.v. is a convenient strategy to deliver cells and
therapeutic effects to the injury site. Intravenously
injected MSC may be transiently trapped in the lungs,
sequestered in the spleen, and are predominantly elimi-
nated by kidneys [27]. Initial accumulation of MSC in
the lungs may induce secretion of secondary anti inflam-
matory effectors [28].The recent demonstration of in
vivo homing properties of bone marrow derived MSCs
and AdMSCs has further stimulated i.v. application of
MSC for therapy [29]. In this review, we describe several
cases of autologous AdMSCs application in autoimmune
conditions, including autoimmune hearing loss, MS,
polymyotitis (PM), atopic dermatitis (AD) and RA. We
suggest that multiple infusions of AdMSC may establish
immune homeostasis over long periods of time.

Phenotype and differentiation potentials of MSCs
Minimal criteria have been proposed to define MSCs by
the Mesenchymal and Tissue Stem Cell Committee of

the International Society for Cellular Therapy. These
are: 1) plastic adherence ability; 2) lack of hematopoietic
markers, such as CD45, CD34, CD14, CD11b, CD79a,
CD 19, or HLA-DR; 3) tripotential mesodermal differen-
tiation potency into osteoblasts, chondrocytes, and adi-
pocytes; and 4) immunomodulatory capability [30]. In
addition to their mesodermal differentiation capability,
MSCs were also shown to differentiate in vitro into the
ectodermal lineage such as neurons, but also into the
endodermal lineage such as myocytes and hepatocytes
[7,31]. The conditions for differentiation of engrafted
MSCs in vivo might be more complex and regulated by
microenvironmental cluses of local tissues. For example,
MSCs engrafted into heart could differentiate into cardi-
omyocytes, smooth muscle cells, and vascular endothe-
lial cells [32-34]. In addition, through a series of signals
from local tissue, engrafted MSCs can be induced to
secrete diverse cytokines that posses trophic and immu-
nomodulatory functions and subsequently contribute to
tissue repair and regeneration [11].

Sources of MSCs
MSC were first isolated as fibroblast colony-forming
units (CFU-Fs) or marrow stromal cells from bone mar-
row (BMMSC) by Friedenstein and colleagues [35].
Their most common name is based on their property of
differentiate into a variety of mesodermal tissues includ-
ing bone, cartilage and fat. MSCs were found in various
organs and tissues, including fat, periosteum, synovial
membrane, synovial fluid, muscle, dermis, deciduous
teeth, pericytes, trabecular bone, infrapatellar fat pad,
articular cartilage, umbilical cord and cord blood
[36,37], and placenta [38].
BMMSCs have first been applied for therapy [39,40].

However, aspirating BM from the patient is an invasive
procedure that yields only low numbers of cells (about
1-10 per 1 × 105 or 0.0001-0.01% of all BM nucleated
cells), requiring high expansion rates [41]. Furthermore,
the therapeutic potential of BMMSCs may be dimin-
ished with increasing donor age and is associated with
declining differentiation capacity and reduced vitality in
vitro [42]. In any case, for autologous transplantation,
expanded BMMSCs and AdMSCs have safely been
applied in numerous human studies [4,39,40].

Adipose mesenchymal stem cells
Adipose tissue is an attractive source of MSCs for auto-
logous stem cell therapy, because adipose tissue is easily
obtainable in sufficient quantities using a minimally
invasive procedure [23,43]. In addition, adipose tissues
contain more MSCs than BM (about 100, 000 MSCs per
gram of fat) [44]. Moreover, differentiation and immu-
nomodulatory potencies of AdMSCs are equivalent to
those of BMMSCs [23].
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The efficacy of AdMSCs in treating various diseases
has been reported in vivo [45]. Local or systemic admin-
istration of AdMSCs was reported to have repair capa-
city in myocardial infarction [19] liver injury [24],
hypoxia-ischemia-induced brain damage [46], allergic
rhinitis [47] and muscular dystrophy [48]. Furthermore,
AdMSCs are immune regulatory and potentially suitable
to treat immune-related diseases including GVHD [15],
MS [16], rheumatic disease [17,18] and thyroditis [20].
Establishment of standard culture-expansion procedure of
hAdMSCs for clinical applications
Due to the small number of MSC in tissues, ex vivo
expansion is required to generate the cell quantities
required to achieve therapeutic results with MSCs
through systemic delivery. In case of BMMSCs, however,
long-term culture alters the quality of MSCs, including
morphological changes, attenuated expression of specific
surface markers, reduced proliferative capacity, differen-
tiation potential [49-52], and trophic activity [53].
To produce sufficient numbers of hAdMSCs for stem

cell therapy, optimized culture conditions were devel-
oped [4], which allow proliferation of hAdMSC from
minimal amounts of fat since large amounts of fat are
rarely obtainable from patients suffering from incurable
diseases. Usage of a special cannular maximizes survival
rate of stem cells in fat tissues and a 3 times higher rate
of subsequent early stem cell attachment when com-
pared to other devices. The developed cell collection,
cultivation and expansion protocol requires less than 5
g fat to obtain more than 109 cells (after 3 passages). To
improve proliferation and differentiation of AdMSC, we
tested more than 15 commercially available culture
media and eventually developed the hAdMSC culture
media, named as RCME (MSC attachment media) and
RKCM (MSC proliferation media) [4]. These media pro-
vide high viability, shortened doubling times and main-
tained morphology and improved potency.
The characteristics, stability, toxicity, and tumorigeni-

city of the culture-expanded hAdMSCs were determined
in animals and in human studies [4]. With regard to the
safety of culture-expanded stem cells in vitro, genetically
stability and consistency on the morphological, immu-
nophenotypic, and differentiation characteristics, as well
as toxicity and tumorigenicity need to be verified. We
demonstrated that cultured hAdMSCs showed the typi-
cal immunophenotype and differentiation capability of
MSCs [4]; cells expressed MSC markers CD90, CD105,
CD44 and CD29, but did not express hematopoietic or
endothelial markers (CD31, CD34 and CD45) and differ-
entiated to adipogenic, osteogenic, neurogenic, myo-
geneic and chondrogeneic lineages in vitro. Culture-
expanded hAdMSCs were genetically stable for at least
12 passages as determined by karyotype and single
nucleotide polymorphism (SNP) assays.

Cells suspended in physiological saline maintained
their MSC properties, viability and potency at cold sto-
rage conditions (2 to 8°C) for at least 72 h, a critical
time period for shipping stem cells into the clinic. How-
ever, we noticed that physical vibration during shipment
might negatively impact cell viability. No evidence of
bacterial, fungal, or mycoplasma contamination was
observed in cells tested before shipping and cell viability
evaluated by trypan blue exclusion was > 95% prior to
cell transplantation.
In vivo safety of expanded hAdMSCs
To test the toxicity of hAdMSCs, different cell doses were
intravenously injected into immunodeficient severe com-
bined immunodeficiency (SCID) mice, and mice were
observed for 13 weeks. Even at the highest cell dose (2.5 ×
108 cells/kg body weight), mice showed no sign of discom-
fort. Although the safety of i.v. injection of culture
expanded autologous and allogenic MSCs has been con-
firmed in patients [54] in numerous human clinical studies
including osteogenesis imperfect [55], metachromatic leu-
kodystrophy [56], acute myocardial infarction [57] and
GVHD [58], there were some reports presenting that
MSCs can induce sarcoma [59] or facilitate the growth of
tumors [60]. In order to test tumorigenicity of hAdMSCs,
we performed a tumorigenicity test in Balb/c-nude mice
for 26 weeks. Even at the highest cell dose (2 × 108 MSCs/
kg, subcutaneous injection), no evidence of tumor devel-
opment was found. The safety of hAdMSCs was further
investigated in a phase I human clinical trial, with no ser-
ious adverse event after i.v. administration of 4 × 108

hAdMSCs within an observation period of 12 weeks [4].
The minor adverse events found are common to spinal
cord injury patients and disappeared spontaneously or
were alleviated with medication. One idiopathic case of
asymptomatic hyperthyroidism that did not require medi-
cal treatment remained sustained during follow-up. Based
on these studies, we conclude that the systemic adminis-
tration of hAdMSCs is safe and does not induce tumor
development. In line with these data, Vilalta et al. [61]
reported that hAdMSCs implanted in mice tended to
maintain a steady state, and no detectable chromosomal
abnormalities or tumors formed during the 8 months of
residence in the host’s tissues. Notably, the development
of sarcoma in the study of Tolar et al was due to cytogen-
etically abnormal culture-expanded MSCs [59]. In addi-
tion, Izadpanah et al. [62] demonstrated that long-term
cultivation of MSC beyond passage 20 may result in their
transformation to malignant cells. These results indicate
that it is essential to control genetic stability of culture-
expanded cells.
Comparison of neural cell differentiation of hAdMSC
derived from young and old donors
Because many diseases that are candidates for stem cells
therapy are age-associated degenerative diseases, stem
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cells obtained from the elderly for autologous use
should possess potency in order to have therapeutic
effects. In terms of BMMSCs, there have been contro-
versial results regarding the effects of aging. Using
human BMMSCs from juveniles and adults seeded onto
three-dimensional scaffolds, Mendes et al. [63] have
demonstrated that actual bone formation decreased sig-
nificantly as patient age increased. Huibregtse et al. [64]
demonstrated that overall reduction in colony-forming
efficiency was observed in rabbit BMMSCs derived from
older animals. Bergman et al. [65] demonstrated that
differences in basal proliferation rates were observed
between young and old BMMSCs isolated from mice,
while production of early markers of osteoblastic differ-
entiation in vitro were equivalent. Stenderup et al. [42]
have shown that human BMMSC isolated from older
donors have a decreased lifespan and rate of population
doubling, while both BMMSCs formed similar amounts
of bone both in vitro and in vivo [51].
Adipose derived MSC seem not to undergo the same

senescence pattern as BMMSC [66,67]. When hAdMSC
were derived from elderly (mean 71.4 years) and young
donors (mean 36.4 years), cells from both age groups
showed similar proliferation, osteogenic differentiation
and senescence marker patterns, while BMMSC from
the same cohorts showed reduced proliferation,
decreased differentiation and increased senescence [66].
In concordance with these findings are data from mur-
ine AdMSC derived from senile osteoporotic SAMP6
mice, which showed maintenance of telomere length,
telomerase activity and osteogenic differentiation [67].
In order to determine the potency of hAdMSCs isolated
from donors aged thirty, forty and fifty, their prolifera-
tion and differentiation potential to neural cells was
investigated [5]. It was demonstrated that cell number,
viability, morphology and neural differentiation potential
were not different between hAdMSC of different age
and passage. The results suggest that autologous adipose
derived stem cells from aged people may be applied for
stem cell therapy of age-dependent neural disease with
the same stem cell quality and ability as stem cells
derived from younger patients.

Distribution, migration and homing potential of
transplanted MSCs after intravenous injection
Distribution of MSCs after i.v. injection
After i.v. delivery, MSCs are generally found at low or
very low frequencies in most target organs, as shown by
histology, polymerase chain reaction or by immunohis-
tochemistry [68-70]. Deak et al. [71] performed systema-
tic kinetic assessments in non-injury models using
enhanced green fluorescent protein transfected murine
MSCs. They demonstrated that 24 hr after MSC appli-
cation, the most frequently positive organs were lungs,

liver, kidney, skin, and gut among investigated tissues.
In baboons, Devine et al. [69] demonstrated that high
concentration of transplant specific DNA was observed
in gastrointestinal tissues. They also showed that kidney,
lung, liver, thymus, and skin have relatively high
amounts of DNA equivalents. Based on their studies,
levels of engraftment in these tissues were estimated,
ranging from 0.1 to 2.7%, with similar results with auto-
logous and allogeneic cells [69]. After systemic adminis-
tration, Lee et al. [28] found 80% of the infused MSCs
in the lungs of mice 15 min after infusion, whereas after
4 days the specific signal for the presence of human
MSCs decreased to 0.01%. Of importance, clinical stu-
dies with systemically delivered human MSCs did not
induce significant intolerance symptoms from the pul-
monary or circulatory systems, while murine MSCs dis-
played a somewhat different behavior. Deak et al. [72]
have demonstrated in a C57BL/6 syngenic murine
MSCs transfusion model, that in contrast to human
MSCs, murine MSCs home to lungs and might clog in
the lungs.
Migration and homing potential of MSCs after i.v. injection
A number of in vivo studies have shown that systemi-
cally infused MSCs could migrate to injured, inflamed
tissues and exert therapeutic effects [73,74]. BMMSCs
intravenously delivered to rats following myocardial
infarction localize in the infarct region and improve ven-
tricular function, while MSCs delivered to non-infarcted
rats localize to the BM [75]. Localized abdomen irradia-
tion significantly enhances MSC homing specifically to
radiation-injured tissues in mice [76]. A recent study
demonstrated the homing properties of i.v. administered
hAdMSCs to cell-damaged areas in an allergic rhinitis
animal model [47]. The relative organ distribution of
fluorescence-labeled hAdMSCs was assessed by us in
brain, spinal cord, spleen, thymus, kidney, liver, lung,
and heart after i.v. injection in spinal cord injury rats by
fluorescence microscopy and human specific Alu PCR.
In the injured region of spinal cord, a relatively high
percentage of AdMSCs (13%) was found, while most
cells remained in spleen (40%) and thymus (21%) [data
not shown].
Numerous studies showed the involvement of chemo-

kines or growth factors in MSCs trafficking to the injury
region. The interactions of stromal cell-derived factor-
1a (SDF-1a)- and C-X-C chemokine receptor type 4
(CXCR4) mediated the trafficking of transplanted
BMMSCs in a rat model of left hypoglossal nerve injury.
In addition, BMMSCs were attracted by chemokines
that are presented in the supernatants of primary cul-
tures of human pancreatic islets culture in vitro and in
vivo [77]. When we compared soluble factors by in vitro
migration assay, platelet derived growth factor (PDGF)-
AB and transforming growth factor-ß1 (TGF-b1) were
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most potent for migration activity of hAdMSCs [78].
hAdMSCs pre-stimulated with tumor necrosis factor
(TNF-a) showed the highest migration activity. When
analyzed by flow cytometry and reverse transcriptase-
polymerase chain reaction, hAdMSC expressed C-C che-
mokine receptor type 1 (CCR1), CCR7, C-X-C chemo-
kine receptor type 4 (CXCR4), CXCR5, CXCR6, EGFR
(EGF receptor), FGFR1 (FGF receptor 1), TGFBR2 (TGF
receptor 2), TNFRSF1A (TNF receptor 1), PDGFRA
(PDGF receptor A) and PDGFRB (PDGF receptor B) at
protein and mRNA levels. This study indicates that the
migration of hAdMSCs is controlled by various growth
factors or chemokines. Hence, modulating the homing
capacity of hAdMSCs in vivo could stimulate its migra-
tion into injured sites after i.v. administration, and
thereby improve their therapeutic potential.

Immunomodulation and anti-inflammatory effects by
MSCs
Several characteristics may play a role for the immune
regulatory capability and anti-inflammatory effects of
MSCs: 1) MSCs have low immunogenicity due to low
expression levels of major histocompatibility complex-I
(MHC-I) and no expression of MHC-II molecules and
costimulatory molecules including B7-1 (CD80), B7-2
(CD86), or CD40 [79], (2) MSCs secrete soluble factors
such as interleukin (IL)-6 and macrophage-colony sti-
mulating factor [80] and suppress the activation and
proliferation of T and B lymphocytes, and interfere with
differentiation, maturation and function of dendritic
cells, (3) MSC release anti-inflammatory and anti-apop-
totic molecules and hence may protect damaged tissues
[79,81].
Due to these properties, MSC transplantation has

been used for the treatment of GVHD, and several auto-
immune diseases, including autoimmune thyroditis [20],
RA [17,18] and MS [16] and implicated for allogeneic
stem cell transplantation. Systemic infusion of AdMSCs
controlled lethal GVHD in mice transplanted with hap-
loidentical hematopoietic stem cell grafts when the
MSCs were injected early after transplantation [15]
although ongoing clinical studies with allogeneic
BMMSC were not successful. Therapeutic efficacy of
BMMSCs was reported in the animal model of MS [16].
In this experimental autoimmune encephalomyelitis
(EAE) model, i.v. infusion of MSCs decreased clinical
symptoms when MSCs were injected before or at the
onset of the disease. In an experimental collagen-
induced arthritis (CIA) study, a single intraperitoneal
injection of BMMSCs prevented the occurrence of
severe arthritis, and was associated with a decrease in
serum levels of pro-inflammatory cytokines [18]. Human
AdMSCs have been demonstrated to ameliorate experi-
mental autoimmune thyroiditis via down-regulation of

Th1 cytokines [20]. Systemic infusion of hAdMSCs pre-
vented lymphocyte infiltration to thyroid glands,
decreased the production of pro-inflammatory cytokines
and improved Th1/Th2 balance [20]. MSCs suppressed
T-cell proliferation and cytokine production in response
to alloantigen and nonspecific antigen, and prolong skin
graft survival in vivo [82]. In addition, MSCs inhibit
function of B cells [83], natural killer cells [84] and den-
dritic cells [85]. The immunomodulatory function of
MSC was mediated both by soluble factors [86], and by
direct cell to cell interactions [87].
Whether MSC derived from patients with autoim-

mune diseases will have therapeutic functions after auto-
logous transplantation in a clinical situation is
controversial and has not been addressed clinically [88].
Papadaki et al. [89] showed that while BMMSCs isolated
from RA patients were found to be impaired in their
ability to support hematopoiesis, BMMSCs isolated from
MS patients displayed normal ability [89,90]. Other data
demonstrated that BMMSCs derived from patients with
RA, MS, autoimmune SLE, systemic sclerosis (SSc) and
Sjogren’s syndrome retained their immunomodulatory
capabilities in vitro [91,92].

Clinical application of MSCs in autoimmune diseases
Given their confirmed in vivo safety and the rationale
that MSCs possess immunomodulatory and anti-inflam-
matory properties, compassionate-use treatments for
autoimmune diseases were initiated in patients after
other treatment options were exhausted. All patients
provided informed consent to the treatment. Here, we
describe treatment of AdMSCs in autoimmune hearing
loss (AIED), MS, PM, AD and RA. Details on the
patients disease and treatment histories, disease status
and treatments are provided in Table 1 and Additional
File 1; Case Reports, Table S1 and Figure S1. Additional
clinical scores for AD before and after treatment are
shown in Table 2. Patient analysis was based mostly on
clinical parameters. In some cases, immunological and
blood status parameters were also measured (cases 3, 4,
5, 8, 9, 10); all cases showed decrease in inflammatory
responses and eosinophil counts.
For all treatments, 5 g of fat tissues were collected by
liposuction, transferred immediately to the GMP facility
and Stem Cell Research Center of RNL BIO and cul-
ture-expanded for 3 passages using the standard proto-
col to obtain AdMSCs [4]. The patients received
between 1 and 6 i.v. infusions of 200 million AdMSCs
suspended in physiological saline (each 100 million
cells/100 ml) in different intervals (see Table 1 and
Additional File 1; Case Reports). Two patients received
additional intrathecal (MS-patient) and intrarticular
(RA-patient) injections of cells (Table 1 and Additional
File 1; Case Reports and Table S1).
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Table 1 Summary of hAdMSC treatments of 10 patients with different autoimmune-associated diseases.

Case Age/Sex Injections and
cell numbers

Total cell
number
received

Clinical status at presentation Clinical status after treatment Observation
time
(months)

Autoimmune inner ear disease (AIED)
AIED [93,94]is a progressive, bilateral yet asymmetric, sensorineural hearing loss. Patients have higher frequencies of interferon (IFN)-c-
producing T cells and higher serum antibody titres compared with healthy controls and patients with noise- and/or age-related hearing loss
[95]. The mainstay treatment for AIED are anti-inflammatory drugs, particularly corticosteroids [96,97]. However, some patients are refractory
to steroid treatment. Thus, alternative treatment is needed for these patients. Efficacy of hAdMSCs on experimental autoimmune hearing loss
(EAHL) was shown in mice [98]. Mice were immunized with b-tubulin to develop EAHL and treated with i.v. injection of hAdMSCs (once a
week for 6 consecutive weeks) resulting in improved hearing, hair cell stabilization, reduced proliferation of antigen-specific Th1/Th17 cells
and induced anti-inflammatory cytokine IL-10 in splenocytes, induction of antigen-specific CD4(+) CD25(+) Foxp3(+) regulatory T-cells with the
capacity to suppress autoantigen-specific cytotoxic T-cell responses.

1 19/F 3x each 2 × 108

(i.v.)
6 × 108 Severe progressing hearing loss for 3

years (no in left ear, severe in right ear)
Normal hearing in right ear,
moderate hearing in left ear

11

Multiple Sclerosis (MS)
MS is a multifocal inflammatory disease of the central nervous system, which mainly affects young women between ages twenty and forty years and
causes paralysis of the limbs, sensation, visual and sphincter problems. The disease is clinically evident with relapses of neurological disability due to
damage of myelin occurs (plaques of sclerosis). The disease enters a progressive phase due to damage of the axons and irreversible neurodegeneration.
Existing immunotherapies downregulate the autoimmune anti-myelin reactivity and reduced the rate of relapses (e.g. INF-b, glatiramer acetate and
mitoxantrone) but progression of disability and myelin regeneration is not possible [99,100]. In the chronic EAE animal model [101], BMMSCs and AdMSCs
were shown to restore neuronal activity and produce new neurons [102,103]. We demonstrated previously that hAdMSCs ameliorates the symptoms in EAE
in a dose- and time-dependent manner, and these effects can be mediated in part by the production of anti-inflammatory cytokines [104].

2 46/F 5x each 1 × 108

(i.v.)
3x each 1 × 107

(intrathecal)

1.03 × 109 EDSS* 8 EDSS 7 4

Polymyositis
PM is a type of chronic inflammatory myopathy with unknown etiology associated with invasion of white blood cells in muscle tissue. PM is related to
dermatomyositis and inclusion body myositis. Clinical signs include pain with proximal muscle weakness and loss of muscle mass, particularly in the
shoulder and pelvic girdle. Despite the uncertainty in the exact cause of PM, autoimmune, viral, infectious or genetic factors have been suggested. The
estimated annual incidence rate is around 5-10 cases/1, 000, 000 in the United States; it increases with age, with the highest rates seen in the 35-44 and
55-64 years. Women are two times more likely to suffer from PM than men. Corticosteroids and immunosuppressant agents are the mainstay of
treatment, with a significant percentage of non-responders and clinical relapses [105]. Hematopoietic stem cell transplantation is performed in patients
with refractory PM with satisfactory clinical efficacy [106], but the condition regimen for the procedure has many side effects. Allogeneic MSCs from bone
marrow and umbilical cord were transplanted in 10 patients with drug-resistant PM [107]. Although none of the patients stopped immunosuppressive
therapy for more than 1-year’s follow-up and there was no cure, MSCs treatment may prove to be a useful adjunctive treatment in patients whose disease
is poorly controlled with immunosuppressive agents.

3 35/F 4x each 5 × 108

(i.v.)
2 × 109 inability to walk slope and to stand up

by herself
Able to step up stairs (< 10 cm) and
walk gentle slope holding handrail

3

Atopic Dermatitis
AD is a common, chronic and refractory skin disease manifesting as eczema and pruritus with repeated exacerbations and regressions and unknown
pathogenesis [108]. The incidence of AD in adults has increased worldwide over the past decade [109]. Current management aims to relieve frequency of
dermal inflammation and prevent its flare-up using topical corticosteroids and tacrolimus [109,110]. Although these treatments might control the
symptoms, relapse is frequent and extensive and prolonged use of corticosteroid carries risk of side-effects, including skin atrophy and there are many AD
patients with corticosteroid phobia [111]. Despite the immunomodulating effect of MSC, there is no previous record of stem cell treatment of AD.

4 27/F 3x each 2 × 108

(i.v.)
6 × 108 SCORAD index 93.1 SCORAD* index 61.1 5.5

5 33/M 3x each 2 × 108

(i.v.)
6 × 108 SCORAD index 57.0 SCORAD index 35.5 4.5

6 27/F 5x each 2 × 108

(i.v.)
1 × 109 SCORAD index 33.4 SCORAD index 16.4 3.5

7 26/F 3x each 2 × 108

(i.v.)
6 × 108 SCORAD index 39.1 SCORAD index 13.3 2

Rheumatoid Arthritis
RA is a T-cell-mediated systemic autoimmune disease caused by loss of immunologic self tolerance and characterized by synovium inflammation and
articular destruction. MSCs were reported to reduce inflammatory and T cell responses and induce antigen specific regulatory T cells in vitro in rheumatoid
arthritis [112]. Systemic infusion of hAdMSCs significantly reduced the incidence and severity of experimental arthritis induced by CIA in vivo [113], which
was mediated by down-regulating Th1-driven autoimmune and inflammatory responses and induction of interleukin-10 in lymph nodes and joints.
Human AdMSCs also induced de novo generation of antigen-specific CD4+CD25+FoxP3+ Treg cells. The best therapeutic benefits were seen when the stem
cell treatments were performed prior to onset and by systemic rather than local application. Recently, the therapeutic effects of systemic infusion human
umbilical cord (UC)-MSCs were also verified in the collagen-induced arthritis model [114]with effects similar to those of hAdMSCs.

8 50/F 2x each 3 × 108

(i.v.)
6 × 108 ***VAS score: 10 KWOMAC score: 73 VAS score:2-3 KWOMAC score: 28 7
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Conclusions
Human AdMSC can be isolated from small amounts of
adipose tissue, efficiently expanded to achieve more
than 109 cells after 3 to 4 passages independent on
donor age and disease status. The sustained potency and
genetic stability of the cells make adipose tissue a very
attractive source for multipotent cells. Their immunmo-
dulatory function, homing and migratory patterns as
well as previous clinical trials suggest that these cells are
efficient for treatment for several classes of autoimmune
diseases and their application is safe. Here, we demon-
strated considerable therapeutic effects of culture-
expanded autologous AdMSCs in a variety of autoim-
mune diseases in the frame of an ethically justified com-
passionate use application for patients with exhausted
therapeutic options. Multiple intravenous infusions of
cells resulted in clinical benefit in all treated patients in
the follow up period. No adverse events were observed.
The data provide first evidence for clinical benefit in
autoimmune diseases, yet further scrutiny in controlled
clinical trials with a sufficient numbers of patients are
needed to draw a definitive conclusion on therapeutic
efficacy and long term benefit. Importantly, the data
show that multiple AdMSC infusion of up to 1 × 109

cells in a period of less than one month is safe, corro-
borating data from preclinical and clinical trials using
BMMSC and AdMSC. Furthermore, within this small
sample size, no evidence of donor age-dependent effi-
cacy, or age dependent in vitro cell expansion rate was
found. The autologous stem cell application described

here is based on the current state of the art and pro-
vides an outlook into treatments for patients suffering
from a variety of incurable autoimmune related diseases
with no remaining treatment options. While it is shown
here that the technology for treatment of autoimmune
using autologous AdMSC is in place and the expecta-
tions derived from preclinical studies can be confirmed,
there is still a limited understanding of the modes of
action. In conclusion, the systemic infusion of autolo-
gous stem cells described here offers promise for better
management of a wide spectrum of autoimmune dis-
eases, independent on patient’s age.

Additional material

Additional file 1: Individual case reports, Table S1, and Figure S1.
The file contains detailed clinical case reports for each of the treated
patients with autoimmune hearing loss (AIED), multiple sclerosis (MS),
polymyotitis (PM), atopic dermatitis (AD) and rheumatoid arthritis (RA).
Table S1 shows the manual muscle test (MMT) grading, grading scheme
for manual muscle test (MMT) in patients with MS and PM. Figure S1
shows the audiograms and conduction test for patient with AIED.
Audiograms are shown for left and right ears before and after AdMSC
treatment.
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Table 2 SCORing results of AD patients.

Patient Gender Age Total cell dose Injection Route Follow-up
(months)

Extent Intensity Pruritus/Insomnia Total score

Pre Post Pre Post Pre Post Pre Post

1 F 27y 6 × 108 Intravenous 5 1/2 98 98 17 11 14 3 93.1 61.1

2 M 33y 6 × 108 Intravenous 4 1/2 75 75 7 5 14 3 57 35.5

3 F 27y 1 × 109 Intravenous 3 1/2 12 7 8 4 3 1 33.4 16.4

4 F 26y 6 × 108 Intravenous 2 18 4 7 3 11 2 39.1 13.3

SCORing Atopic Dermatitis (SCORAD) index in atopic dermatitis patients before and after the stem cells treatment (see also Additional File 1, Case Reports).

Table 1 Summary of hAdMSC treatments of 10 patients with different autoimmune-associated diseases. (Continued)

9 51/F Once 2 × 108

(i.v.) + 1 × 108

(intrarticular)
Once 3.5 × 108

(i.v.) + 1.5 × 108

(intrarticular))

8 × 108 Inability to stand up, crutches for
walking

Ability to stand up, off steroids 3

10 67/M 4x each 2 × 108

(i.v.)
8 × 108 Inability to walk Normal walking, off steroids 13

Detailed clinical case reports are provided in the Additional File 1 Case Reports. Multiple sclerosis: *EDSS is expanded disability status scale. Atopic dermatitis: The
outcome was evaluated by the area of skin lesions, **SCORAD (SCORing Atopic Dermatitis) index [115,116] and CBC count. The changes of SCORAD index of
each patient before and after AdMSCs treatment are summarized in table 1. Rheumatoid arthritis: ***VAS (Visual Analogue Scale) KWOMAC (Korean Western
Ontario McMaster). Further information on patient profile and treatment for AIED are summarized in Additional File 1 Figure S1.
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