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Abstract

The advent of high-throughput technology challenges the traditional histopathological classification of cancer, and
proposes new taxonomies derived from global transcriptional patterns. Although most of these molecular re-
classifications did not endure the test of time, they provided bulk of new information that can reframe our
understanding of human cancer biology. Here, we focus on an immunologic interpretation of cancer that
segregates oncogenic processes independent from their tissue derivation into at least two categories of which one
bears the footprints of immune activation. Several observations describe a cancer phenotype where the expression
of interferon stimulated genes and immune effector mechanisms reflect patterns commonly observed during the
inflammatory response against pathogens, which leads to elimination of infected cells. As these signatures are
observed in growing cancers, they are not sufficient to entirely clear the organism of neoplastic cells but they
sustain, as in chronic infections, a self-perpetuating inflammatory process. Yet, several studies determined an
association between this inflammatory status and a favorable natural history of the disease or a better
responsiveness to cancer immune therapy. Moreover, these signatures overlap with those observed during
immune-mediated cancer rejection and, more broadly, immune-mediated tissue-specific destruction in other
immune pathologies. Thus, a discussion concerning this cancer phenotype is warranted as it remains unknown
why it occurs in immune competent hosts. It also remains uncertain whether a genetically determined response of
the host to its own cancer, the genetic makeup of the neoplastic process or a combination of both drives the
inflammatory process. Here we reflect on commonalities and discrepancies among studies and on the genetic or
somatic conditions that may cause this schism in cancer behavior.

Introduction

It was about a decade ago when the first studies
attempting to re-classify cancer according to global tran-
script analysis were published [1-3]. A countless number
of publications followed attempting to reshape the land-
scape of cancer based on transcriptional or other high-
throughput platforms for better diagnosis, prognosis and
prediction of cancer behavior. As the galore of expecta-
tions triggered by these investigations is settling into a
more realistic perspective, consistent observations are
emerging from the bulk of information that sparkle
novel insights on the biology of cancer. These observa-
tions describe a cancer phenotype characterized by
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immune effector mechanisms that are commonly
observed during acute inflammation.

Under certain conditions, inflammation seems to pro-
mote carcinogenesis, whereas in other situations it
seems to have anti-tumor effects. The intensity and nat-
ure of the inflammation could explain this apparent
contradiction [4,5]. In most cases, the inflammation
associated with cancer is similar to that seen with
chronic inflammation, characterized by the production
of growth and angiogenic factors that stimulate tissue
repair and growth. Macrophages are the primary source
of secreted pro-inflammatory cytokines and tumor
macrophage infiltration has been shown to be an inde-
pendent predictor of poor prognosis in malignancies
such as lymphoma, non small cell lung cancer and hepa-
tocellular carcinoma [6-8]. Occasionally, however, it is
observed a cancer inflammatory process, similar to
acute inflammatory processes, characterized by the pre-
sence of innate and adaptive T cell responses which
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favors an immune effector mechanism capable of indu-
cing spontaneous or treatment-induced cancer regres-
sion. In this process the presence of intrinsic immune
signatures reminiscent of an anti-viral state is painting a
new portrait of cancer [9]. This portrait includes para-
doxical relationships between the role of immunity in
modulating cancer growth versus rejection [4,10-13].
Furthermore, the canonical role played by the immune
system in recognizing and clearing aberrant tissues
broadens its functions to modulate tissue regeneration,
angiogenesis and pro- or anti-apoptotic mechanisms,
which in turn may affect directly or indirectly the nat-
ural history of cancer [14-16].

Immune signatures in melanoma

Long ago, it was suggested that spontaneous regression
or involution of malignant melanoma could be
explained in terms of cellular immunity [17]. Cochran
AJ [18] observed in 1969 that about 37% of primary
melanomas displayed a lymphocyte aggregation at their
periphery and an additional 35% displayed a “striking
mixture of lymphocytes and plasma cells"; local recur-
rence occurred significantly less frequently in patients
showing a mixed lymphocyte/plasma cell response.
Based on a large study, Clemente CG et al. [19] conclu-
sively reported in 1996 that the presence of tumor infil-
trating lymphocytes in the vertical growth phase of
primary cutaneous melanoma was an independently
favorable prognostic factor. The immune-active pheno-
type of melanoma is not limited to primary lesions.
Years ago, we observed that metastases from cutaneous
melanoma could be segregated into two subclasses
according to the coordinate expression of transcripts
annotated with innate and adaptive immune function
[20,21]. The transcriptional profile of “immune active”
metastases kept apart from that of normal melanocytes
when compared to the transcriptional profile of immu-
nologically “quiescent” metastases. Moreover, when
serial biopsies were performed on the same metastatic
lesions, a unilateral shift was noted from the quiescent
to the immune active phenotype [21]. Finally, we
observed that the expression of melanoma differentia-
tion antigens was inversely correlated to the expression
of immune-related transcripts supporting a de-differen-
tiated state occurring at a later stage of disease rather
than a distinct taxonomy [22]. We recently confirmed
this observation by assessing the transcriptional profiles
of 114 melanoma metastases (Figure 1A). As previously
observed an Interferon (IFN)-y type signature with
enhancement of the expression of Interferon regulatory
factor (IRF-1), antigen processing and presentation
genes was frequently found to be inversely correlated
with the expression of the microphthalmia-associated
transcription (MITF)-cluster of melanoma differentiation
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antigens and cancer testis antigens (Figure 1B). More-
over gene expression analysis of 17 breast tumor speci-
mens with at least 10% infiltrating cells indicated a
similar behavior compared to melanomas suggesting a
portrait ascribable to negative selection of cancer cells
simultaneously expressing the antigens target of immune
recognition and the corresponding antigen presenting
molecules. Alternatively, progressive de-differentiation
could be associated with an autochthonous enhance-
ment of constitutive metabolic functions encompassing
constitutive immune activation. Activation of IRF-1 in
the same melanomas correlated with that of transcripts
associated with improved survival in cancer [23,24]
(Figure 1C) and immune-mediated tissue specific
destruction [9,10]. Based on the same cohort of patients
we also analyzed whether there was an association
between the expression of immune gene and signatures
involved in damage associated molecular pattern
(DAMP) such as High mobility group box 1 (HMGB1)
[25]. The absence of any correlation between them sug-
gest, at least in this context, that the presence of
immune effector molecules in tumor side and in tumor
microenvironment is not due to the presence of sterile
inflammation events or activation of ischemia-related
signature occurring in tumor site (data not shown).
Prospective molecular profiling of melanoma metas-
tases undergoing immunotherapy with the systemic
administration of high dose interleukin (IL)-2 suggested
that lesions likely to undergo complete regression were
immunologically activated before therapy [21]. Recently,
in a pilot study of 19 patients vaccinated with a combi-
nation of four tumor antigens plus IL-12, Gajewski et al.
[26] observed by global transcriptional analysis that
tumors of patients who respond to therapy display a
pre-existing inflamed status characterized by the expres-
sion of interferon stimulated genes (ISGs). Moreover,
expression of T cell attracting chemokines such as
CCL2/MCP-1, -3/MIP1a, -4/MIP1B, -5/RANTES and
CXCL-9/Mig and -10/IP-10 was observed at the tran-
scriptional and subsequent [27] protein level. These
findings were associated with the histopathological
demonstration of a brisk infiltrate of CD8+ T cells in
the same tumors. The role of these chemokines in
recruiting activated effector T cells was confirmed in
vitro and in reconstituted xenografts. Interestingly,
together with the effector component of the immune
response, the inflamed tumor phenotype also displayed
the presence of immune inhibitory mechanisms includ-
ing the expression of indoleamine-2,3-dioexygenase, PD-
L1 and T regulatory cells. These findings suggest that
tumors of the inflamed phenotype do not discriminate
among various components of the immune response as
they can sustain immune effector and immune regula-
tory functions simultaneously; it is probably the overall
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Figure 1 Transcriptional profiling of 114 melanoma metastases; A) self organizing heat map displaying selected IRF-1 related
transcripts together with the expression of MITF and melanoma differentiation antigens. Each column represents a melanoma metastasis.
The dendrogram indicates the degree of similarity among genes (rows) or melanoma samples (columns) using Pearson’s correlation coefficient.
B) Matrix similarity based on Pearson correlation for the same genes. C) Self organizing map of IRF transcripts with related genes that have been
observed to be expressed in tumors displaying better prognosis [23,24,45] and expressed during immune-mediated tissue-specific destruction
[9,10]. Highlighted is the IFN-y/STAT-1/IRF-1/IL-15 cluster associated with a Th1 type of immune response. The yellow dashed lines underline the

close relationship between the expression of IFN-y and IRF-1 in the tumor microenvironment.

balance between the two vectors that determines the
ultimate fate of these cancers individual cancers. More
recently, the same group identified a similar pattern pre-
dictive of favorable outcome in patients vaccinated with
dendritic cell loaded with multiple tumor antigen-
derived peptides [28]. Similar findings were observed by
GSK-Biologics in non small cell lung cancer and mela-
noma patients undergoing vaccination with MAGE-3
protein [29,30]. An inflammatory phenotype was also
found to be predictive of good outcome in patients with
melanoma treated with IL-2 [21,31] or anti-CTLA-4
mAb [32]. Moschos et al [33] observed a higher density
of dendritic cells and T cells in melanomas of patients
who exhibited clinical response to adjuvant high dose

IEN-o therapy; the same group identified a higher
expression of phosphorylated STAT1 tyr’° (pSTAT1)
and higher pSTAT1/pSTAT3tyr’®® in cancer cells of
patients with tumors displaying this type of infiltrate
and this was associated with longer overall survival [34].
Treatment with IFN-o further enhanced the levels of
pSTAT1 while decreasing those of pSTAT3 and total
STAT3 in tumor cells further altering the balance
between the two transcription factors in favor of the
pro-inflammatory and pro-apoptotic phenotype [35-37].
As a functional correlate, it was observed that increased
pSTAT1/pSTAT3 ratios were associated with down-
stream increase in expression of ISGs by tumor cells
including tapasin 2, a protein whose expression is tightly
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regulated down-stream of pSTAT1 signaling through
the master regulator of the acute inflammatory process
IRF-1 [9]. Similar variation in constitutive levels of
pSTAT-1 could be observed in melanoma cells by
Lesinski et al [38] who also observed that pSTAT1/
pSTATS3 levels were inversely affected by IFN-a treat-
ment; these enhanced ratios correlated with anti-prolif-
erative effects of IFN-a..

Interestingly, others did not observe such a relation-
ship between presence of tumor infiltrating lymphocytes
and improved survival in patients with metastatic mela-
noma although the absence of tumor infiltrating lym-
phocytes predicted the development of lymph node
metastases [39].

Immune signatures in other cancers

The dichotomy between an immunologically active or a
quiescent cancer phenotype is not exclusive of mela-
noma. Several studies described a neoplastic phenotype
enriched in immunologic signatures or immune infil-
trates that could be observed in cancer of ovarian
[40-44], colon [23,44-53], breast [54-56], hepatocellular
[44], prostatic [55-60], pancreatic [44,61], pulmonary
[55,62,63], renal [64], head and neck [65,66], urotelial
cells [67], anal squamous cells [68] and skin [69] origin.
According to most studies, presence of immune infil-
trate and/or transcriptional evidence of immune activa-
tion correlated with good prognosis (Table 1).

T cells represent the dominant immune infiltrate in
ovarian cancer and the presence of CD8-expressing T
cells within the intra-epithelial compartment is a strong
predictor of improved survival [40,43,70]. Although
most ovarian cancers harbor T cells in the surrounding
stroma, approximately 50% of them are infiltrated in the
intra-epithelial compartment. Independent of response
to chemotherapy, when this infiltrate is present, the five
year survival is 35% compared to 4.5%. Several studies
have confirmed these findings in various ethnic groups
[71-77] providing indisputable evidence that T cell infil-
tration is strongly associated with an improved survival
in ovarian cancer. As pointed out by Kandalaft and Cou-
kos [70], it remains, however, unclear whether the T cell
infiltrate bears a causative effect on the improved survi-
val by effectively eliminating tumor cells or rather repre-
sents a sign of indolent tumor cell biology characterized
by slower growth that enhances the chance for immune
cells to infiltrate the tumor microenvironment. This
hypothesis is challenged by the observation that tumors
with a potentially higher proliferation index are in gen-
eral those characterized by higher T cell infiltrate [74].
This may be due to a higher mutational rate of these
tumors that results in higher immunogenicity due to the
expression of neo-antigens [78]; this phenomenon has
been also hypothesized for BRCA1 in breast and colon
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cancers in which microsatellite instability induces more
undifferentiated tumors and denser T cell infiltrates.
Alternatively, tumor-reactive T cells may have dual
function inhibiting tumor growth and at the same time
inducing epigenetic changes in the tumor cells that
leads to tumor escape. For instance, we have shown that
C producing T cells can induce methylation of the neu
promoter, resulting in neu antigen loss and tumor
relapse [79]. Recently, we observed an inverse correla-
tion between HER-2/neu-specific immune responses and
HER-2/neu expression in the tumors of patients with
breast carcinoma. Such inverse correlation was asso-
ciated with nuclear translocation of IFN-y Ra in the
tumor cells [80]. However, despite the increased tumor
differentiation and malignancy, the greater presence of
T cell infiltrated is associated with overall favorable
prognosis [81,82].

Intra-epithelial T cell infiltrates in ovarian cancer have
been associated with enhanced expression of [FN-a., IL-
2 and HLA class I molecules [40,83] suggesting that the
T cell infiltrate is associated with activation of a Thl
type of immune responses. More recently, it was
observed that ovarian and other cancers can be heavily
infiltrated with IL-17-producing T cells and their pre-
sence is often accompanied by that of IFN-a/IL-2-
expressing T cells [44]. It was observed that IL17 and
IFN-a synergistically stimulate the production of CXCL-
9/Mig, -10/1P-10 and -11/ITAC chemokines in correla-
tion with strong T cell infiltrate [40]. These chemokines
primarily attract activated T cells expressing their recep-
tor CXCR3 [84]. Other chemokines including CCL21/
SLC/Exodus2 and CCL22/MDC were highly expressed
in tumors with immune infiltrates, while an inverse cor-
relation between presence of IL-17-expressing T cells
and regulatory T cells was observed. Overall, the com-
bined expression of IFN-y and IL-17 expressing T cells
was predictive of improved survival. As discussed later it
was also observed that the presence of IL-17-expressing
T cells was due to the secretion of IL-1f and IL-23 p19
by tumor infiltrating macrophages. This positive role of
IL-23 p19 on survival of patients with ovarian cancer
was also reported by an independent group which
observed that high IL-12 p35 and IL-23 p19 transcrip-
tional levels were associated with better outcome in
ovarian cancer [85].

In 1998, Naito et al reported a correlation between
infiltration of colon cancers by CD8 expressing T cells
and improved survival [50]. It was subsequently recog-
nized that CD8+, CD45RO+, CD68+ T cells were
mostly present in the cases with good prognoses [51].
Recent investigations of the primary tumor microenvir-
onment in colorectal cancer allowed the uncovering of
four major intra-tumor immune profiles respectively
characterized by: 1) a strong and coordinated cytotoxic
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Table 1 Immune cellular and molecular patters associated with outcome in cancer
T cell infiltrate ~ STAT-1 GNLY CXCL-9 CCL-5 References*

IRF-1 GZM CXCL-10 CCR5

T-bet* TIA CXCL-11

IFN-y CXCR3

I1SGs

Melanoma
Better Survival [18,19]
Response to [Tx + + + + [21,26,27,30,33]
Ovarian Cancer
Better Survival + + + [40-44,70-77,83]
Colorectal Cancer
Better Survival + + + + + [23,44-46,49-51,53,130]
Breast Cancer
Response to CTx + + [54]
Better Survival + + [24,55,81]
Lung/Bladder/Prostate/Cancer
Better Survival + [62,63,67]
Renal Cancer
Better Survival + + [64]
Skin/Head and Neck/Anal Squamous Cell Carcinoma
Better Survival + + + [65,66,68,69]
Esophageal Cancer
Suppression of tumor growth + [96]
Better survival + [131]

CTx chemotherapy; ISGs = Interferon stimulated genes; ITx = Immunotherapy

The four categories of immune functions selected for this table summarize the most commonly observed transcriptional patterns associated with the

immunologic constant of rejection [9,10]

*Manuscript s proposing at least one of the categories presented in the Table as a predictor of outcome; for more detail see text.

Thl immune phenotype expressing CD8+, CD45RO+ T
cells, the transcription factor T-box protein 21 (T-bet),
interferon regulatory factor (IRF)-1, interferon (IFN)-v,
granulysin and granzyme-B; 2) tumor angiogenesis
(VEGF); 3) non-coordinated immune responses and, 4)
a weak immune reactive phenotype [14,45]. The first
transcriptional phenotype corresponded to immunohis-
tochemical evidence of CD8 T cell infiltration and was
characterized by good prognostic significance when the
T cells were present both in the center and in the inva-
sive margins of the tumors. These signatures were asso-
ciated with lack of expression of histological markers
associated with metastatic behavior such as vascular
emboli, lymphatic invasion and peri-neural invasion
(collectively termed VELIPI). This re-classification was
more reliable in predicting disease outcome than con-
ventional TNM staging. It was later observed that the
expression of the aforementioned Thl type genes is
tightly regulated probably by the expression of IFN-y
[23]. Interestingly, recent independent studies observed
a paradoxical association between the infiltration of
colon cancer by T cells expressing the T regulatory cell
marker FoxP3 [49,52,86,87] or PD-1 [88] and favorable
prognosis in patients undergoing chemo- or chemo-
immunotherapy. This observation is in line with the

previously described association between a longer dis-
ease free survival and the presence of FoxP3 T regula-
tory cells in head and neck and ovarian cancer. As no
transcriptional analysis was performed in these studies,
it is unknown whether this represents a distinct cancer
phenotype or rather that the expression of FoxP3 is
also, though paradoxically, a component of the more
broadly described immune phenotype. More recently
Tosolini et al., by profiling colon cancer biopsies,
described two clusters of genes associated with regula-
tory functions. Although the first cluster (IL-10/TGEp)
was not associated with a favorable outcome, the FoxP3
(second cluster) mRNA expression and the presence of
high density FoxP3 positive cells were associated with
better survival [53]. The same observation was made in
a recent study whereon patients with metastatic mela-
noma received high-dose interleukin-2 plus the
gp100:209-217(210M) peptide vaccine. The vaccine plus
interleukin-2 group, as compared with the interleukin-2
only group, experienced a significant improvement in
overall clinical response and longer progression-free sur-
vival. It was also noted an increase in CD4+FOXP3+ T
cells in patients who responded to therapy independent
of the treatment received. It was hypothesized that the
increased levels of T regulatory cells in patients who
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had a response to treatment represent a counter regula-
tory response after a strong anti-tumor immune reaction
[89].

In addition, the evidence that regulatory T cells can
lose FoxP3 [90], effector T cells can transiently express
FoXP3 without acquisition of suppressive functions
[91,92] and FoxP3 acts as tumor suppressor gene and it
is expressed on tumor cells [93-95] complicates the
interpretation of the aforementioned studies in absence
of functional and cell-specific analyses.

A similar portrait was recently described for breast
cancer [54]. Moreover, transcriptional analysis of pri-
mary breast tumors bearing at least a 10% immune cell
infiltrate detected a set of genes with immune function
that predicted recurrence free survival. Among them, a
5-gene signature including IGKC, GBP1, STAT1, IGLLS5,
and OCLN predicted relapse-free survival with higher
than 85% accuracy [24]. The extended signature asso-
ciated with relapse-free survival included transcripts
dependent upon interferon signaling which had been
previously associated with antigen presentation, allograft
rejection, autoimmunity, B cell development and natural
killer cell signaling. Interestingly, genes involved in pri-
mary immunodeficiency signaling, T cell apoptosis,
CTLA4 signaling and production of NO and reactive
oxygen species were also up-regulated in the tumor spe-
cimens of relapse-free patients (Figure 2). Such paradox-
ical findings as to simultaneous up-regulation of
immune effector genes and immune suppressor genes
may suggest that tumor-derived factors were responsible
for the expression of immune suppressor genes thereby
facilitating cancer progression even in the presence of
the increased immune effector genes. However, removal
of breast tumors by conventional therapy must have
eliminated the source of immune suppressive factors
and resulted in down-regulation of the suppressor
genes; subsequently, the immune effector genes may
have protected the patients from their residual micro-
metastases and relapse.

Furthermore, Denkert et al [54] observed that a robust
pre-existing intra-tumor and stromal lymphocytic infil-
tration was a significant independent predictor of com-
plete response to anthracycline/taxane neo-adjuvant
chemotherapy. In particular, this study identified
CXCL9/Mig to be strongly associated with intra-tumor
lymphocytic infiltrate and better responsiveness in all
cohorts of patients studied. Furthermore, statistical eva-
luation suggested that the response to chemotherapy
was dependent on lymphocytic infiltrates and that
CXCL9/Mig expression varied gradually among lesions
as a continuous parameter. Conversely, elevated expres-
sion of IRF-2 (an inhibitor of IRF-1 transcriptional activ-
ity) and high IRF-2/IRF-1 ratios were observed to be
associated with worse prognosis in esophageal cancer
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[96]. Since IRF-1 is a central modulator of the expres-
sion of the CXCR3 ligand chemokines, this study rein-
forces the relevance of the IFN-y/STAT-1/IRF-1 axis as
a favorable prognostic factor in cancer.

Besides the preclinical evidence suggesting that antic-
ancer immune responses contribute to the success of
chemotherapy, Ladoire S. et al [97] observed that also
the nature of tumour-infiltrating lymphocytes after
neoadjuvant chemotherapy could be used as a predictive
factor for survival of breast cancer patients. Studying a
series of 111 consecutive HER2- and a series of 51 non-
HER2-overexpressing breast cancer patients treated by
neoadjuvant chemotherapy, it was observed that high
CD8 and low FOXP3 cell infiltrates after chemotherapy
were significantly associated with improved relapse free
survival (p = 0.02) and OS (p = 0.002), and this predic-
tive pair outperformed classical predictive factors in a
multivariate analysis.

Interestingly, an older study observed an opposite pat-
tern whereby lymphocytic infiltrate was associated with
worse 5 year disease-free survival and with reduced
estrogen receptor expression [98]. However, in that case,
no functional assessment of the immune infiltrate could
be inferred through transcriptional signatures. Addition-
ally, the down regulation of estrogen receptor genes in
samples with lymphocytic infiltration could have driven
the results, since the estrogen receptor negative tumors
are insensitive to endocrine therapy. In fact, the hormo-
nal treatment can dramatically improve the prognosis of
the estrogen receptor positive tumors, thereby counter-
balancing the negative effect of the absence of tumor
infiltrating lymphocytes [99].

Weallace et al. [58] reported signatures related to acti-
vation of interferon stimulated genes (ISGs) in primary
prostate cancer of patients of African American ances-
try; these signatures, contrary to what observed by pre-
vious groups in other cancers, were associated with a
worse prognosis in individuals of this ethnic background
compared to European Americans. However, although a
common theme related to enhanced interferon signaling
was observed by both groups, the latter did not observe
activation of the typical inflammatory genes described
by the former centered on the IFN-y/IRF-1 pathway
rather signatures more typically related to signaling
down-stream of type 1 IFNs such as IFN-a or -f and to
the induction of angiogenesis. In fact, immunohisto-
chemical analysis demonstrated that these signatures
where associated with enhanced angiogenesis and, con-
trary to the colon study, infiltration of tumor associated
macrophages rather than T cells; these observations are,
therefore, opposite of those observed in colon cancer
suggesting that these immune active prostate cancers
have a VELIPI phenotype. Moreover, the same group
observed a immune phenotype of basal-like breast
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cancer portraying a higher frequency of FoxP3-expres-
sing T regulatory cells and characterized by poorer
prognosis [56]. It was also observed that upon separa-
tion of tumor epithelium from tumor stroma by micro-
dissection, the immune signatures were predominantly
expressed by the latter. These observations suggest that
the cancer immune phenotype comes in different flavors
which can be partly attributed to a mixed activation of
pathways associated to type II or type I IFN signaling
and possibly the latter displays a less clear prognostic
value.

On the origin of immune signatures

Together with gene expression profiling, immunohisto-
chemical (IHC) validation of gene expression data and
tissue microarrays (TMAs) are useful tools to clarify the

prognostic relevance of gene expression in discrete
tumor tissues [100,101]. However, IHC and TMAs tech-
niques are limited by the subjectivity of scoring methods
compared to transcriptional profile which give objective
or quantitative information that can be normalized to
standard reference samples.

Although gene expression analysis has proven accu-
rate in the characterization of the tissue microenviron-
ments supporting the relevance of ongoing immune
responses, it cannot provide information about the
source cell expressing immune effectors gene. Based on
transcriptional evidence, it is generally assumed that sig-
natures of immune activation identified by testing whole
cancer tissue reflect activation of genes expressed by
infiltrating immune cells. However, we recently com-
pared immunologic signatures of primary pancreatic
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cancer tissues pancreatic cancer cell lines and observed
activation of innate immunity including activation of
ISGs in both [61]. Moreover, primary xenografts dis-
played a similar dichotomy between an immune active
and an inactive phenotype. Immunohistochemistry ana-
lysis of primary tumor lesions confirmed the expression
of MxA, a typical ISGs. Thus, it is likely that the
immune signatures expressed by cancer tissues are, at
least in part, due to the activation of immune mechan-
isms intrinsic to the tumor cell biology. Indeed, others
have observed signs of immune activation in cultured
melanoma cell lines which displayed constitutive
pSTATSs activation [38]. Similarly, Zeimet et al [102] in
a study including 138 ovarian cancer samples observed
high levels of IRF-1 expression in cancer cells; the high
expression of IRF-1 by cancer cells was associated with
enhanced presence of CD3+ T cell which only occasion-
ally stained positively for IRF-1. In this case, however, it
is difficult to predict whether IRF-1 expression was sec-
ondary to the secretion of IFN-y by the T cells, which,
in turn, are insensitive to autocrine activation due to
down-regulation of the IFN-y receptor [103]. Thus, the
best evidence that the immune signatures observed in
the tumor microenvironment are, at least in part, driven
by the intrinsic cancer cell biology resides in the consti-
tutive activation of immune genes observed in resting
cancer cells in vitro. It is interesting to note that the
constitutive activation of cancer cells observed in vitro
through the detection of the phosphorylation of STAT-
1 is generally modest; yet it corresponds to a transcrip-
tional profile fully associated with the coordinate
expression of ISGs activated downstream of the STAT-
1/IRF-1 axis. Moreover, it appears that this constitutive
activation of pSTAT-1, though mild, predisposes cell
lines to higher sensitivity to further stimulation with
IFN-y [38,104].

Currently, no correlative study has been reported to
test whether the signatures observed in immune acti-
vated tumors are also present in cell lines derived from
the same tumors. It is important to note, however, that
expression of various transcription factors associated
with IFN signaling by cancer cells has been broadly
described in various tumors [35] and it has been asso-
ciated with better overall survival at least in melanoma
[34]. Moreover, it is believed that activation of such
transcription factors such as members of the STAT
family is at least in part mediated by activation of var-
ious oncoproteins involved in tyrosine kinase signaling
[35,37]. Thus, although it is not clear why TIL are pre-
sent in some and not all tumors, it is becoming increas-
ingly clear that some intrinsic characteristics of the
tumor cells themselves may drive in part the presence
of immune infiltrates. For instance, secretion of
endothelial factors and chemokines by tumor cells has
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been deemed responsible for this phenotype in various
cancer models [27,105-107]. It is also possible that the
borderline constitutive immune activation or anti-viral
state of cancer cells in vivo perpetuate a positive feed-
back loop whereby the cancer cells not only invite
immune cells to the tumor microenvironment but they
are also more sensitive to pre-inflammatory factors
secreted by immune cells. A recent commentary outlines
different characteristics of the tumor cells that may
explain paradoxical observations on tumor infiltrating
cells of the immune system [108].

Prognostic significance of immune signatures
Constitutive production of immune stimulatory mole-
cules and activation of immune mechanisms in cancer
cells is likely to drive the homing of immune cell within
the tumor microenvironment as recently demonstrated
in experimental models [27,109]. It is also possible that
the constitutive immune activation of cancer cells makes
them more sensitive to immune stimulatory mechanisms
induced by TIL as suggested by the enhanced expression
of pSTAT-1 in response to I[FN-a stimulation [38].
However, the activation of innate immune mechanisms
may have broader implications than those predicted by
direct immune interactions. IRF-1 and IRF-5 for
instance are powerful pro-apoptotic transcriptional acti-
vators which directly inhibit the cyto-protective activity
of other pro-survival factors such as NF-kB [110-112].
Moreover, IRF-1 inhibits VEGF expression thereby exhi-
bits anti-angiogenic effects [113]. Thus, the paradoxical
observation that signatures of actively growing tumors
are similar to signatures of immune-mediated tissue-
specific destruction during acute rejection [9,10] may be
explained by a borderline situation in which immune
activation is not sufficient to activate all the mechanisms
required to clear the organism of cancer cells; however,
these tumors are more susceptible to fluctuations of
immune functions driven by environmental conditions
such as sporadic viral infections or the pro-inflammatory
effects of chemotherapy [114] or immune therapy [21]
that can suddenly shift the balance toward partial or
complete tumor elimination.

Constitutive expression and activation of STAT-3, a
common oncogenic signaling pathway, has been clearly
associated with cancer progression and poor prognosis
[115]. Moreover, Wang et al. [115] showed an inverse
correlation between STAT-3 activation in tumor cells
and expression of pro-inflammatory cytokines associated
with adaptive and innate immune responses. Thus, it is
possible that activation of the IFN-y/STAT-1/IRF-1
pathways serves to counteract the constitutive activation
of STAT-3 in some cancer cell lines in the context of
metastatic melanoma [34]. While experimental models
support this hypothesis, very little is known about the
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association of various STAT proteins in cancer cells
with immune infiltrates.

The mechanisms leading to immune activation of cancer
cells and/or microenvironment

It could be argued that infiltration of the immune cells
into the tumor site is a characteristic dictated by the
genetic background of the host [116]. Indeed poly-
morphisms in the expression of cytokine receptors,
CXCR3 and CCR5 in particular, have been implicated in
the ability of the host to mount effective immune
responses in several pathological conditions including
allograft rejection [117]. Considering the central role
that the ligands for these receptors play in immune-
mediated tumor rejection, it is reasonable to speculate
that genetic polymorphism may be in part responsible
for the tumor infiltration of the immune cells and poly-
morphism of several genes could represent a multi fac-
torial component of this phenomenon. This is just an
example of the genetic variants that could affect the
infiltration of tumors in some but not all patients. At
the transcriptional level, expression of CXCR3 and
CCR5 ligands is tightly controlled by the activation of
the IFN-y/STAT-1/IRF-1 axis; however, when the
expression of the CXCL-9, CXCL-11 and CCL-5 is
assessed in melanoma metastases, almost a perfect cor-
relation is observed between them and their respective
receptors CXCR3 and CCR5 expressed by tumor-infil-
trating T cells and NK cells. It is possible that poly-
morphisms in the expression of these receptors may
variably influence trafficking of the immune cells to
tumors that express comparable levels of the relevant
chemokine (Figure 2). Alternatively, it is possible that
the presence of T cells may be dictated by factors other
than the chemokines such as the expression of antigen
and antigen presenting molecules that could induce the
expansion and persistence of T cells reaching the tumor.

It is also possible that the genetics of the tumor may
drive infiltration of different cells of the immune system
to the tumor site [73,78,81,82]. For instance, it was
observed that ovarian cancers with p53 mutations are
more frequently infiltrated with intraepithelial T cells
[73]. Although these findings could be interpreted as a
higher likelihood for such tumors to express neo-anti-
gens that could expand the tumor antigen-recognizing T
cells, poorly differentiated tumors may secrete soluble
factors with paracrine activity, favoring tumor growth
[20].

Several studies emphasized on IRF-1 as a transcrip-
tional activator that facilitates a Thl immune phenotype
and leads to tumor infiltration of CD8+ lymphocytes
associated with a favorable prognosis in cancer patients
[23,102,118]. Although the mechanisms leading to IRF-1
activation at the transcriptional level are not known, it
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is interesting to note that at least in ovarian cancer a
convergence is observed between the immune pheno-
type and the expression of IFN-y[119], IL-12 p35 and
IL-23 p19 [85] which are powerful stimulators of IRF-1
expression. Moreover, Kryczek et al [44] observed a
combined infiltration of IL-17 expressing CD4+ T cells
and CD8+ effector T cells; through synergistic action
between IL-17 and IFN-y expression, Th17 cells were
observed to stimulate the expression of CXCL-9 and -10
by ovarian cancer cells as well as tumor infiltrating
macrophages in order to recruit more effector T and
NK cells to the tumor microenvironment. This combi-
nation was observed to positively predict patient out-
come in the context of ovarian, colon, hepatocellular
and pancreatic carcinoma as well as in melanoma. Alto-
gether this study demonstrated that Th17 cell infiltra-
tion in several tumor types was quantitatively and
positively correlated with NK cell-mediated innate and
adaptive immune responses. The authors investigated
the role of various cell subtypes potentially responsible
for the induction of this tumor phenotype and identified
tumor-associated macrophages as the primary driver
through the production of IL-1f, IL23 p19 but not IL-6
and transforming growth factor-f; this effect was, how-
ever, neutralized by the presence of T regulatory cells in
the same environment [44].

The importance of a Thl immune environment has
also been observed by Dieu-Nosjean et al. [62] who
observed an association between the presence of tertiary
lymphoid organs and better survival outcome in patients
with non small cell lung cancer; these tertiary lymph
nodes were characterized by the infiltration of B cells,
CD8+ and CD4+ T cells expressing T-bet and polarized
toward a Thl phenotype. This is a remarkable observa-
tion considering that tertiary lymph nodes are structu-
rally and functionally identical to secondary lymphoid
tissues and contain fully activated dendritic cells. It
remains unclear why some tumors induce the formation
of these tertiary lymphatic structures which are rare in
normal conditions and are transiently present only in
areas of massive inflammation.

What are the mechanisms leading to constitutive acti-
vation of these transcriptional factors in cancer? While
strides have been made in the understanding of the acti-
vation of the JAK/STAT pathway in leukemia [120] very
little is known about solid cancers. Yet, several candi-
date mutations have been shown to lead to the activa-
tion of innate immune mechanisms in several cancer
types including melanoma. Most studies focused on
constitutive activation of the master regulator or innate
immunity and the cell survival factor NF-kB [121-123].
Since NF-kB and the IRFs are tightly involved in direct
and indirect interactions [112,124-126], it is reasonable
to postulate that the same mechanisms may be at the
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basis of the constitutive activation of STATs and in par-
ticular STAT-1 in melanoma. Yet, this information is
lacking at the present time and future work should
address this question.

Correlation between immune signatures of the tumor
microenvironment and systemic immune response

It has been clearly shown that patients with early stage
(stage II) or more advanced cancers suffer impaired
immune function. The most striking example is
decreased activation of ISGs and decreased ability to
phosphorylate STAT-1 by circulating immune cells
[127-129]. These findings have been reproduced in var-
ious cancer types including melanoma, breast and colon
cancer. It is important to note that although statistically
patients with cancer have strongly reduced immune
function compared to normal healthy donors there is
great individual variation with overlap of response
between patients and normal donors. It is possible that
the immune environment of tumors may directly or
indirectly influence this systemic phenomenon. It is,
however, unknown whether a correlation exists between
the immune phenotype of tumors and the responsive-
ness of peripheral immune cells to immune stimulation.
Mortarini et al [129] observed that impaired STAT acti-
vation of T cells did not correlate with frequency of
CD4+/CD25+/FoxP3+ T cells at the tumor site, though
they did not further compare the global transcriptional
patterns of the tumors. Interestingly, they also observed
that sera obtained from patients with advanced mela-
noma inhibited IL-2-dependent STAT activation of nor-
mal donor’s T cells, and a neutralizing monoclonal
antibody to TGF-f1 counteracted such inhibition. Since
it is well known that tumors may express this soluble
factor it would be interesting to compare the status of
activation of various tumors with the behavior of circu-
lating cells to test whether the immune phenotype of
tumors drives the systemic alteration of immune func-
tion associated with the cancer bearing status. Identifica-
tion of a correlation would allow indirect immune
phenotyping of tumors and consequently predict prog-
nosis by testing circulating cells.

Summary

It is becoming clear that tumors can be segregated into
at least two categories independently of their histology.
Of them one bears a signature consistent with a Thl
type of immune activation which in turn is associated
with, lymphocytic infiltrate, better prognosis and
enhanced likelihood to respond to therapy. It remains
unknown, why this dichotomy occurs, whether it
depends on the genetic makeup of individuals bearing
the disease or it is due to somatic mutations within can-
cer cells. It is also unknown, whether these signatures of
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strong clinical relevance are reflected by changes in the
peripheral circulation. We believe that future studies
comparing tumor tissue characteristics with the periph-
eral circulation, along with clinical data will be key to
better classify cancers.
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