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Abstract

Background: In head and neck squamous cell carcinoma (HNSCC), expression levels of the epidermal growth
factor receptor (EGFR) correlate with poor prognosis and decreased survival rates. As the mechanisms responsible
for cellular immune response to EGFR in vivo remain unclear, the frequency and function of EGFR-specific cytotoxic
T cells (CTL) was determined in HNSCC patients.

Methods: The frequency of CTL specific for the HLA-A2.1-restricted EGFR-derived YLN peptide (YLNTVQPTCV) and
KLF peptide (KLFGTSGQKT) was determined in 16 HLA-A2.1" HNSCC patients and 16 healthy HLA-A2.1" individuals

produced IFN-y upon recognition of EGFR™ target cells.

(NO) by multicolor flow cytometry. Patients’ results were correlated to EGFR expression obtained by
immunohistochemistry in corresponding tumor sections. Proliferation and anti-tumor activity of peptide-specific
CTL was demonstrated by in vitro stimulation with dendritic cells pulsed with the peptides.

Results: Frequency of EGFR-specific CTL correlated significantly with EGFR expression in tumor sections (p = 0.02,
r’ = 0.6). Patients with elevated EGFR scores (> 7) had a significantly higher frequency of EGFR-specific CTL than
NC and patients with low EGFR scores (< 7). EGFR-specific CTL from cancer patients were expanded ex vivo and

Conclusion: EGFR expressed on HNSCC cells induces a specific immune response in vivo. Strategies for expansion
of EGFR-specific CTL may be important for future immunotherapy of HNSCC patients.
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Background

The transmembrane EGFR protein (HER1/erbB-1) is a
member of the erbB family, which also includes the
receptor tyrosine kinases HER2 (erbB-2/neu), HER3
(erB-3) and HER4 (erbB-4). Activation of EGFR induces
activation of intracellular STAT, MAPK, PI3K and PLC
pathways, leading to tumor cell proliferation, angiogen-
esis, cell migration and a decreased rate of apoptosis [1].
In HNSCC, either over-expression or mutation of EGFR
is found in 80-100% of the patients, and both are asso-
ciated with poor prognosis and decreased survival [2,3].
Therefore, it has been expected that the treatment with
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EGER inhibitors, including anti-EGFR antibodies, would
be highly successful in inducing tumor regression. How-
ever, recently published studies demonstrate that only a
small subgroup of HNSCC patients respond to molecu-
lar anti-EGFR therapy. Thus, Vermorken et al. recruited
103 patients with disease progression under platinum
therapy whose response rate to cetuximab only was 13%
[4]. Kirby et al. included 47 HNSCC patients in the pal-
liative gefitinib study with an overall response rate of 8%
[5]. Additionally, responses to anti-EGFR therapy seem
to be independent of EGFR expression on the surface of
tumor cells [6-8].

In order to increase the proportion of patients who
benefit from anti-EGFR therapy, new approaches in the
field are needed, and due to the central role of EGFR in
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cancer progression, ex vivo expansion and re-injection of
autologous EGFR-specific CTL may be one possible
potentially attractive alternative. However, in view of the
fact that EGFR is a commonly present self-antigen, the
existence of circulating EGFR-specific cytotoxic T cells
(CTL) may not be taken for granted. The current study
aimed to determine the frequency of EGFR-specific CTL
in HNSCC patients and to evaluate their specific func-
tion in vitro.

Material and methods

Study design

Peri-operative peripheral blood samples (30 ml) were
obtained from 16 HLA-A2.1" HNSCC patients. Mean
age was 62.6 = 11 years (3 females, 13 males). The con-
trol group was age and sex matched (5 females, 11
males) with a mean age of 59.6 + 9 years. History of
cancer in the past was an exclusion factor in the control
group. All patients signed a consent form approved by
the local ethics committee. Fresh peripheral blood
mononuclear cells (PBMC) were isolated by Leucosep®—
Systems (Greiner, Germany), and stained with monoclo-
nal anti- HLA-A2 antibody BB7.2 - FITC (ATCC, VA)
to determine the HLA-A2" status.

Peptide-MHC class | complexes

Two EGFR-specific peptides were chosen based on their
relevance for cancer progression as previously published
[9]. These peptides were used to identify EGFR-specific
CTL in the circulation of HNSCC patients and in the
control group. The YLN-peptide (YLNTVQPTCV) was
used in tetramer form. The KLF-peptide
(KLFGTSGQKT) was not available in tetramer form and
was therefore used as a pentamer complex (Prolmmune,
GB). The peptide GILGFVFTL, a dominant peptide of
the influenza virus matrix, served as a positive control
to identify HLA-A2.1" individuals, and the peptide ILK-
EPVHGYV, an HIV-1 reverse transcriptase peptide, was
used as a negative control. Both peptides were used as
tetramers. In order to reduce background staining, con-
trol tetramers were titered and used at the lowest possi-
ble concentration which still gave a distinctive positive
staining in a donor vaccinated for influenza or in an
HIV-positive individual [10]. All tetramers were
obtained from Beckman Coulter (Germany). For HLA-
A2-stabilization assays, peptides were obtained from the
Peptide Synthesis Facility, University of Pittsburgh, PA.

HLA-A2-stabilization assay

In order to determine the binding capacity of the pep-
tides to the HLA-A2 surface complex, T2 cells (500,000/
well), which are deficient in ‘transporter associated with
antigen processing’ (TAP 1/2), were co-incubated with
various concentrations of the peptides (10 pg, 1 pg, 100
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ng/mL) for 18 h in AIM-V medium (Gibco, CA). Cells
were then washed with PBS and stained for surface
HLA-A2 antigen using anti-HLA-A2 (BB7.2) and goat-
anti-mouse secondary antibody. After fixation with par-
aformaldehyde (2%) cells were then analyzed by single
color flow cytometry. For determination of the HLA-A2
binding capacity, the mean fluorescence intensity (MFI)
of ‘T2 cells + peptide’ was divided by the MFI of ‘T2
cells alone’, resulting in a value between 1 and 2.

Flow cytometry analysis

PBMC were re-suspended in AIM-V medium, supple-
mented with Hank’s buffered salt solution and fetal calf
serum (FCS), and transferred into V-bottom 96-well-
plates (Costar, NY) at a concentration of 5 x 10° cells/
well. Tetramers were added (6 pL, diluted 1:40) and
washed twice after incubation for 30 min at RT. Ali-
quots of CD3-FITC, CD8-APC and CD14-PerCP (all
Becton Dickinson, Germany) were added and re-sus-
pended in para-formaldehyde (2%) after incubation for
30 min at 4°C.

Approximately 1 x 10° events, including at least
50,000 gated CD8" T cells, were acquired using a four-
color FACS Calibur Cytometer (Beckton Dickinson).
Beckman-Coulter System II software was used for deter-
mination of EGFR-specific CTL frequency (CD3"CD8
"CD14"*®Tetramer”). In order to set the gate for tetra-
mer” events, PBMC were stained with antibodies (CD3/
CD8/CD14), but without tetramer. Thus, the gate was
set above the mean fluorescence intensity of 28. Every
patient and healthy control of this study was stained for
HIV tetramer (n = 32). Despite the described gating
strategy for CD8" T cells, we found a low frequency of
HIV-tetramer® events. These events were non-specific
by definition, because subjects were presumed HIV
negative. The 99™ percentile of these HIV-tetramer™ fre-
quencies was calculated using SPSS software (IBM), and
it was further used as the lower limit of detection (LLD)
of the assay at 0.02%. EGFR-specific tetramer frequen-
cies below this LLD were considered negative. These
findings were in agreement with our previous experi-
ences [11,12], and in this study, all HNSCC patients
with an EGFR score > 7 had EGFR-specific tetramer fre-
quencies well above the LLD.

Immunohistochemistry (IHC)

Paraffin blocks of tumor samples were provided by the
Department of Pathology, Duesseldorf, Germany, and
the diagnosis of HNSCC was confirmed in each case by
a pathologist (R.E.). Representative tumor sections con-
taining areas of invasive HNSCC were selected for IHC.
Normal tissues at the edges of the tumor samples served
as an internal non-tumor control. For IHC, formalin-
fixed, paraffin-embedded tumor tissues were sectioned
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at 5 pm. Sections were air-dried overnight at 37°C,
deparafinized and dehydrated. The EGFR-positive cell
line UD-SCC-8 served as a positive control. After anti-
gen retrieval and inactivation of endogenous peroxidase,
the sections were stained with a mAb against EGFR
(Clone 8C9, Zymed Lab, Germany) and Vectastain-Elite-
ABC kit (Vector Laboratories, CA). Counterstaining was
provided by Mayer’s hemalum.

Staining intensity was evaluated on paraffin-
embedded tumor sections by microscopy using a scale
from 1 to 4: 1 = very low, 2 = low, 3 = medium, and 4
= high staining intensity. The frequency of EGFR-posi-
tive cells was scored as follows: 0 = no positive cells, 1
= less than 10%, 2 = 10 - 50%, 3 = 51 - 80% and 4 =
81 - 100% EGFR-positive tumor cells. The EGFR score
(0-16) was calculated as the product of staining inten-
sity multiplied by the number of EGFR-positive cells.
The lowest score obtained in the examined sections
was 1 with <10% of cells showing a very low staining
intensity. The highest score was 12 with < 80% of cells
showing a high staining intensity or with >80% of cells
showing a medium staining intensity. In order to rule
out subjective influences in the evaluation of the
EGFR-score, evaluation was performed in a blinded
setting. The pathologist was not aware of the fre-
quency of EGFR-peptide specific CTL when evaluating
the tumor samples.

In vitro expansion of anti-EGFR-specific T cells

Human dendritic cells (DC) were generated according to
a modified method of Sallustro and Lanzavecchia [13].
Briefly, PBMC of HNSCC patients were incubated for 2
h at 37°C in AIM-V medium, and non-adherent cells
were removed by gentle washing with warm medium.
The remaining plastic adherent cells were incubated in
AIM-V medium (Gibco, CA) with 1,000 U/ml granulo-
cyte macrophage colony stimulating factor (GM-CSF,
Immunex, WA) and 1,000 U/ml IL-4 (Schering, NJ).
Immature DC were harvested on day 6 with cold Hank’s
solution and 6 ml Trypsine (Gibco, CA) and used as
antigen presenting cells (APC). DC were re-suspended
at the concentration of 2 x 10° cells/ml in PBS contain-
ing 10 pug/ml of peptide and incubated at 37°C for 45
min. Subsequently, 0.3 x 1076 peptide-pulsed DC were
co-cultured with 1 x 1076 PBMC in 24-well tissue cul-
ture plates (Costar, NY) in a final volume of 2 ml/well
of X-Vivo medium (Cambrex, Germany). IL-7 (25 ng/
ml, BD Biosciences) was added for the first 72 h and,
additionally, IL-2 (20 IU/ml, Chiron, Germany) was
added for the remaining time in culture. The lympho-
cytes were re-stimulated weekly with 0.3 x 1076 pep-
tide-pulsed autologous DC and harvested after the third
cycle (day 21).
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Culture of target cell lines

Target cells included HLA-A2.1" EGFR-positive laryn-
geal carcinoma cell line UD-SCC-8 and HLA-A2.1" lar-
yngeal carcinoma cell line HLac79 with low expression
of EGFR, kindly provided by Prof. Bier and Prof Zenner,
respectively [14]. Previous ELISA-experiments have
shown an EGFR expression, which was 675-fold higher
in the cell line UD-SCC-8 (13,498 fmol/mg protein)
compared to the cell line HLac79 (20 fmol/mg protein,
Calbiochem Merck, Germany). Cells were grown in plas-
tic culture flasks (Greiner, Germany) under standard
conditions (37°C, 5% CO2, 100% humified), using modi-
fied Eagle’s medium supplemented with 10% heat-inacti-
vated FBS, 2 mM L-glutamine, 50 pg/ml streptomycin
and 50 IU/ml penicillin (all ICN, Germany), as described
previously. To transfer or passage the cell lines, almost
confluent monolayers were detached with 0.05% trypsin
and 0.02% EDTA solution (Boehringer, Germany). Sub-
sequently, cells were washed twice in medium and re-
suspended in culture flasks.

Enzyme-linked ELISPOT assay for IFN-y

Reactivity of the generated effector cells against the
EGFR-peptides YLN and KLF was tested by the IFN-y
ELISPOT assay. Patients” PBMC were stimulated with
autologous, peptide-loaded DC in order to test their
ability to respond to the cognate epitope in vitro. The
ELISPOT assay was performed in 96-well plates (Nunc,
Denmark). The capture and detection Abs and AEC
substrate reagent were purchased from BD Biosciences
(Human IFN-y ELISPOT Pair, AEC Substrate Reagent
Set). For antibody blocking experiments, target cells
were pre-incubated for 30 min with 10 pg/ml anti-
HLA class I-specific monoclonal Ab, W6/32 (HB95,
ATCC) or respective IgG2 isotype control (BD Phar-
mingen, CA). Additionally, the experiments were
repeated with target cell lines which were loaded with
EGFR-peptides. Spots were counted by two indepen-
dent investigators (K.S., P.B.). The ratio of effector and
target cells was 1:1 with 10,000 cells/well for each
group. The specificity of generated CTL was confirmed
by tetramer staining.

Statistical analysis

Tetramer-positive cells were quantified by flow cytome-
try and expressed as percent of CD8" T cells. Averages
were calculated as geometric means. For non-parametric
distribution of samples, p-values were calculated by
Kruskal-Wallis and two-tailed exact Wilcoxon-Mann-
Whitney tests using SPSS software (IBM). Deviations
were presented as standard error of the mean. Correla-
tions were calculated by Spearman tests. P values < 0.05
and r” values > 0.5 were considered to be significant.
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Results

HLA-A2 binding assay

The ability of the EGFR-specific peptides (KLF, YLN) to
stabilize the HLA-A2 complex on the surface of TAP-
deficient T2 cells in relation to the FLU peptide is shown
in Figure 1. In the T2-assay, stabilisation of the HLA-A2
complex correlates well with the binding capacity of the
specific peptide to HLA-A2, which validates the peptide
for recognition of EGFR-specific CTL. In this assay, the
KLF peptide had a higher binding capacity (79% of FLU)
than the YLN peptide (70% of FLU). For all three pep-
tides, expression of surface HLA-A2 decreased in correla-
tion to the peptide concentration. Additionally, the
sequences of both EGFR-peptides, as well as the control
peptides (FLU and HIV) were entered into the web-based
program for peptide binding prediction from NIH
(http://www-bimas.cit.nih.gov/molbio/). The scores for
the EGFR-peptides YLN (320) and KLF (96) were higher
than for HIV (39) but lower than for FLU (550). The pre-
dicted binding ability was in accordance to our present
results, in which the frequency of EGFR-specific T cells
was slightly higher for the YLN peptide compared to the
KLF-peptide. For comparison, we also entered a peptide
from the HPV1a-protein (ILSRFKDTA) into the binding
prediction program, which had been described to have a
low affinity to HLA-A2 [15]. The score for the HPV1a-
protein was 15.

Frequency of EGFR-specific CD8" T cells
In HNSCC patients with high EGER score (> 7), the fre-
quency of EGFR-specific CD8" T cells was significantly
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Figure 1 Binding capacity of EGFR-specific peptides to HLA-A2
complex on the surface of T2 cells. The FLU peptide showed the
best binding capacity to surface HLA-A2 compared to the two
EGFR-specific peptides KLF and YLN. In all peptides expression of
surface HLA-A2 complex was dose-dependent.
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(p < 0.05) increased for both peptides compared to NC
and HNSCC patients with a low EGFR score (< 7) (Fig-
ure 2). Also, the frequencies of CTL for both peptides
were correlated significantly in all individuals (r* = 0.5).
Patients’ characteristics and frequencies of CTL are
shown in Table 1. No correlation was found between
EGFR-specific CTL frequency and TNM status or gen-
der of the patients.

Immunohistochemistry

All tumor samples were positive for EGFR, and 5 sam-
ples showed an EGFR score of 9 or higher. A homoge-
nous ABC-dye uptake was found in tumor cell
membranes and cytoplasm of all tumor samples as seen
in Figure 3. This staining pattern conformed to staining
patterns obtained in the EGFR-positive cell line, UD-
SCC-8, which served as a positive control. In the nega-
tive control tissues, EGFR expression was observed only
in the basal epithelial layers (not shown). Comparing the
EGER scores with the frequency of EGFR-specific CTL
revealed a strong positive correlation for both the YLN-
peptide (p = 0.02, r* = 0.6) and the KLF-peptide (p <
0.005, r* = 0.8) as seen in Figure 4. A clear cut-off was
located between the EGFR scores of 6 and 9. None of
the early stage tumors (T1) displayed an EGFR-score
above 4. For the other tumors (T2-4) samples could be
subdivided into weak or strong EGFR expression.

CTL ability to recognize EGFR* target cells

After in vitro expansion, PBMC of HLA-A2.1" patients
were tested for reactivity against the EGFR-positive cell
line (UD-SCC-8) and the EGFR-negative cell line
(HLac79) in INF-y ELISPOT experiments (n = 3). Both
target cell lines were used unpulsed or after pulsing
with EGFR-peptides. INF-y-secretion was significantly
increased by pulsing target cells with EGFR-peptides (p
= 0.002). Consequently, for both peptides, the highest
IEN-y-secretion was observed in the EGFR-positive cell
line UD-SCC-8 which was additionally pulsed with
EGFR-peptide (32 + 3 spots for YLN, 41 + 3 spots for
KLF/1 x 1075 cells). Pulsing target cells with the KLF-
peptide increased INF-y-production by 14 + 1 spots/1 x
1075 cells. The increase was 15 + 1 spots/1 x 1075
cells, when cells were pulsed with the YLN-peptide. Spe-
cificity of CTL for the EGFR-peptides was confirmed by
the observation that IFN-y-secretion was almost unde-
tectable in the unpulsed EGFR negative cell line
HLac79, and only pulsing the target cells with the EGFR
peptides increased IFN-y-secretion by 6-fold. The results
of ELISPOT assays are shown in Figure 5. Frequencies
of EGFR-peptide specific CTL were compared before
and after in vitro expansion. For the KLF-peptide, the
frequency before expansion was 0.02 - 0.04% of CD8" T
cells in HNSCC patients with high EGFR score (>7).
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Figure 2 Mean frequencies of CD8" EGFR-specific T cells in HNSCC patients and healthy controls. Representative dot plots for tetramer
staining are displayed (a). Results are displayed in percent (%) for the control staining with FLU- and HIV-specific tetramers, as well as the EGFR-
specific pentamer KLF and tetramer YLN. For both EGFR-specific peptides, HNSCC patients with a high EGFR score (> 7) had a significantly
elevated frequency of EGFR-specific CTL, compared to patients with low EGFR score (< 7) and normal donors (* p-value < 0.05). No significant
difference was seen between normal donors and patients with low EGFR score (b).
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After in vitro expansion, the frequency of EGFR-peptide
specific CTL was 20 spots/10,000 cells, corresponding to
0.2 + 0.03% of PBMC. The effect of expansion was simi-
lar for YLN-peptide specific CTL.

Discussion

As EGEFR is a self-antigen, the frequency of EGFR-speci-
fic CTL is expected to be low in the peripheral blood of
HNSCC patients, and the ability of these cells to recog-
nize EGFR" tumor cells to be weak. Using a sensitive
and specific method available for the detection of rare
peptide-specific T cells, we have been successful in
establishing that EGFR-specific CD8" T cells are present
in the circulation of HNSCC patients with high EGFR
scores. Additionally, the frequency of EGFR-specific
CTL in the peripheral blood of HNSCC patients corre-
lated strongly with the EGFR expression on tumor sam-
ples. This correlation suggests that EGFR over-
expression on the tumor cells clearly induces T cell
responses in the periphery. Interestingly, only the com-
bination of advanced tumor size (T2-4) and high EGFR
score (> 7) was followed by a significant increase of
EGFR-specific CTL. In case of small tumors (T1), the
total amount of EGFR antigen expressed on the cell sur-
face is probably insufficient to induce immune T cell
response. In conclusion, the host immune response is
too slow to inhibit tumor growth in its early stage.

Moreover, it has been reported that suboptimal antigen
doses presented by DC induce the development of Treg,
while high antigen doses favor development of effector
T cells [16].

Additionally to confirming the existence of EGFR-spe-
cific CTL, we have succeeded in expanding autologous
EGFR-specific T cells of HNSCC patients in vitro.
Expanded EGFR-specific CTL recognized EGFR on the
surface of target cells, irrespective of whether these tar-
gets actively expressed the peptide or if they were exo-
genously loaded with EGFR peptides. This finding
introduces the option for expanding EGFR-specific CTL
ex vivo for adoptive immunotherapy of HNSCC in addi-
tion to conventional surgery and chemo-radiotherapy
[17].

The current results complement our earlier studies of
cellular immune responses to other tumor-associated
antigens, such as wild-type p53 peptides and HPV-16.
Using the tetramer-based technique in previous studies,
elevated frequencies of HPV-specific CTL were detected
in HNSCC patients with HPV/p16* tumors [18]. In
another tetramer-based study, the frequency of CTL
specific for the self-antigen p53 showed an inverse cor-
relation to p53 expression in the tumor. The frequency
of p53-specific CTL was increased in HNSCC patients
whose tumors had a normal p53 expression, whereas it
was decreased in tumors with high p53 expression,
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Table 1 Patients’ age, gender, tumor staging, frequencies
of EGFR-specific T cells ® and EGFR score ©

No Age TNM EGFR KLF (%) YLN (%)
(yrs) score
1 76 T4 NO MO 1 0.0029 0.0027
2 84 T3 N1 MX 2 00125 0.0084
3 59 T4 NO MX 2 0.0034 0.0074
4 61 T1 NO MX 4 0.0050 00143
5 55 T2 NO MX 4 0.0145 00193
6 56 T3 N2b 4 00216 00164
MO
7 83 T2 NO MX 4 0.0107 0.0241
8 67 T1 NO MO 4 0.0069 0.0061
9 41 T2 N2a 0.0089 0.0045
MX
10 68 T3 N2 MO 6 0.0062 0.0045
11 55 T2 N2 MX 6 00134 0.0145
64.1 3.7 0.015 + 0.014 +
0.001 0.002
12 58 T3 N1 MO 9 0.0265 0.0758
13 52 T4 N2b 9 0.0351 0.0387
MO
14 64 T3 N1 MO 12 0.0218 0.0097
15 60 T3 NO MX 12 0.0409 0.0549
16 62 T2 N2a 12 0.0234 0.0748
MX
59.2 10.8 0.029 + 0.051 +
0.008 0.028

a - The frequency of EGFR-specific T cells in PBMC are shown for KLF
(_pentamer) and YLN (tetramer) peptides in percent (%) of CD8 positive T cells
in HNSCC patients with low EGFR score (2-6) and high EGFR score (9-12). All
mean values are printed in bold for each patient group.

b - EGFR scores were calculated as staining intensity (1-4) multiplied by the
number of EGFR-positive cells (0-4) determined by immunohistochemistry.

= ',;. & - % . o .n} ‘, - Far \\.:
Figure 3 Staining for EGFR in representative HNSCC samples.
The EGFR score (0-16) in tumor samples was calculated as a
product of staining intensity (1-4) multiplied by the percentage of
positive cells (0-4). Tumor sample with low EGFR expression and
EGFR score 2 (a). Tumor sample with high EGFR expression and
EGFR score 12 (b). Homogenous expression of EGFR was found in
the membranes and cytoplasm of tumor cells (Mag. x 100).
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which was explained by epitope loss under immune
pressure [11]. Further tetramer studies indicated that
p53-specific CTL decreased in the peripheral blood after
surgery of HPV" HNSCC but not in HPV-negative
HNSCC [19]. The detection of EGFR-specific CTL in
the circulation of HNSCC is in line with other studies
which used different EGFR-specific peptides. Andrade et
al. found, that treatment of tumor cells with cetuximab
increased their recognition by EGFR-specific CTL in
vitro [20].

Despite the elevated frequency of EGFR-specific CTL
in the circulation of HNSCC patients with high EGFR
score, tumor growth was not inhibited. These results are
counterintuitive but may be explained by one or more
of the following events: (a) the EGFR-peptide is pre-
sented in association with HLA-A2.1 on the tumor sur-
face in a confirmation unrecognizable by T cells [21], or
DC in tumor-bearing individuals might have impaired
antigen presenting capability [22]. Consequently, adap-
tive immune responses to the tumor peptides are ineffi-
cient, and frequencies of EGFR-specific CTL remain
low. (b) Alternatively, apoptosis of tumor-specific T
cells might be responsible for their low frequencies. As
shown by Albers et al., annexin expression, which indi-
cates apoptosis, is increased in wild-type p53-specific
CTL compared to non-tumor specific T cells in HNSCC
[12]. (c) The presence of tumor-induced suppression in
HNSCC patients, as evidenced by increased proportions
of myeloid derived suppressor cells, tumor-derived
microvesicles, and regulatory T cells at the tumor site
and in the peripheral circulation may account for lack
of immune responses to EGFR peptides [23]. (d) Not
only antigen presentation on the cell surface, but also
the intracellular turnover of the protein might deter-
mine and modulate antigen recognition by the immune
system, as observed for p53 [24]. As p53 and EGFR
both are self-antigens, this might also be true for EGFR
recognition. Nevertheless, despite these various difficul-
ties, EGFR-specific CTL were detectable in the periph-
eral blood of HNSCC patients and could be expanded
in vitro. Importantly, we found a strong correlation of
specific T cell frequency and EGFR expression on tumor
cells. Thus, the impairment most likely accounting for
the insufficient EGFR-specific immune response in
HNSCC patients might be related to the dose of antigen
and tumor-derived immune suppression. Considering
the presented results, the number of EGFR-specific CTL
before and after tumor therapy in correlation to the fre-
quency of regulatory T cells would be of high interest
and will be addressed in future longitudinal studies.
Further, our results suggest that subsequent studies of
tumor therapy should not be limited to the monitoring
of tumor regression. They should also focus on the
effect which therapy has on various cell populations of
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Figure 4 Correlations between the EGFR score and frequency of EGFR-specific CD8* T cells in PBMC. The frequency of EGFR-specific T
cells in PBMC of HNSCC patients is given in percent (%) of CD8" T cells for YLN-tetramer (a) and KLF-pentamer (b). The EGFR score reflected
the staining intensity and frequency of EGFR positive cells in corresponding tumor samples.

the immune system, including regulatory T cells, MDSC,
Th-17-cells, and antigen-specific CTL as well as their
cytokine expression profile.

Conclusions

EGEFR expressed on HNSCC cells induces a specific
immune response in vivo. Strategies for expansion of
EGFR-specific CTL may be important for future immu-
notherapy of HNSCC patients.

Abbreviations

CTL: cytotoxic T cell; DC: dendritic cell; EGFR: epidermal growth factor
receptor; HIV: human immunodeficiency virus; HNSCC: head and neck
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