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Abstract

Background: The growing consensus that most valuable data source for biomedical discoveries is derived from
human samples is clearly reflected in the growing number of translational medicine and translational sciences
departments across pharma as well as academic and government supported initiatives such as Clinical and
Translational Science Awards (CTSA) in the US and the Seventh Framework Programme (FP7) of EU with emphasis
on translating research for human health.

Methods: The pharmaceutical companies of Johnson and Johnson have established translational and biomarker
departments and implemented an effective knowledge management framework including building a data
warehouse and the associated data mining applications. The implemented resource is built from open source
systems such as i2b2 and GenePattern.

Results: The system has been deployed across multiple therapeutic areas within the pharmaceutical companies of
Johnson and Johnsons and being used actively to integrate and mine internal and public data to support drug
discovery and development decisions such as indication selection and trial design in a translational medicine
setting. Our results show that the established system allows scientist to quickly re-validate hypotheses or generate
new ones with the use of an intuitive graphical interface.

Conclusions: The implemented resource can serve as the basis of precompetitive sharing and mining of studies
involving samples from human subjects thus enhancing our understanding of human biology and
pathophysiology and ultimately leading to more effective treatment of diseases which represent unmet medical
needs.

Background
The effective management of knowledge in translational
research setting [1,2] is a major challenge and opportu-
nity for pharmaceutical research and development com-
panies. The wealth of data generated in experimental
medicine studies and clinical trials can inform the quest
for next generation drugs but only if all the data gener-
ated during those studies are appropriately collected,
managed and shared. Some notable successes have been
already achieved.
Merck has developed a system which enables sharing

of human subject data in oncology trials with the Moffit
Cancer Center and Research Institute [3]. This system is
built from proprietary and commercial components
such as Microsoft BizTalk business process server,

Tibco and Biofortis LabMatrix application and does not
address any data sharing issues outside of the two
institutions.
There is a growing set of data being deposited in

NCBI GEO [4], EBI Array Express [5], Stanford Micro-
array Database [6] and the caGRID infrastructure [7]
which is derived from gene expression experiments on
tissue samples collected from clinical setting. Many of
those are from either drug discovery or biomarker dis-
covery projects. In particular, Johnson & Johnson
through its subsidiaries have contributed such data sets
into GEO and Array Express.
These databases enforce standards for some of the ele-

ments of the experimental metadata [8]. In general, the
phenotype annotations in the metadata are not required
to follow standard dictionaries or vocabularies. That can
cause considerable issues as it was recently demon-
strated [9] and described in the following example.* Correspondence: sszalma@its.jnj.com
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These databases allow bioinformaticians to download
the normalized data and carry out further analysis. The
typical setting for such analyses that the scientist poses
some hypotheses with respect to the phenotype and the
informatician then needs to discern those phenotypes
from the semi-structured data and correlate it with gen-
otype in a sub-optimal process. In some cases the
decoding and interpretation of the different phenotype
can lead to serious mistakes such as the case recently
discovered when multiple publications interpreted nor-
mal samples as cancer samples leading to erroneous
conclusions [9].
The computational experiments can lead to validation

of the primary findings or to novel discoveries such as
in the case of meta-analysis of multiple datasets. The
burden of deconvoluting the phenotypes from source
files downloaded from these primary sources and coding
them in a standard to enable large-scale meta-analyses
makes these types of discoveries very costly and in fact
quite rare [10-13].
Data curation is a way to tackle some of these issues.

Typically, derived databases of omics experiments are
curated to create comparisons for specialized mining
with specific questions in mind. For example, there are
multiple resources being developed to integrate and ana-
lyze gene expression and other omic data and create
contrasts (A vs. B comparisons) or signatures [14,15].
The limitation of these resources is that they strive to
answer specific questions and thus limit in-depth
exploration of the data.
The treasure trove of high-content data derived from

human samples can be much more effectively mined if
standard dictionaries applied to all these studies and
each subject’s clinical and the associated sample’s geno-
mics data is stored and analyzed through a system
which enables efficient access and mining. An example
of such standardized infrastructure and potential for
pre-competitive sharing is presented below.

Methods
Johnson & Johnson has invested in translational
research by establishing within its pharmaceutical R&D
division a set of translational and biomarker groups and
focusing also on the management and mining of the
data emanating from integrative settings crossing the
drug discovery and development stages. One of the deli-
verables of this enhanced governance structure was the
development of a translational medicine informatics
infrastructure. This infrastructure is a combination of
dedicated people, robust processes and informatics solu-
tion - tranSMART.
We have established a strong cooperation across the

R&D of the pharmaceutical companies of Johnson &
Johnson and an open innovation partnerships with the

Cancer Institute of New Jersey and St. Jude Children’s
Research Hospital [16]. The R&D Informatics and IT
group works in close collaboration with discovery biolo-
gists, pharmacologists, translational and biomarker
scientist, clinicians and compound development team
leaders with a goal to develop a system which enables
democratic access to all the data generated during target
validation, biomarker discovery, mechanism of action,
preclinical and translational studies and clinical
development.
An important aspect of successfully introducing a

paradigm shift within a large pharmaceutical organiza-
tion is change management. From the start we have
recruited biologists, pharmacologists and physicians
from various therapeutic areas to help champion the
adaptation of the newly developed translational infra-
structure but also to guide us through the development
of the application in an agile environment.
The translational medicine data warehouse - tranS-

MART - was developed in partnership with Recombi-
nant Data Corporation (Fig. 1) and detailed description
of the system was reported previously [17]. Here we
give an overview of the salient points of the application.
In short, the data warehouse contains structured data
from internal clinical trials and experimental medical
studies and a set of public sources. The data modalities
include clinical data and aligned high-content biomarker
data such as gene expression profiles, genotypes, serum
protein panels, metabolomics and proteomics data.
Data is stored in an Oracle 11 database which is fully

auditable. We selected a set of open-source components
to assemble the application in contrast to the strategy
followed by Merck. A user interface providing a biologi-
cal concept search of analyzed data sets and an i2b2
[18] based comparison engine for subject level clinical
data were constructed in Java using GRAILS. Advanced
pipelines were established for launching analytical work-
flows of gene and protein expression and SNP data
between cohorts to present comparisons in Gene Pat-
tern [19] and Haploview [20]. The solution is hosted on
Amazon Elastic Compute Cloud and strict security pol-
icy is enforced. Authentication as well as role-based
authorization model is implemented throughout the
application so that study level permissions are enabled.
Clinical trial and experimental medicine study data

sets were transformed by curators and ETL (Extract,
Transform, Load) developers into an i2b2 [21] EAV
(Entity-Attribute-Value model) structure and a standar-
dized ontology based on CDISC SDTM (Clinical Data
Interchange Standards Consortium - Study Data Tabula-
tion Model) [22] was applied. Currently, the system con-
tains a growing number of curated internal studies - at
the time of writing it is 30 across immunology, oncol-
ogy, cardiovascular and CNS therapeutics areas.
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Figure 1 Diagram of the tranSMART system. Public and private data from multiple modalities (e.g.: gene expression, SNP, protein expression,
etc) and areas (clinical and pre-clinical) are aligned to standard ontologies and curated and undergo ETL processing to be stored in a central
data warehouse. A variety of user interfaces are implemented based on open-source components to enable data query, analysis and mining.

Figure 2 Curation process. Curation process diagram describes data flow for both public and internal data. (a). Public study (GSE7553) from
NCBI GEO was curated and uploaded into tranSMART. CDISC SDTM codes are applied for concepts such as Tumor Thickness - ORRES and
standardized concepts help the user navigate through complex studies (b).
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The same process was utilized for multiple public
expression experiment from samples of human origin
downloaded from GEO, Array Express or other public
repositories (see the flow chart and example in Figure
2a, b). The gene expression data was normalized using a
standard protocol if the original raw files were available
or the intensities were downloaded from the source sys-
tems. The phenotypes were manually turned into
CDISC SDTM concepts which then were stored in a
standardized hierarchy accessible through the familiar
explorer paradigm. Here each concept can be selected
and used for constructing a query. At the time of writ-
ing this article there are 30 such data sets in
tranSMART.

Results
In the following we show some sample analyses which
can be done very efficiently with the tranSMART system
once appropriate curation of public data [23] takes place
(Fig. 3a-j). With a simple drag-and-drop cohort selection
paradigm different dimensions of the data can be

selected and the system can run queries in mere sec-
onds to generate analyses which can reproduce original
results such as MAGEA3 differential expression between
basal cell carcinoma and metastatic carcinoma samples
shown in Figures 3a-c.
Interestingly, comparing basal cell carcinoma samples

with metastatic carcinoma samples using the Comparati-
veMarkerSelection algorithm [24] built into GenePattern
highlights the HSD17B11gene as the highest scored
gene which is consistently upregulated in the metastatic
samples (Figure 4d, e) supported by the sophisticated
statistical algorithms built into the GenePattern applica-
tion (e.g.: false discovery rate estimation by the Benja-
mini and Hochberg procedure [25]). Searching for
evidence in PubMed for association between HSD17B11
and melanoma brings up no hits but is associated with
seminal vesicle invasion in prostate cancer [26]. TranS-
MART system also enables doing a thorough search
across multiple databases for evidence of a gene’s invol-
vement in biological processes and experiments as illu-
strated in Figure 5.

Figure 3 Hypothesis re-validation. Original findings can be re-validated by using a simple drag-and-drop cohort selection and analysis
paradigm such as visualizing MAGEA3 differential expression between basal cell carcinoma and metastatic carcinoma samples (a-c).
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Figure 4 ComparativeMarkerSelection. Original analyses can be redone using a different methodology such as comparing basal cell
carcinoma samples with metastatic carcinoma samples using the ComparativeMarkerSelection algorithm (a,b).

Figure 5 Search. Searches can be run for discovering the associations of concepts found in analysis across multiple databases.

Szalma et al. Journal of Translational Medicine 2010, 8:68
http://www.translational-medicine.com/content/8/1/68

Page 5 of 9



Novel hypotheses can be also tested in a straightfor-
ward manner as it is illustrated in Figures 6a, b. Here
the suggested association of cyclin D1 with progression
from benign to malignant stages [27] is illustrated using
k-means clustering as one of the clustering methods
implemented through connection with GenePattern
[19]. While the expression levels of cyclin D1 increase
from benign to malignant, in metastatic melanomas the
expression level decreases [27] which in turn demon-
strated by the clustering method clearly delineating mul-
tiple subgroups of samples in the presumably
homogenous metastatic melanoma cohort.
Queries can use Boolean operators such as OR and

AND as illustrated in Figures 7a, b where the first

cohort contains samples from tissues from subjects
with primary melanoma, or basal cell carcinoma or
squamous cell carcinoma and the second cohort con-
sist of samples from tissues from subject with meta-
static melanoma. The example shows the resulting
heatmap of expression data of a particular gene (CFL2)
of this complex query. In subset one (denoted by S1_...
sample ids) most of the samples have low expression
of the gene of interest (denoted by blue color) whereas
in subset two (denoted by S2_... sample ids) most of
the samples have high expression of the gene of inter-
est (denoted by red color).
Cross-study meta-analyses are also available in the

application (Figure 8a, b). In this example two gene

Figure 6 New hypothesis testing. New hypotheses can be tested - the role of cyclin D1 in metastatic melanoma in single cohort using
k-means clustering (a,b).
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expression datasets from Veridex - from colorectal and
lung cancer tissue samples [9] - were previously pro-
cessed, normalized and uploaded into tranSMART. Both
sets of tissues were analyzed using the same Affymetrix
U133 GeneChip platform [9]. The tranSMART system
then enables one to construct a query where the gene
expression values of the two sets of tissue samples can
be aligned and analyzed. As an example we show that a
simple k-means clustering as implemented in GenePat-
tern using the EGFR gene with k = 2 can stratify the
subjects into high and low expressors.

Discussion
The tranSMART system allows clinicians, translational
scientists and discovery biologists to interrogate aligned
phenotype/genotype data to enable better clinical trial
design or to stratify disease into molecular subtypes
with great efficiency. Initial successes of applying this
system point towards the high value of translational
data in proposing indications for drugs with new

mechanism of actions [J. Smart, personal communica-
tion] and selecting biomarkers for stratified medicine.
The system has been in wide use across multiple ther-

apeutic areas within the pharmaceutical companies of
Johnson and Johnson. Comparing biological processes
and pathways between multiple data sets from related
disease or even across multiple therapeutic areas is an
important benefit of such a system. Through the exam-
ples presented above we have shown that the tranS-
MART system allows scientist to quickly re-validate
hypotheses or generate new ones with the use of an
intuitive graphical user interface. The use cases sup-
ported by tranSMART have been developed in close col-
laboration with key users and the solution was built
from many open source systems making the adaptation
of the system straightforward.
We have implemented a fine-grained, role-based

authorization model throughout the application so that
study level permissions are enabled and can be con-
trolled by the study owners. During curation the study

Figure 7 Combined analysis. New analyses can be run - e.g.: contrasting combined primary melanoma, basal and squamous cell carcinoma vs.
metastatic melanoma (a,b).
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owners are actively involved in reviewing and approving
the loading and standardization of the data from their
studies. This approach greatly enhanced the cooperation
of the study owners and the ultimate success of the data
warehouse.

Conclusions
A well-constructed system can enable scientist to test
but also generate new hypotheses using well-curated,
high-content translational medicine data leading to dee-
per understanding of various biological processes and
eventually helping to develop better treatment options.
Active curation and enterprise data governance have

proven to be critical aspects of success. The capability
of the system to query both internal and public data
and that during the development and implementation
full organizational alignment was ensured turned out to
be crucial.
Because large part of tranSMART is built from open

source systems it is much more amenable for being

shared with academic institutions in a pre-competitive
setting enabling collaborations aimed at developing dee-
per understanding disease biology.
The tranSMART system is under active development

including active curation of additional studies, imple-
menting new modalities and adding novel workflows.
Future development may include connection to the
internal biobank. By the established system and the
robust processes our research and development organi-
zation can now effectively manage not just the complex
and multimodal data but can also unlock the potential
of the data by transforming it into actionable knowledge.
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