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Abstract

malignancies.

Background: Infection with high risk Human Papilloma Virus (HPV) is associated with cancer of the cervix, vagina,
penis, vulva, anus and some cases of head and neck carcinomas. The HPV derived oncoproteins E6 and E7 are
constitutively expressed in tumor cells and therefore potential targets for T cell mediated adoptive immunotherapy.
Effective immunotherapy is dependent on the presence of both CD4+ and CD8+ T cells. However, low precursor
frequencies of HPV16 specific T cells in patients and healthy donors hampers routine isolation of these cells for
adoptive transfer purposes. An alternative to generate HPV specific CD4+ and CD8+ T cells is TCR gene transfer.

Methods: HPV specific CD4+ T cells were generated using either a MHC class | or MHC class Il restricted TCR (from
clones A9 and 24.101 respectively) directed against HPV16 antigens. Functional analysis was performed by
interferon-y secretion, proliferation and cytokine production assays.

Results: Introduction of HPV16 specific TCRs into blood derived CD4+ recipient T cells resulted in recognition of
the relevant HPV16 epitope as determined by IFN-y secretion. Importantly, we also show recognition of the
endogenously processed and HLA-DP1 presented HPV16E6 epitope by 24.101 TCR transgenic CD4+ T cells and
recognition of the HLA-A2 presented HPV16E7 epitope by A9 TCR transgenic CD4+ T cells.

Conclusion: Our data indicate that TCR transfer is feasible as an alternative strategy to generate human HPV16
specific CD4+ T helper cells for the treatment of patients suffering from cervical cancer and other HPV16 induced

Background
Human Papilloma Viruses (HPV) play an important role
in the development of cervical cancer (CxCa), which is
the second most common cause of cancer related deaths
among women world-wide. Each year approximately
500,000 women, commonly between the ages of 30 and
50, are diagnosed with this type of cancer[1]. Other less
common cancers associated with HPV infections are
cancers of the vulva[2], vagina[3], anus[4], penis[5] and
some cases of head and neck cancers[6].

Although the incidence of cervical cancer has been
decreased by population based screening in the Western
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world, new cases of cervical cancer still occur. The suc-
cess of treatment by surgery, radiotherapy, chemother-
apy or a combination there-of is often high in lower
stages of the disease but decreases in higher stages. A
reduction in the number of cervical cancer patients is to
be expected since two prophylactic vaccines, Gardasil
and Cervarix, have been implemented in a number of
countries around the world. However, till this point it is
unclear whether these vaccines are protective against
HPV induced malignancies other than cervical cancer.
Therefore, other methods to treat patients suffering
from cervical cancer and HPV induced malignancies
should be explored.

Adoptive transfer of HPV specific T cells could be an
attractive strategy to treat patients suffering from HPV
induced malignancies. The HPV16-derived oncoproteins
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E6 and E7, responsible for both onset and maintenance
of malignant transformation, are constitutively expressed
in HPV induced cancers and represent non-self tumor-
associated antigens. As such the HPV antigens E6 and
E7 are high on the priority-ranked list of cancer vaccine
target antigens[7] In previously described clinical trials
applying adoptive transfer of melanoma specific CD8+ T
cells, no objective clinical responses were found in mela-
noma patients while melanoma specific CD8+ T cells
were highly reactive against tumor cells in vitro[8].
More recent clinical trials using both CD4+ and CD8+
T cells were more successful since 18 out of 35 patients
showed a clinical response, including three complete
responders[9,10]. Therefore, adoptive transfer of HPV
specific CD4+ and CD8+ T cells might be attractive to
treat patients suffering from HPV induced malignancies.
However, CTL responses against HPV antigens in
women with natural HPV infections are difficult to
detect indicating that the precursor frequencies of HPV
specific CTLs are very low, making it difficult to isolate
these HPV specific T cells[11,12].

In addition, HPV16 specific CD4+ T helper responses
were either absent or severely impaired in patients with
HPV16 positive genital lesions and patients suffering
from cervical cancer[13-15]. Increased numbers and
activity of HPV specific CD4+ and CD8+ T cells can be
found in cervical cancer patients after vaccination with
synthetic long peptides (SLP)[16]. In the majority of
patients suffering from premalignant HPV positive vul-
var intraepithelial neoplasia regression was observed
after SLP vaccination[17]. In contrast, hardly any clinical
responses were observed in late stage cervical cancer
patients after SLP vaccination[18].

A promising “off the shelf” method to generated high
numbers of tumor specific T cells consists of the intro-
duction of antigen specific TCR genes into recipient T
cells. Recently, the generation of HPV specific CD8+ T
cells was described using both E6 and E7 specific TCRs
[19,20]. For the generation of tumor specific CD4+ T
cells two different strategies can be applied. First, TCRs
derived from CD4+ T cell clones can be introduced into
recipient CD4+ T cells as has been described previously
for non HPV malignancies[21]. Second, tumor specific
CD4+ T cells can be generated by introducing MHC
class I restricted TCRs[22]. Previous reports have shown
that the introduction of a CD8 independent TCR into
CD4+ T cells resulted in production of cytokines after
co-culture with peptide pulsed cells and cytotoxicity
against tumor cells[22].

In this paper we show that T helper function, as mea-
sured by specific cytokine production, against HPV16
antigens can be obtained after transfer of MHC class I
or MHC class II restricted HPV specific TCRs into CD4
+ T cells.
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Materials and methods

Cell lines and T cell culture

For the generation of a CD4+ T cell population, healthy
donor derived PBMC were isolated from buffycoats by
density gradient centrifugation using Lymphoprep
(Nycomed, Oslo, Norway). Subsequently, isolation of rest-
ing CD4+ helper T cells from total PBMC was performed
by positive selection on a magnetic sorting device
(MACS; Miltenyi Biotec, Bergisch Galdbach, Germany).
For this purpose, total PBMC were stained with anti-CD4
Ab and microbead-conjugated anti-mouse IgG Abs (Mil-
tenyi Biotec), followed by MACS sorting according to the
manufacturer’s protocols. T cell blasts from a HLA-DP1
matched, non-autologous, donor were obtained by stimu-
lating PBMCs with 800 ng/ml PHA and 100 IU/ml IL-2
for 1 week. T cell blasts and CD4+ T cells were cultured
in Yssel’s medium[23] supplemented with 1% human
serum (HS; ICN Biomedicals, Aurora, OH, USA) and
antibiotics (100 IE/ml penicillin and 100 pg/ml strepto-
mycin, Life technologies). T cell blasts and CD4+ T cells
were stimulated weekly with an irradiated feeder mixture
as has been described previously[19].

The HLA-DP1+ EBV transformed B cell line EBV24
and Jurkat/MA cells were cultured in IMDM supple-
mented with 8% (v/v) fetal calf serum (FCS; Perbio, Hel-
singborg, Sweden) and antibiotics. The HLA-A2+, non-
autologous, melanoma cell line melAKR was transduced
with minigene constructs encoding the HPV16E7;; pg¢
(YMLDLQPETT) or the HPV16E7,, 20y (YMLDLQ-
PETV) epitope. The latter epitope containing the V-var-
iant was shown previously to bind more efficiently to
HLA-A2([24,25]. The resulting model cell lines contain-
ing these constructs have been named melAKR-E7wt
and melAKR-E7V, respectively. EBV24 is autologous to
T cell clone 24.101, whereas Jurkat/MA and melAKR
are non-autologous to T cell clone 24.101 and to T cell
clone A9. The expression level of HLA-A2 differed sub-
stantially between cell lines. FACS analyses using two
different HLA-A2 specific antibodies (BB7.2 and B17)
showed a mean fluorescence intensity of 900-1000 for
melAKR and of 1300-1400 for JY, which is homozygous
for HLA-A2. Cervical carcinoma cell lines like Caski
and CxCa866 typically showed an MFI of 200-300[25].
All cells were tested mycoplasm free and were main-
tained at 37°C in humidified air containing 5% CO,.

DNA constructs

In order to isolate the TCR open reading frames from
CD4+ T cell clone 24.101, total RNA was isolated from
1.5 x 10° cells and PCR was performed as has been
described earlier[19]. PCR products were ligated into
the pCR2.1 vector (Invitrogen). Sequence analysis
was performed to determine TCRo and TCRp usage of
this particular T cell clone (BaseClear, Leiden, the
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Netherlands). As has been shown previously, TCR
expression can be greatly enhanced after codon-modifi-
cation of the TCR ORFs[26,27] or the introduction of
an extra cysteine in the constant domain of both the
TCRo and TCRP chains[28]. The first improves greatly
on translation into protein whereas the latter facilitates
binding of the exogenous TCRa and TCRP chains.
Therefore, TCR ORFs of clone 24.101 were codon-opti-
mized and an extra cysteine was incorporated in the
constant domains (GeneArt, Regensburg, Germany).
Wild-type and codon-modified plus cysteinized (from
here on called cmCys) TCRo and TCRB ORFs were
cloned into the multiple cloning site (mcs) of the Molo-
ney murine leukemia based retroviral vector LZRS, fol-
lowed by the marker GFP or the truncated version of
the nerve growth factor receptor (NGFR), respectively
[29], resulting in LZRS-TCRa(24.101)-IRES-GFP and
LZRS-TCRB(24.101)-IRES-NGFR. For experiments with
the codon modified A9 TCR the retroviral construct
carrying cmTCRo-2A-cmTCRp was used, which has
been described previously in detail[26]. We also used a
retroviral LZRS construct encoding CD8a-2A-CD8f in
A9-TCR transgenic CD4+ T cells to examine differences
in TCR expression and functional activity.

The sorting signal of lysosome associated membrane
protein-1 (LAMP-1) reroutes antigens to the MHC class
II processing pathway, resulting in enhanced presenta-
tion to CD4+ T cells in vitro[30]. To accomplish
enhanced presentation of HPV16E6 we linked LAMP-1
to HPV16EG6 resulting in sig-[HPV1I6E6LAMP]. This
DNA fragment was introduced into the multiple cloning
site of the retroviral vector, LZRS-mcs-IRES-GFP.

Retroviral transduction and analysis of gene expression
All retroviral constructs were transfected into the packa-
ging cell line Phoenix-a using lipofectamine (Invitrogen),
two days after transfection 2 pg/ml puromycin (Sigma-
Aldrich, St. Louis, MO) was added. Ten to 14 days after
transfection puromycin free retroviral supernatant was
harvested.

T cell blasts were retrovirally transduced with either
GEFP or sig-[HPV16E6LAMP]-IRES-GFP. Subsequently,
T cell blasts were sorted for the expression of GFP
using flow cytometry. Retroviruses encoding for the
TCR ORFs were used to transduce Jurkat/MA and CD4
+ T cells as has been described previously[19,31]. Retro-
virus encoding for CD8 was used to transduce TCR
transgenic CD4+ T cells.

Expression of the TCR was determined after 48h and
later time points by flow cytometric analysis. Antibodies
used were FITC labeled antibodies directed against
CD8, PE labeled antibodies directed against human
TCRVB3, TCRVB17 and TCRVPB1, and allophycocyanin
labeled anti-human nerve growth factor receptor

Page 3 of 12

(NGFR; Chromoprobe, Aptos, CA) antibody. APC-
labeled HLA-A2.1 tetramers presenting the HPV16E7,;.
20 epitope were used[25]. Tetramer and Ab staining of
cells was performed in PBS supplemented with 0.1%
BSA and 0.01% azide (PBA) for 15 min at 37°C and 20
min on ice respectively, followed by washing with PBA.
Stained cells were analyzed on a FACSCalibur (BD Bios-
ciences, San Jose, CA, USA) using CellQuest software
(BD Biosciences). 24.101 TCR transgenic CD4+ T cells
expressing GFP and NGFR were isolated by NGFR/GFP
directed flow sorting in complete medium. In addition,
A9 TCR transgenic T cells positive for tetramers were
sorted by tetramer directed flow sorting while those also
carrying CD8 were sorted based on tetramer binding
and CD8 expression.

Functional read-out assays

HPV16E7,1.90, HPV16E6,3 104 and irrelevant (HPV16E63,.
6 and MP1sg 66) peptides were synthesized by the Leiden
University Medical Center (LUMC, the Netherlands). Pep-
tides were >90% pure as analyzed by reverse-phase HPLC,
dissolved in DMSO and stored at -20°C until further use.

Functionality of TCR transgenic Jurkat/MA cells was
measured using a luciferase assay[32]. To measure the
activation of 24.101 TCR transduced Jurkat/MA cells by
EBV24 cells loaded with 10 pM of irrelevant HPV16E63,.
¢s peptide or relevant HPV16E6,3 104 peptide, 10° Jurkat/
MA cells were incubated overnight with 5 x 10* target
cells in a 96-well plate. After incubation with various sti-
muli, cells were analyzed for luciferase activity. Lumines-
cence was subsequently measured in a Lumat LB 9507
luminometer (EG and G Berthold, Bad Wildbad,
Germany). Luciferase activity in stimulated Jurkat/MA
cells was expressed as relative luminescence units (RLU)
related to the luciferase activity of non-stimulated Jurkat/
MA cells, which was set at a value of one.

Production of interferon-y by stimulated CD4+ T cells
was determined using intracellular interferon-y staining
of permeabilized T cells with PE labeled IFN-y specific
antibody according to the manufacturer’s instructions
(Cytofix/Cytoperm kit with golgistop, BD Bioscience).
MHC class-II DP1 matched, non-autologous, monocytes
or monocyte derived dendritic cells were pulsed over-
night at 37°C with 10 pg/ml peptide or 20 pg/ml protein
in serum free medium. After this incubation cells were
washed extensively to remove excess peptide or protein
prior to subsequent experiments. Stimulations were next
performed for 4 hrs at 37°C in a round bottom 96-well
plate (Nunc) containing 1 x 10° responder CD4+ T cells
and 5 x 10* target cells per well, followed by either
NGER staining or CD8/tetramer staining as described
above, and intracellular IFN-y staining. Samples were
subsequently analyzed by flow cytometry in order to cal-
culate the percentage of responding CD4+ T cells.
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Proliferation assays were performed by stimulating 10*
TCR transgenic CD4+T cells with 10>-10* target cells
for 4 days in 96-well plates in Yssel's medium. At day 4,
2.5 uCi/ml [’H]-thymidine (Amersham, Aylesbury, UK)
was added per well for a period of 16 hours. Plates were
harvested onto glass fiberglass filters. Incorporation of
[*H] thymidine was quantified using a Topcount NXT
Microbetacounter (Packard, Meriden, CT).

In order to measure cytokine production upon specific
stimulation a Cytokine Bead Array (CBA) assay was per-
formed using the manufacturer’s protocol (BD Bios-
ciences, San Jose, CA, USA). Typically 1 x 10° CD4+ T
cells were co-cultured with 5 x 10* target cells in a
round bottom 96-well plate (Nunc). After 24 hours of
incubation, cell-free supernatants were harvested and
stored at -20°C until CBA quantization.

Results

Isolation and preservation of a MHC class Il restricted
HPV16E6 specific TCR

As a source of MHC class II restricted HPV specific
TCRs we used T cell clone 24.101. This HPV16E673_1¢4
specific CD4+ T cell clone 24.101 was generated from a
healthy donor after short term in vitro stimulation with
peptide, followed by limiting dilution cloning[33]. This
helper T cell clone was shown to recognize the HLA-
DP1 restricted HPV16E673 194 T cell epitope as a syn-
thetic peptide but also as an endogenously processed
and presented epitope[34]. Flow cytometric analysis
showed that this T cell clone was TCRVP17 positive
which was confirmed by sequence analysis. Sequence
analysis also revealed TCRVal usage (Table 1).

Isolated TCRa. and TCRB ORFs from CD4+ T cell
clone 24.101 were cloned into the marker gene contain-
ing retroviral vector LZRS as TCRoa-IRES-GFP and
TCRB-IRES-NGEFR. To investigate proper formation of
stable TCRaf3 complexes on the cell surface, we intro-
duced the TCRa and TCRf chain into the reporter cell
line Jurkat/MA. Surface expression of the transgenic
TCR at the cell surface was determined using TCRVf
antibodies, since tetramers or multimers containing the
epitope were unavailable. Co-expression of the marker
genes GFP and NGFR was found in approximately 51%

Table 1 TCR CDR3 region of the HPV16E6 specific CD4+ T cell
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Figure 1 Phenotypic analysis and functional activity of
wildtype 24.101 TCR specific for HPV16E673_104) in TCR
transgenic Jurkat/MA cells. (A) Jurkat/MA cells transduced with
vectors LZRS-wtTCRa-I-GFP and LZRS-wtTCRB-I-NGFR were analyzed
for GFP and NGFR marker gene expression by flow cytometry.
Transduced cells co-expressing GFP and NGFR (gate R3) were
negative for irrelevant TCRVB (upper right plot) but positive for
relevant TCRVB17 (lower right plot) staining, as indicated by the
percentage TCRB positive cells (upper right quadrant). (B) Functional
activity of 24.101 TCR transgenic Jurkat/MA cells as determined in a
luciferase assay in response to stimulation with the HLA-DP1
positive cell line EBV24, exogenously loaded with relevant HPV16E6
(73-104) O irrelevant HPV16E637.65) peptide. Luciferase activity in
Jurkat/MA cells is shown in Relative Luminescence Units (RLU),
defined as the ratio of luciferase activity in stimulated versus
unstimulated cells Data are shown from one representative
experiment out of two performed.

clone 24.101

TCR V region NDN region J segment C region

family

TCRB17  TGT GCC AGT  TAC CAA GGG AGC GGA AAC ACC ATA TAT T TT GGA GAG GGA AGT TGG CTC ACT GTT GTA GAG
AGT TCT GAC
CASS YQGSS GNTIYFGEGS WLTVVED

TCRa1 GAG TAC TTC GCT GTG GGC CCA  AAT ACT GGA GGC TTC AAA ACT ATC TTT GGA GCA GGA AC A TTT GTT AAA GCA AAT ATC
TGT AGA CTA CAG
EYFC AVGP NTGGFKTIFGAGTRL FVKANIQ

T cell receptor variable domains were designated according to Arden et al in Immunogenetics (1995) 42:455-500.
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of the transduced Jurkat/MA cells (Figure 1A, left
panel). In the GFP+/NGFR+ gate ~95% of the cells were
positive for TCRVB17 staining (Figure 1A, right hand
lower panel). In the same gate only background staining
was observed using irrelevant TCRVp antibodies (Figure
1A, right hand upper panel). Jurkat/MA cells do not
express an endogenous TCRP chain but do express a
TCRa chain. Therefore, we analyzed whether the TCRA
chain is capable of cross-pairing with this particular
TCRa chain. Some background TCRVB17 staining was
detected in the GFP-/NGFR- (~2%) quadrant. In the
GFP-/NGFR+ quadrant ~8% of the cells were positive
for TCRVB17 staining (data not shown). This clearly
indicates that the introduced TCRVB17 does not cross-
pair to high levels with the TCRVa8 endogenously pre-
sent in Jurkat/MA cells. Moreover the TCRVB17 is very
well expressed in GFP/NGFR transgenic Jurkat/MA T
cells where there is no competition from other TCRVp
chains for components of the CD3 complex.

Functional activity was measured using a luciferase
assay. TCR transgenic Jurkat/MA cells were stimulated
overnight with the HLA-DP1+ EBV24 cell line, which
was derived from the same donor as the 24.101 T cell
clone, exogenously loaded with irrelevant peptide or
relevant HPV16E6,3 104 peptide. As depicted in Figure
1B, specific luciferase activity could be detected after sti-
mulation with EBV24 exogenously loaded with the rele-
vant peptide. No luciferase activity could be detected
after stimulation with irrelevant peptide. From these
results we concluded that we successfully isolated the
correct TCRo and TCRp pair from T cell clone 24.101
and that this TCR is functionally active as determined
in the Jurkat/MA-NFAT-luciferase system.

MHC class Il restricted HPV16E6 specific TCR transgenic
CD4+ T cell: TCR expression and functionality

To investigate the application potential of HPV16E6
specific CD4+ T cells, we tested the expression of the
HPV16E6,3_104 specific TCR in human peripheral blood
derived CD4+ T cells of unrelated donors. For this pur-
pose we introduced the cmCys 24.101 TCR ORFs into
CD4+ T cells. Transduced CD4+ T cells were analyzed
for the expression of GFP and NGFR. As shown in Fig-
ure 2 co-expression of the markers was found in 15% of
the CD4+ T cells. Since no tetramers or multimers were
available to visualize the antigen specific TCR transgenic
T cells, cell surface expression of the introduced TCR
was analyzed using TCRVP17 antibodies. In the GFP/
NGEFR double negative gate 6.4% of the cells were posi-
tive for TCRVB17 staining, representing the percentage
of TCRVP17+ cells naturally present in this donor.
Importantly, in the GFP+/NGFR+ gate R4, 37% of the
cells were positive for TCRVB17 staining. Non trans-
genic T cells with high endogenous expression of
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TCRVB17 can be identified in gate R4 and in gate R5.
In the GFP-/NGFR+ gate R5, 24% of the cells were posi-
tive for TCRVB17 staining (Figure 2, gate R5). About
one quarter of the cells in R5 have high expression of
endogenous TCRVB17, where the other three quarter is
transgenic. This clearly indicates that this 24.101 TCRp
is very promiscuous and capable of pairing with endo-
genously present TCRa chains. It is unclear why the
percentage of TCRVB17 positive T cells in the GFP/
NGER double positive transgenic T cells was only about
31% (37% minus the endogenous TCRVB17 T cell popu-
lation of about 6.4%).

To measure functional activity, TCR transduced T
cells were sorted based on GFP and NGFR expression.
The resulting population showed 96% positivity for both
GFP and NGFR and again only part (36%) of the T cells
were positive for staining with TCRVB17 antibodies.
Functional activity of cmCys TCR transgenic CD4+ T
cells against peptide loaded target cells was tested using
an intracellular interferon-y assay. Upon stimulation
with HLA-DP1 matched, non-autologous, mature den-
dritic cells loaded with relevant E6,3.1¢4 peptide, 57% of
the cells were capable of producing interferon-y (Figure
3A). Low level staining was detected after stimulation
with irrelevant peptide (Figure 3A).

A peptide titration experiment was performed using
EBV24 cells loaded with decreasing amounts of the
HPV16E6,3 194 peptide. The results, given in Figure 3B,
showed that even at the highest concentration used, a
plateau was not reached. Hence the 24.101 TCR trans-
genic CD4+ T cells recognize the HPV16E673 104 pep-
tide with a half maximum interferon-y production of ~1
UM of added peptide at best, which is indicative of low
avidity T cells.

Subsequently, we investigated whether endogenously
processed antigen could be recognized by these TCR
transgenic CD4+ T cells. Functional activity of TCR
transgenic T cells against protein loaded target cells was
tested using a proliferation assay. Therefore, monocytes
derived from an HLA-DP1 matched, non-autologous
donor were pulsed with either relevant HPV16E6 pro-
tein or irrelevant flu MP1 protein. As expected, TCR
transgenic T cells proliferated specifically upon stimula-
tion with monocytes loaded with E6 protein and not
after stimulation with monocytes loaded with flu MP1
protein (Figure 3C).

To investigate cytokine production, thus allowing us
to analyze which T helper phenotype (Thl/Th2/Treg) is
present in the TCR transgenic CD4+ T cell population,
a cytokine bead array assay was performed. For this pur-
pose T cell blasts from an HLA-DP1 positive donor
were transduced with either GFP, as a negative control,
or sig-[HPV1I6E6LAMP]-IRES-GFP and sorted on the
basis of GFP expression. Linking the sorting signal of
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Figure 2 TCRVP17 expression analysis of codon-modified/cysteinized HPV16E6 73104y specific 24.101 TCR transgenic CD4+ T cells.
Isolated CD4+ T cells transduced with vectors cmCysLZRS-TCRa.1-IRES-GFP and cmCysLZRS-TCRB17-IRES-NGFR were analyzed for GFP and NGFR
marker gene expression by flow cytometry. Cells in the GFP/NGFR double negative quadrant (Gate R3) staining positive for TCRVB17 represent
the TCRB 17+ cells endogenously present in this CD4+ population. In de GFP/NGFR double positive gate R4 37% stain with the TCRVB17
antibodies. About 6.4% represent the endogenously population, hence about 30% of the cells appear to be TCR transgenic. Part (6.4%) of the T
cells in gate R5 stained positive with TCRVB 17 antibodies, again representing the endogenously present population. About 18% (24% minus 6.4%
endogenous) of the TCRVB 17 positive cells are transgenic for the TCRVB17-IRES-NGFR construct. Thus clearly showing that the TCRVB17 was
capable of pairing with endogenously present TCRa chains. Results shown here are representative for three different donors tested.
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lysosomal associated membrane protein-1 to HPV16E6
results in enhanced expression of HPV16E6 peptides in
the context of MHC class II. Prior to the functional
experiment, TCR transgenic T cells were kept in culture
for a period of 6-8 weeks, and stimulated weekly with
feeder cells and recombinant IL-2. Upon stimulation
with T cell blasts transduced with sig-[HPV16E6-
LAMP]-IRES-GFP, resting TCR transgenic CD4+ T-cells
were capable of producing IFN-y, TNF-q, IL-5, IL-4 and
IL-2 (Table 2). As expected, only low amounts of cyto-
kines were produced upon stimulation with T cell blasts
transduced with GFP control vector. No IL-10 produc-
tion was observed after stimulation with T cell blasts
transduced with either sig-[HPV16E6LAMP] or GFP
(Table 2). These results show that in a TCR transgenic
CD4+ bulk population both Thl and Th2 cytokines are
produced upon specific stimulation.

In conclusion, both Thl and Th2 cytokines can be
produced against HPV16E6 by transfer of MHC class II

restricted HPV16E6 specific TCR ORFs in recipient
CD4+ T cells.

MHC class | restricted, HPV16E7 specific, TCR transgenic
CD4+ T cells: TCR expression and functionality

Effective immunotherapy is dependent on the presence
of both tumor specific CD4+ and CD8+ T cells. For this
purpose it would be very attractive to use one and the
same TCR which is functionally active in both CD4+
and CD8+ T cells. We investigated whether we could
generate HPV specific CD4+ T cells using the MHC
class I restricted HPV16E7, 5o specific TCR derived
from CTL clone A9, which has previously been shown
to be functionally active in recipient CD8+ T cells
[19,26]. T cells carrying the HPV16E7 specific A9 TCR
were previously shown to recognize the MHC class-1/
peptide complex with intermediate avidity, reaching
half-maximal lytic activity in the low nM range of
peptide[25].
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Figure 3 Functional activity of HPV16E6;3.104) specific 24.101
TCR transgenic CD4+ T cells against peptide or protein loaded
target cells. (A) IFNy production of TCR transgenic CD4+ T cells as
determined in an intracellular IFNy assay. Target cells used were
HLA-DP1 matched, non autologous, mature dendritic cells
exogenously loaded with relevant HPV16E673.104) Or irrelevant
HPV16E637.65) peptide. Intracellular IFNy staining is shown for GFP/
NGFR double positive T cells. (B) Functional avidity analysis of
HPV16E673-104) Specific TCR transgenic CD4+ T cells as determined
in an intracellular IFNy assay. Target cells used were the HLA-DP1
positive cell line EBV24 (autologous to the original 24.101 T cells)
loaded with serial 10-fold dilutions of the HPV16E63.104) peptide.
(Q) Proliferative capacity of 24.101 TCR transgenic CD4+ T cells as
determined in a thymidine incorporation assay. Target cells used
were DP1 matched, non-autologous, monocytes loaded overnight
with 20 pug/ml relevant E6 or irrelevant flu protein. Results shown in
panels A, B and C are representative for three different donors
tested.

A bulk population of CD4+ T cells was transduced
with cmTCRa-2A-cmTCRp of the A9-TCR [26]. A pro-
portion of these A9-TCR transgenic CD4+ T cells were
transduced with retrovirus encoding for CD8a-2A-CD8p.
TCR transgenic CD4+ T cells without the incorporation
of CD8 were sorted based on tetramer binding, resulting

Table 1 Functional activity of 24.101 TCR transgenic CD4
+ T cells as determined in a cytokine bead array assay.

Th1 cytokines

Th2 cytokines

IFNy TNFo IL-2 IL-5 IL-4 IL-10
Unstimulated 84 56 63 57 56 84
GFP-control 121 6.8 11 81 84 59

Sig-[HPV16E6LAMP]-IRES-GFP  >5000 162

Target cells used in this assay were HLA-DP1+ T cell blasts or HLA-DP1+ T cell
blasts carrying a gene encoding GFP or sig-[HPV16E6LAMP]-IRES-GFP.
Amounts of cytokines produced are depicted as pg/ml. Results are
representative for three different donors tested.

2118 199 35 7.1
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in a population which was ~64% positive for tetramer
binding. TCR transgenic CD4+ T cells transduced with
CD8 were sorted based on tetramer binding and CD8
expression, resulting in a population which was ~54%
positive for both tetramers and CD8 (Figure 4A).

In order to test functionality of the A9 TCR trans-
genic CD4+ T cells with or without CD8, an intracellu-
lar IFN-y staining was performed. As shown in Figure
4B, approximately 6% of the CD4+ TCR transgenic T
cells were capable of producing IFN-y against JY cells
exogenously loaded with relevant peptide. Some back-
ground IFN-y production was observed after stimulation
with JY cells loaded with irrelevant peptide. Addition of
CD8 into CD4+ T cells resulted in IFN-y production in
41% of the cells after stimulation with JY cells loaded
with relevant peptide. As expected, some background
IFN-y production was observed after stimulation with
JY cells loaded with irrelevant peptide. MelAKR
cells encoding the minigene construct containing the

A

CpR

64%

TmA2E71.2

70

60 A

40 1
30 1

20

aldad

NoStim  JY+irr TY+rel Tumor Tumor  Tumor
peptide  peptide cells cells +  cells +
miniE7wt miniE7V

Y INy + cells

Figure 4 Phenotypic analysis and functional activity of
HPV16E711.20) specific A9 TCR transgenic CD4+ T cells. (A) CD4
+ T cells were transduced with cnTCRai-2A-cmTCRB (left hand plot)
and a proportion was co-transduced with CD8a-2A-CD8B (right
hand plot). Cells were analyzed for binding to E7 tetramers and CD8
expression. (B) Functional activity of TCR-A9 transgenic CD4+ T cells
as determined in an intracellular IFNy staining. Effector cells did
(black bars) or did not (open bars) carry the CD8af3 construct.
Target cells used were HLA-A2 matched, non-autologous JY loaded
with 1 uM irrelevant Influenza MPsg 66 Or relevant HPVI6E7 1150
peptide; or the HLA-A2 matched non-autologous model tumor cell
line melAKR either or not carrying a minigene construct encoding
either HPV16E711 50wt OF HPVI6E711 50y. Results shown in panels A
and B are representative for three different donors tested.
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HPV16E7wt epitope or HPV16E7V altered peptide
ligand, with improved binding capacity to HLA-A2 were
tested in an IFN-y release assay. Only low percentages
of IFN-y production against the tumor cell lines was
observed in TCR transgenic CD4+ T cells without
the addition of CD8. In contrast, 22% of the cells
transduced with both the TCR and CD8 showed IFN-y
production against the tumor cell line encoding
HPV16E7wt and 40% against the tumor cell line encod-
ing the improved HLA-A2 binding epitope HPV16E7V.
As expected, unmodified tumor cells failed to stimulate
IFN-y production.

Subsequently, a CBA was performed to investigate
which T helper cell populations were involved. TCR
transgenic CD4+ T cells without the addition of CD8
showed hardly any cytokine production after stimulation
with the tumor cell lines encoding the HPV16E7,; 5qwt
and HPV16E7,, »,V minigene (data not shown). In con-
trast, IFN-y, TNF-a, IL-5, IL-4, IL-2 and low amounts
of IL-10 were produced upon stimulation with the
tumor cell lines encoding the HPV16E7wt and
HPV16E7V constructs (Table 3). As expected, only low
amounts of cytokines were produced upon stimulation
with unmodified tumor cells. These results show invol-
vement of both Thl and Th2 responses. These experi-
ments presented in Figure 4B and Table 3 do not proof
that the A9 TCR is dependent on the (co-)expression of
CD8. Formal proof could be obtained with tetramers
that do not allow CD8 binding or blocking antibodies
against CDS8.

In conclusion, transfer of the MHC class I restricted
TCR, derived from CTL clone A9, together with CD8
into recipient CD4+ T cells resulted in functional activ-
ity against peptide loaded target cells as well as (model-)
tumor cells.

Discussion

Adoptive transfer of TCR transgenic T cells is a promis-
ing strategy to treat patients suffering from malignan-
cies. From clinical trials in melanoma patients it has

Table 3 Functional activity of A9 TCR transgenic CD4+ T
cells as determined in a cytokine bead array assay.

Th1 cytokines Th2 cytokines

IFNy TNFa IL-2  IL-10  IL-5 IL-4
HPV16E7-negative 180 10 5 4 52 7
HPV16E7(11-20wt) 1644 119 74 14 604 32
HPV16E7(11-20V) >5000 591 893 52 2989 89

Target cells used in this assay were the HLA-A2 matched, non-autologous
model tumor cell line melAKR, either or not carrying a minigene encoding for
either HPV16E7 1120wty Of HPV16E7 11.50v). TCR transgenic T cells not co-
expressing CD8af did not produce cytokine above threshold levels (data not
shown). The amounts of cytokines produced, as determined in a cytokine
bead array, are depicted as pg/ml. Results shown are representative for two
different donors tested.
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become clear that both CD4+ and CD8+ T cells are
required to induce effective antitumor responses[9,10].
It is assumed this holds true for other cancers as well.
From our studies it is clear that a number of issues
need to be addressed further. One is the specificity and
affinity of the tumor specific T cells. Proper and func-
tional expression of transgenic TCRs in recipient T cells
leading to Thl cytokine production and long-lasting
anti-tumor activity is also desired.

Naturally occurring tumor antigen associated specific
T cells often have low to intermediate affinity for their
ligand, the peptide/MHC complex. In contrast to what
one would expect because of the non-self nature of
HPYV antigens, the functional avidity of the original
HPV16E6 specific T cell clone 24.101[34] and the
24.101-TCR transgenic T cells was low. The HPV16E7
specific T cell clone A9 was shown previously to recog-
nize the MHC/peptide complex with intermediate avid-
ity[25], as did wild-type and codon modified A9-TCR
transgenic T cells[19,26]. Peptide based T cell stimula-
tions may have favored the outgrowth of low to inter-
mediate avidity T cells in vitro[35]. On the other hand
high avidity T cells with high affinity TCRs may have
been deleted from the TCR repertoire of these donors,
either by thymic deletion or peripheral tolerance induc-
tion. To obtain high affinity TCRs for adoptive transfer
purposes, tumor infiltrating lymphocytes isolated from
patients suffering from HPV induced malignancies may
be useful[36]. Other approaches may comprise of in vivo
induction of tumor/virus specific T cells in humanized
mouse models[37], in vitro affinity maturation using
phage display technology[38,39], or the use of HLA mis-
matched donor material in which the antigen-presenting
cells have been modified to express non-self MHC class
I or class II antigen presenting molecules, thus addres-
sing an unbiased T cell repertoire [40,41].

Transgenic TCR expression levels in human cells are
often very low, necessitating antibiotic selection[42],
enrichment or even cloning of TCR transgenic T cells
before a sizeable population of TCR transgenic T cells
can be tested for functional activity[19]. Enhancement of
TCR expression levels can be accomplished using
codon-modification alone[26,27] or in combination with
cysteinization[20]. TCR gene transfer may also result in
the undesired formation of mixed TCR dimers due to
cross-pairing of the endogenous TCR chains with newly
introduced TCR chains. Here we have used codon mod-
ification alone for TCR A9 and combined codon modifi-
cation with cysteinization for TCR 24.101. In our
studies on the HPV specific TCR 24.101 tetramers or
multimers were unavailable for this particular MHC
class 1I/peptide complex. Therefore we had to rely on
GFP and NGFR marker expression, and on TCRVB17
staining as a marker for expression of the transgenic
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TCR. It is unclear why only about one third of the GFP/
NGER transgenic bulk T cells in Figure 2 (gate R4;
GFP/NGFR double positive cells) are positive for
TCRVP17 staining. After all in Figure 1 we showed that
almost all (95%) of the GFP/NGEFR transgenic Jurkat
cells stained positive for TCRVB17. The lack of staining
with TCRVB17 in GFP/NGER transgenic bulk T cells
may in part be explained by protein misfolding of the
TCR or by promoter shut-down. The first explanation
seems unlikely in view of the data in Jurkat T cells
(Figure 1). The second explanation also seems unlikely
since the marker NGFR was still expressed very well
(Figure 2) and was under transcriptional control of the
same MMLV-LTR promoter region. A more probable
explanation may be that the 24.101 derived TCRa/p
combination is a poor competitor for components of
the CD3 complex[43,44]. As yet still unavailable tetra-
mers and specific TCRVa antibodies would facilitate
future research to address this issue.

The data presented in Figure 2, clearly indicated that
the TCRP derived from T cell clone 24.101 was able to
cross-pair with endogenously present TCRa chains. The
percentage naturally occurring TCRVB17 positive T
cells in that particular donor was 6.4% (GFP/NGFR dou-
ble negative gate) and was expressed at high levels. In
the GFP-/NGFR+ gate, approximately 18% of the cells
were TCRB17 transgenic (24% minus 6.4% endogenously
expressed). Since no transgenic TCRa chain is present
in the cells in this gate (R5) it shows that the TCRVB17
behaved rather promiscuous. Approximately 31% (37%
minus 6.4%) of the cells in the GFP+/NGFR+ gate are
TCRB17 transgenic. Low level expression and/or poor
staining with the TCRB17 specific antibodies may
explain this finding, thus potentially giving an underesti-
mation of the percentage TCR transgenic T cells. This
could perhaps also explain why approximately 60% of
cell incubated with relevant peptide loaded monocyte
derived dendritic cells responded by the production of
interferon, where only 36% of the cells stained positive
with TCRVB17 antibodies.

We have shown antigen recognition by 24.101 TCR
transgenic T cells by using peptide loaded, or protein
pulsed monocytes or alternatively CD4+ T cells expres-
sing sig-HPV16E6-LAMP. In the case of TCR A9 trans-
genic T cells we used peptide loaded targets and a
model-tumor cell line expressing either of two minigene
constructs. Except for the peptide loaded target cells
these approaches clearly show endogenous processing of
the respective epitopes, albeit by target cells with rela-
tively high expression of the presenting MHC molecules.
The unavailability of cervical cancer target cells expres-
sing the appropriate MHC restriction element at appre-
ciable levels severely hampers functional analyses of
HPYV specific TCR transgenic T cells. HPV positive
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cancer cells often appear to have down-regulated MHC
class I expression ex vivo, due to mutations in the beta
2-microglobulin, TAP or other genes involved in antigen
presentation[45-47]. Future approaches in the field of
HPV should therefore be focused on the generation of
high avidity T cells able to recognize minute amounts
of MHC class I on the cell surface of tumor cells and
on high avidity MHC class II restricted T cells. Along
these lines the HPV16E6 and HPV16E7 specific TCRs
presented here should be tested in comparison to pre-
existing or newly isolated HPV specific TCRs, like what
has been done by others in the field of melanoma[27].

TCR transfer in unselected primary human CD4+
T cells might result in the development of suppressive
T cell reactivity due to simultaneous transfer into regu-
latory T cells. IL-2 promotes the expansion of these reg-
ulatory T cells after several weeks of stimulation in
vitro. However no IL-10 production was observed in our
experiments after culturing the TCR transgenic T cells
for 6-8 weeks in the presence of IL-2. If needed emer-
ging regulatory T cells could be depleted from the
population using CD25 antibody based MACS sorting.
Alternatively, CD4+ T cell clones with a predetermined
specificity and a favorable cytokine production profile
might be used. Previous reports have shown that both
Thl and Th2 cells mediate anticancer functions[48] but
IFNy secreting Th1 cells appeared to be more effective
in this role[48,49]. Therefore, immunotherapy using
TCR transgenic CD4+ Thl cells may be more desirable
in a clinical setting. Cytokine production profiles of
24.101 and A9 TCR transgenic CD4" T-cells indicate
that both Thl and Th2 subsets were represented. To
obtain a Thl population, CD4+ T cells could be sorted
or enriched using an interferon-y catch assay. Alterna-
tively transgenic CD4+ T cells could be polarized
towards a Thl cytokine production profile by culturing
them in the presence of IL-12 and anti-IL-4, as has been
shown in mice [49].

Conflicting data have been reported on the occurrence
of autoimmunity iz vivo. In a previously published study
no signs of autoimmune pathology were observed in
mice receiving TCR transgenic T cells in combination
with antigen specific vaccination[50]. However, more
recent data show lethal autoimmune pathology under
conditions that promote expansion of TCR transgenic T
cells more strongly[51,52]. Thus far no signs of severe
autoimmunity have been observed in the first clinical
trial conducted[53]. However, on the basis of data
obtained in mouse models the use of strategies to limit
the formation of mixed TCR dimers are important to
explore. Molecular engineering approaches have been
published to reduce the formation of mixed TCR
dimers, including the use of single chain TCRs[54,55],
cysteinization of the constant TCRa and TCRp chains
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[28], murinization of TCR constant domains[56], and
inter-chain conversion of the constant domains, referred
to as the hole-into-knob approach[57]. Cellular
approaches include the use of y3-T cells[58], NK cells
[59], or T cell clones with predetermined specificities
[60]. The use of small interfering RNAs, specifically
inhibiting the expression of the endogenous TCRa and/
or TCRP chains, may be another strategy to prevent
cross-pairing[61]. Careful analysis of different engineer-
ing approaches should be performed to determine
which is best applicable. In the field of HPV there is a
continuing need for high affinity TCRs to functionally
compare these in appropriate in vitro and in vivo model
systems.

Conclusion

In this paper we show that it is feasible to express func-
tional TCRs that recognize HPV antigens presented by
MHC class I and class II antigens in CD4+ T cells. A
combination of high avidity TCR transgenic HPV16 spe-
cific CD4+ and CD8+ T cells might be ideal for the
treatment of patients suffering from cervical cancer and
other HPV induced malignancies.
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