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Abstract
Gene therapy techniques are being applied to modify T cells with chimeric antigen receptors (CARs) for therapeutic 
ends. The versatility of this platform has spawned multiple options for their application with new permutations in 
strategies continually being invented, a testimony to the creative energies of many investigators. The field is rapidly 
expanding with immense potential for impact against diverse cancers. But this rapid expansion, like the Big Bang, 
comes with a somewhat chaotic evolution of its therapeutic universe that can also be dangerous, as seen by recently 
publicized deaths. Time-honored methods for new drug testing embodied in Dose Escalation that were suitable for 
traditional inert agents are now inadequate for these novel "living drugs". In the following, I propose an approach to 
escalating risk for patient exposures with these new immuno-gene therapy agents, termed Strategy Escalation, that 
accounts for the molecular and biological features of the modified cells and the methods of their administration. This 
proposal is offered not as a prescriptive but as a discussion framework that investigators may wish to consider in 
configuring their intended clinical applications.

Introduction
Gene therapy techniques are being applied to modify T
cells with chimeric antigen receptors (CARs) for thera-
peutic ends (designer T cells, T-bodies). At their simplest,
CARs are an immunoglobulin binding domain fused to
the zeta signaling chain of the T cell receptor ("IgTCR")
that can redirect T cell killing against antibody-specified
targets [1]. The versatility of this platform has spawned
multiple options for their application. For the same target
and CAR recognition domain, a diversity of signaling
domains, co-expressed cytokines and anti-apoptotic
genes may impact the survival and activity of the designer
T cells, whereas other, adjunctive, procedures may sup-
port the stable engraftment of vast numbers of these
effectors in vivo.

Time-honored methods of Phase I safety testing have
relied on Dose Escalation of new drugs to protect patients
while advancing therapeutic aims. However, these meth-
ods designed for short-acting inert agents are no longer
sufficient with the advent of engineered cellular therapies
that are "living drugs" with potential for lifelong expo-
sures. Strategies applying different CARs and different

means of their application may have different potentials
for benefit, but which may also be paralleled in their
potentials for harm. For these novel cellular agents, I pro-
pose a new concept to be added to the clinical trialist's
lexicon: Strategy Escalation.

Discussion
Designer T cells and safety
The application of adoptive cellular therapies in any for-
mat may have generic consequences with constitutional
symptoms from cytokines released or co-administered.
For the most part, these are manageable in experienced
hands and present no new challenges. What is new is that
specificities can be engineered into T cells in analogous
fashion to monoclonal antibodies that have been adapted
to target selected tumor antigens. These antigens are typ-
ically normal cell constituents that are enriched in
tumors. From a T cell perspective, CARs allow bypassing
of thymic editing that prevents normal T cells from high
avidity reactions against self-tumor, but that primarily
protects from such reactions against self-tissue ("toler-
ance").

This bypassing of normal tolerance means that some
antigen targets may be unsafe for designer T cells. This
was recently shown in a designer T cell trial against G250,
a prominent renal cell carcinoma antigen [2]. Antibody
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against G250 had been applied in humans without toxic-
ity, but when this specificity was tested in designer T cell
format, reaction occurred against low level G250 on bil-
iary epithelium. This resulted in an intolerable hepato-
toxicity in two of three patients with low infused doses in
the range of 109 cells (100-fold below typical Surgery
Branch TIL doses [3]), necessitating dose reductions and,
in one case, systemic steroids for T cell suppression.
When steroids were removed, the patient had no resur-
gence of liver attack - but also no tumor response.

This key study illustrated that designer T cells carried
the potential for serious toxicity. The safety of compara-
ble Phase I interventions against other antigens (folate
binding protein [4], Tag72 [5], CEA [6], CD171 [7] and
GD2 [8]) indicate that toxicity is a function of the target -
with no obvious means to predict which. The G250 toxic-
ity also demonstrated that safety of a target with antibody
is no assurance of safety with designer T cells [2]. This lat-
ter conclusion is not surprising given the indirect means
of antibody toxicity [9] in comparison with the direct
cytotoxic potency of T cells that also brings far greater
sensitivity, killing with just a few antigen molecules per
cell, far below immunohistochemical detection thresh-
olds [10].

This G250 agent was expertly managed via a dose esca-
lation plan in a Phase I setting; the system worked: no one
died. Instead, it is the evolution of more complex Strate-
gies that raise the special concerns of this essay.

The Strategies
New Strategies evolved because several so-called 1st gen-
eration IgTCR designer T cells (above) had been tested in
the clinic without major tumor regressions. Two contrib-
uting problems were identified. Firstly, the infused
designer T cells initially distributed widely through the
blood and tissues, but then they quickly perished in the
host that is already replete with T cells. Secondly, the few
T cells that trafficked into tumor could initially exhibit
killing, but they ultimately disappeared via a process of
activation-induced cell death (AICD) or passed to a rest-
ing, inactive state.

These two problems prompted two corresponding
hypotheses for improving tumor responses:

(1) Responses could be improved: if sufficient T cells
were maintained systemically to sustain T cell percolation
into tumor (although T cells survived for only a few days
of tumor cell killing).

(2) Responses could be improved: if T cells were to acti-
vate and proliferate on antigen contact in tumor
(although T cells in tumor were few in starting number).

To address hypothesis #1, Dudley, Rosenberg and col-
leagues [11] applied "conditioning" to create a "hemato-
logic space" with high dose chemotherapy and/or whole

body irradiation prior to T cell infusion in their TIL stud-
ies in melanoma. With the burst of IL7 and IL15 that
accompanies the lymphopenic state [12], the infused T
cells rode the recovery with a homeostatic expansion, i.e.,
independent of antigen stimulation. As such, low doses of
infused T cells could expand 100-fold in vivo to become a
stable, "engrafted" component of the lymphoid compart-
ment, in some instances >50% of the cells that would be
the equivalent of 5 × 1011 (0.5 kg!) tumor-specific T cells.
This in turn led to dramatically improved tumor response
rates with substantial numbers of durable remissions.

To address hypothesis #2, so called 2nd generation "2-
signal" CARs were created to improve their function [13].
To the basic TCRz signaling (Signal 1) of the IgTCR was
added a co-stimulation Signal 2 via CD28 and/or other
signaling domains, e.g., IgCD28TCRz. Signal 1 suffices
for T cell killing, but Signal 1 + 2 engages the T cell prolif-
erative capacity, avoiding AICD, and promotes T cell
reactivation on antigen contact after passing to resting
state. By this, even a few cells trafficking to tumor could
activate and expand in situ to large numbers until tumor
elimination, in the same way that virus-specific T cells
respond to viral infections. Further, the added costimula-
tion renders designer T cells resistant to regulatory T cell
suppression [14].

The benefits of these modifications for improving ther-
apy were enticing, and to many their combination
appeared irresistible. With engraftment of 2-signal
designer T cells, there would be huge numbers of effec-
tors, and they would never lose their capacity to respond
against the tumor threat - or against normal tissues,
thereby motivating this essay.

With two independent approaches, however, it is not
just their combination but a 2 × 2 array of four distinct
Strategies that confronts the investigator in choosing
safely how to treat his first patients with a new designer T
cell agent: 1st generation or 2nd? Infuse or engraft? The
philosophy of patient exposures during new drug testing
is aimed at proceeding from low risk to higher risk in a
regulated fashion. To order these Strategies for risk,
therefore, it is instructive to perform a "What-if?" analysis
to consider the consequences if G250 designer T cells [2]
had had their initial patient exposures under one of these
more advanced Strategies.

"What if...?"
"What if " G250 designer T cells were first applied via ...?

Strategy 1. 1st generation, infused [Actual]
In the least aggressive Strategy, infusion of 1st genera-
tion G250 designer T cells was seen to mediate signif-
icant toxicity. Steroids successfully suppressed the T 
cell reaction without reactivation after steroid with-
drawal.
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Strategy 2. 1st generation, engrafted
If the same T cells had been engrafted, their resulting 
vast numbers would likely induce a more severe and 
possibly lethal toxicity if left unchecked. However, 
intervention with steroids would again suppress the 
auto-immune attack. Once brought to resting state 
and steroids removed, these Signal 1-only designer T 
cells would be inert (anergic) on contact with antigen 
positive tissues, and the patient safe from resurgence 
of his symptoms. Toxicity under this Strategy should 
be manageable. (See endnote 1.)
Strategy 3. 2nd generation, infused
If G250 designer T cells were infused as before but in 
2nd generation format, they also would induce toxicity 
and then respond to steroids. But with removal of ste-
roids, these now-resting 2-signal designer T cells can 
reactivate on antigen contact with renewed toxicity. 
Importantly, at low initial exposures in the dose esca-
lation, these infused designer T cells begin as a tiny 
fraction of the body's T cell repertoire and undergo 
rapid systemic decline (e.g., 109 cells infused vs 1012 
total T cells, or 0.1% at peak and lower thereafter). 
From the analogous clinical setting of donor lympho-
cyte infusion (DLI), we know that size (of dose) mat-
ters, and even with a fully competent allo-immune 
reaction, small numbers of allo-reactive T cells can be 
safely managed with a balance of GvH reaction and 
anti-tumor benefit [15,16]. Thus, toxicity under this 
Strategy should also be manageable.
Strategy 4. 2nd generation, engrafted
If 2nd generation T cells had instead been engrafted, 
G250-specific T cells would not only be capable of 
reactivation after steroids, but they would be vast in 
number. With up to 10% of the reconstituted T cell 
pool being antigen specific after the lowest injected 
dose (e.g., 1011 cells expanding from 109 injected) 
[17], these cells would be virtually impossible to con-
trol, like too high a dose in DLI settings. Maximal 
immune suppression would be required at all times, 
with infectious complications and a predictably fatal 
outcome. Had the initial patient exposure of G250 T 
cells been by Strategy 4, the consequences could have 
been dire.

Strategy Escalation
With these options, it can be seen that there are now
choices, not just of dose levels as in typical Phase I drug
studies, but of Strategies, with distinct consequences to
each. With these Strategies available, how does one best
advance the therapeutic aims while remaining faithful to
principles of patient protection via an incremental expo-
sure to risk? This brings us to the concept of Strategy
Escalation. Strategy 1, simple infusion of 1st generation, is
the most conservative; Strategies 2 and 3, engraftment
OR 2nd generation, are intermediate in risk; Strategy 4,

engraftment AND 2nd generation, is the most aggressive.
To proceed from the untested state for a new target ("0")
to its most potent implementation, one could envision a
Strategy Escalation path of 0 → 1 → (2 or 3) → 4.

But do I advocate that escalations for all new agents
first pass through a Strategy 1 test, infusion 1st generation
(0 → Strategy 1)? No, I do not. If the target was previously
tested with a Strategy 1, it does provide more confidence
of the safety or hazard for the more aggressive strategies.
The G250 test by Strategy 1 showed it was unsafe as a tar-
get, from which one may forego all more advanced Strate-
gies, thereby sparing patients from more serious injury.
Ultimately, however, drugs must be tested for safety in a
setting that reflects their potential utility. Sufficient evi-
dence exists from diverse trials with infusion of 1st gener-
ation designer T cells to infer that none will be
therapeutically successful by Strategy 1, and safety in this
format becomes of mainly academic interest. If we
instead start with a more advanced Strategy, what ratio-
nale could be invoked?

Strategy 2 with engraftment of 1st generation showed
considerable benefit in the analogous setting of TILs
where simple infusions had not yielded high response
rates [12]. The promise of Strategy 3 with 2-signals to
sustain an antitumor reaction in situ is an hypothesis
based on encouraging preclinical data; clinical trials are
just now underway. Both of these have a rationale for
realistic benefit to patients where Strategy 1 no longer
does. If we bypass Strategy 1 for initial human trials, there
is more risk with first patient exposures via engraftment
(0 → Strategy 2 test) OR 2nd generation (0 → Strategy 3
test), but there is also a rationale for controlling toxicities
should they occur, as discussed above.

I would argue, however, that proceeding with an
untested target (e.g., as was G250) to the most aggressive
Strategy 4 (engraftment AND 2nd generation) is too much
risk. A 0 → Strategy 4 test presumes much about the
quality of our knowledge of the potential normal tissue
targets and their susceptibility, and, of all Strategies, this
one alone allows no exit strategy if we guess wrong. (See
Appendix 1 for examples.) No one could foresee the
hepatotoxicity of G250 designer T cells [2] or the cardio-
toxicity of trastuzumab antibody (Herceptin®) [18] prior
to the actual human trials. The graded exposures of their
respective Phase I/II studies were essential to revealing
toxicities before a Grade V event (death). After a target is
shown to be safe by one Strategy, one may proceed with
fair confidence to more aggressive Strategies, as shown in
Figure 1.

More than safety
Although safer development drives the Strategy Escala-
tion concept, the discipline of this structure can assist in
finding more optimal development paths as well. For
example, while a case can be made for safely escalating T
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cells from a prior Strategy 1 or 2 to Strategy 4, these paths
are not necessarily recommended (dotted in Figure 1).
Three reasons unrelated to T cell safety may be consid-
ered for all paths instead passing through a full Strategy 3
test first:

(1) Lower hazard: The NMA conditioning of Strategy 4
is routinely accompanied by infectious complications that
can occasionally be fatal [[19,12]; see also Appendix 1:
Designer T cell study deaths];

(2) Lower cost: The clinical (non-manufacturing) costs
in the real-world hospital setting are in the range of $4-
$8,000 for simple infusion (Strategy 3) versus $60-
$100,000 for engraftment protocols (Strategy 4), per our
own experience [20-22]; and finally and importantly,

(3) Better science: A direct 0 → Strategy 4 test with
engraftment obscures any chance to test the core driving
hypothesis of current research, e.g., that additional sig-
nals, as embodied in the advanced generation designer T
cells, can promote a fully competent T cell response with
in situ expansion until tumor elimination.

To this latter point, T cells do this quite efficiently in
virus infections without conditioning, and when we have
proven ourselves capable to bypass immunization and
antigen-presenting cells via this technology, I expect we
will prevail similarly with designer T cells against tumor.
At the moment that we succeed with the right CARs,
such engraftment strategies, with their attendant costs
and hazard, will predictably be retired. Hence, in my

opinion, engraftment should be viewed as an intervening
measure, applied only until we get better at immunology,
to compensate for our still-imperfect T cell engineering.

Further, when targeting a normal self antigen, a Strat-
egy 3 infusion may allow "tuning" of the activity against
tumor versus normal tissue by judicious dose exposures
and a gradation of suppressive therapies (as needed) in
the manner of DLI [15], where a Strategy 4 engraftment
with its hard-to-control cell numbers may fail. That is,
with each new product tested under Strategy 3, an appro-
priate dose escalation plan affords the best chance to
define an optimal biologic dose (OBD) to establish proof-
of-concept anti-tumor activity and conditions of safety to
normal tissues.

At this point in time, however, the first studies with 2nd

generation designer T cells under Strategy 3 (infused) are
just coming on-line, and none has yet completed a full
escalation with appropriate cytokine support (e.g., IL2).
Thus, it is too early to infer sufficiency or deficiency of
any of the existing 2nd generation reagents to eliminate
tumors - without engraftment. But where these more
advanced reagents are proven therapeutically inadequate
(and safe) under Strategy 3 infusions, then engraftment
via Strategy 4 with its higher cost and hazard is a justifi-
able next step in the Strategy Escalation.

Hence, for untested targets, it is my opinion that Strat-
egy Escalations of 0 → 2 (1st generation, engrafted) or 0
→ 3 (2nd generation, infused) are safe and acceptable for
initial human exposures. For all targets, tested and
untested, I believe for reasons of safety, science and cost
that 2nd generation engrafted should instead have a full
prior test of 2nd generation infused, i.e., a Strategy Escala-
tion of (0 or 1 or 2) → 3 → 4. (See endnote 2.) This is
represented in Figure 2.

Conclusions
It is recommended that every new immuno-gene therapy
proposal be accompanied by a Strategy Escalation discus-
sion that accounts for the molecular and biological fea-
tures of the modified cells and the method of their
proposed administration. This Commentary presents an
example of such a discussion from the current state of the
art for designer T cell therapies, counseling against the
most intensive Strategies for untested antigen targets. If
by an early Strategy, the patient can safely be treated, then
one may reasonably advance to more potent Strategies
with a rationale for safety. Further, it is clear that safety
with an antibody is not the same as safety with a T cell;
antibody studies therefore cannot substitute for directed
designer T cell trials via a less than fully committed
patient exposure. As a paradigm, Strategy Escalation is
intended to be flexible and adaptive as new therapeutic
opportunities are brought forward, e.g., anti-apoptotic
genes, suicide genes, co-expressed cytokines, etc., as elab-
orated in Appendix 2: Future directions. Finally, the for-

Figure 1 Safe pathways for Strategy Escalation. Note that all esca-
lations are permissible except 0 → 4. Dotted paths are proposed as 
plausibly safe but not advised. See text.

0

1

32

4



Junghans Journal of Translational Medicine 2010, 8:55
http://www.translational-medicine.com/content/8/1/55

Page 5 of 8
malism of the Strategy Escalation discussion may
ultimately find wider application, extending to other cel-
lular therapies as their respective fields mature, e.g., as in
stem cells where emerging concerns over options for
their safe and incremental application were recently and
cogently expressed [23].

Appendix 1: Designer T cell study deaths
In the past year, two patients died on Phase I designer T
cell studies: one targeting CD19 in lymphoma [24,25] and
the other targeting Her2/neu in breast cancer [26,27].
Both were previously untested targets for designer T
cells. The patients in each case were treated with 2nd
generation designer T cells incorporating costimulation,
and the two deaths were the first patient in each case to
undergo engraftment (Strategy 4). In the former, there
was an initial exposure to designer T cells by infusion
(Strategy 3) but only to low doses (~109 T cells) without
toxicity, and then a death with the first patient to have
engraftment of the same dose (0 → (3) → 4 test). (3 in
parentheses because it was not a full dose-escalation
test.) Was this death due to on-target toxicity (i.e., against
CD19 on undefined normal tissue)? In that case, was the
jump too big from 109 cells infused on Strategy 3 tran-
siently present to 1011 stably engrafted on Strategy 4
(from 109 cells dose)? (See endnote 2.) Or was this death
unrelated to any on-target toxicity, perhaps secondary to

the conditioning? These questions could not be defini-
tively answered. The study was ultimately allowed to pro-
ceed with the second patient treated at half-log lower
dose without toxicity [24].

In the second case, targeting Her2/neu, the first patient
exposure was a moderately high dose of 1010 designer T
cells infused after conditioning. This was the first-in-
human designer T cell test against this target (0 → Strat-
egy 4 test). The patient experienced acute pulmonary
edema within the first hour post infusion, and high dose
steroids were initiated. The patient died after five days
with cardiac arrest and hemorrhagic enteritis, the latter a
recognized manifestation of severe GvHD. Her2/neu is
known to be expressed on lung and bowel [28], and may
be inferred at low levels in heart by the cardiotoxicity
seen in a minority of patients treated with trastuzumab
(Herceptin) [18]. This study is presently suspended.

One may consider whether these are second and third
examples of antibody therapy being relatively safe (i.e.,
anti-CD19 antibody [29] and trastuzumab [30]) but
designer T cell therapy against the same target is toxic.
From the details presented, the likelihood is the CD19
death was not due to T cell toxicity, but rather a compli-
cation of the conditioning regimen, a reminder that con-
ditioning, integral to Strategies 2 and 4, is not a benign
option. On the face of it, the Her2 death appears to be on-
target toxicity in normal tissues, similar to the G250
study [2], but not reversible by steroids due to vast self-
reactive T cell numbers in the Strategy 4 setting. An alter-
native in each case would have been to start with a full
Strategy 3, escalating until 1011 cells infused, if tolerated,
and then switch to Strategy 4, engrafting - but only if
Strategy 3 is ineffective. In both instances, these deaths
alert us to the potential for serious impact of our inter-
ventions, and that the choice of how we incrementally
expose patients (i.e., Strategy) may be important to
patient safety in a new therapy.

Appendix 2: Future directions
One may consider the structure of the 2 × 2 matrix for
Strategy Escalation as deriving from inherent elements of
T cell biology. One dimension is how many T cells there
are ("quantity", e.g., Strategy 1 → 2; T cells increased by
engraftment) and the other dimension is how effective/
potent they are ("quality", e.g., Strategy 1 → 3; T cells
more effective with costimulation). This matrix works
well for the current state of the art represented in current
clinical trials, but new permutations in these strategies
are continually being invented. It is instructive to con-
sider how these newer configurations may affect the
application of this matrix.

The matter of when to assign a new intervention a new
Strategy number (e.g., 5) comes down to whether an ear-
lier trial needs to be performed before escalating to the
new Strategy: e.g., to address safety concerns of a modifi-

Figure 2 Optimal pathways for Strategy Escalation. All paths to 2nd 

generation engrafted ("4") pass through a full prior test of 2nd genera-
tion infused ("3"). See text.
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cation or to serve better hypothesis testing. In most
instances, however, it can be seen that these anticipated
modifications are still covered under one of these four
basic Strategies. That is, novel interventions may be con-
ceptualized along these same two axes of number (quan-
tity) and/or potency (quality), without dramatic changes
in the risk implications for untested antigens. These can
be annotated with + or - on a basic Strategy number (e.g.,
Strategy 1+ or 4-) when safety features are considered not
to mandate a separate trial. Ultimately, whether a config-
uration is a Strategy 4+ or a Strategy 5 (needing a Strategy
4 trial first) can be a judgment call for the investigator,
but the formalism of the Strategy Escalation discussion
provides an explicit framework in which to support that
assignment. In the end, however, the way the Strategies are
numbered is less important than the structure that
encourages their formal consideration as a strategy.

In the following, we consider several Strategy configu-
rations that have been described in preclinical work that
may find their way into the clinic.

Multiple co-stimulatory molecules
These include CD28, 4-1BB, OX40 and others. I have
defined all of these constructs, single or multiple, as 2nd

generation: they all make T cells more potent (quality),
some more than others. The best co-stimulation combi-
nations will make T cells quantitatively more able to
mediate toxicity, possibly at lower starting cell exposures,
but do not introduce qualitatively novel risks. Unrecog-
nized toxicities against self-tissues should still be ade-
quately covered via infusions (Strategy 3) under a dose-
escalation plan with appropriately low starting doses, as
in tuning donor lymphocyte infusions (DLI) [15]. Simi-
larly, risks with engraftment (Strategy 4) are not qualita-
tively different among different 2nd generation constructs
once proven safe in a Strategy 3 test.

Co-expressed cytokines
This falls into two categories: Growth factors (e.g., IL2,
IL7, IL15) and Immune Modulators (e.g., IL12, IFNg).
Growth factors constitutively expressed improve cell
numbers (quantity) by prolonging T cell survival/expan-
sion. Critically, none has been associated with T cell
immortalization. For infusion protocols, the impact on
quantity is incremental and manageable (versus the quan-
tum changes for engraftment) and likely does not create
new types of risks for 1st or 2nd generation when infused.
(See endnote 3.) Immune modulators like IL12 make T
cells more potent (quality) without affecting cell num-
bers. The anti-self potency can be managed by the same
dose escalation as DLI protocols (above). By this Strategy
discussion, it appears that there is no untoward risk by
Strategy 1 or 3 infusions. Where these cytokines take on
special significance, however, is in engraftment protocols.
With 1011 or more cells post-recovery secreting cytokine,

high systemic exposures may create a risk that is off-tar-
get and potentially life-long. With this qualitatively new
risk, such a study might merit designation as a Strategy 5
protocol, to be conducted post Strategy 4, if ineffective.
(However, see below, On-Off gene control.)

Reactivation modulators
Antigen-Fc molecules have been shown to stimulate
designer T cells, 1st or 2nd generation, in the presence of
monocytes that crosslink Ag-Fc and supply B7 for CD28
engagement and costimulation [31]. This molecule may
in principle be used in vivo to reactivate and expand
designer T cells in conjunction with any Strategy (1 and 3,
post-infusion; 2 and 4, post-engraftment). The ability to
control the dose and duration of Ag-Fc exposure allows
assignment of Strategy 1+ or 4+, for example, without
major risk increment.

Anti-apoptosis genes
Anti-apoptotic genes can replace growth factors (e.g.,
IL2) by blocking apoptosis from cytokine withdrawal,
e.g., via Bcl-xl over-expression [[32]; Emtage & Junghans,
unpublished data], impacting therapy along the cell num-
ber axis (quantity). This has the advantage of avoiding
systemic cytokine exposures, whether exogenous or
expressed in the T cells (above). However, the potential
for transformation and immortalization with a Bcl family
member [32] distinguishes this class from the expressed
cytokines. This introduces a qualitatively new risk, merit-
ing designation as a Strategy 5 protocol, to be tested (with
appropriate rationale) only after failure of a prior Strategy
3 or 4.

Suicide genes
This measure would be unnecessary for most infusion
protocols, where the dose escalation and suppressive
measures provide adequate protection as discussed in the
main text (an exception might be with anti-apoptosis
genes). The fail-safe feature of incorporated suicide genes
presents a potential escape from any toxicity, however it
manifests [33]. In the most relevant clinical model, her-
pes TK (hTK) has been employed in allo-transplant,
where it has successfully combated serious GvHD [34]. In
the case of 2nd generation engraftment, a suicide gene
could take a Strategy 4 down to a Strategy 4-. Yet, even
here, the investigator will want to consider the rapidity
and completeness of the suicide (for hTK, hours to days,
depending on T cell cycling) versus the rapidity and
intensity of onset of adverse effects. In the Her2 study,
with a moderate (1010) dose of T cells, the patient had
respiratory distress by 15 minutes post-infusion, requir-
ing intubation, and was dead in 5 days. (See Appendix 1:
Designer T cell study deaths.) A suicide gene could not
have prevented the initial event but perhaps the ensuing
death. Thus, the option of suicide gene control of non-
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hyperacute toxicities could take the designer T cells
under Strategy 4 engraftment to a risk level approaching
simple infusion (e.g., Strategy 3+) by reducing effector
cell numbers (cell numbers being the essential difference
between 3 and 4). However, it does nothing to improve
safety or expense of conditioning, or to correct a muddled
hypothesis test with the combined approach. The suicide
gene ablation for serious toxicity in engraftment also
loses the opportunity to "tune" the therapy in the manner
of DLI, available to infusion protocols (e.g., Strategy 3),
where a balance of anti-self and anti-tumor activity may
be achieved with patient benefit [15]. Lastly, if fully tested
under Strategy 3, where suicide genes are generally
unneeded, a 2nd generation designer T cell does not
require a suicide gene in a subsequent Strategy 4 because
safety of the target was previously established.

On-Off gene control
In analogy to suicide genes, parallel descriptions could be
made for control of genes desirable for expression (e.g., of
cytokine) that is time-limited without terminating the T
cells, allowing for resumption of activity at a later time if
needed. Thus, an engrafted 2nd generation designer T cell
with co-expressed cytokine under a Tet-On promoter
[35], potentially termed Strategy 5 because of the added
risk of systemic cytokine, is downgraded to a Strategy 4+
because of the potential to shut off growth factor on Tet
withdrawal, thereby avoiding need for a prior Strategy 4
trial for patient safety.

Endnotes
1. This inference of toxicity manageability under Strategy
2 is consistent with observations in two non-designer T
cell studies. TCR transfer engages CD3 Signal 1 on anti-
gen contact, similar to 1st generation designer T cell
CARs. Engraftment of T cells with MART1 specificity in
a Strategy 2-like application had on-target toxicity that
safely responded to steroids [36]. Engraftment with CEA
specific TCR designer T cells also showed on-target nor-
mal tissue toxicity that was safely managed [37]. 1st and
2nd generation TCR-based CARs have been created
[[38,39]; AJ Bais & RP Junghans, unpublished data] and
will engender the same types of discussion as for the Ig-
based CAR constructs.

2. Bearing in mind that there is a 100-fold expansion of
T cells for the lowest useful doses in the engraftment pro-
tocols (e.g., 109 cells) [11,17], it is likely that a reasonable
Strategy Escalation increment to a starting test with 109 T
cell engrafted is not preceded by a test of 109 T cells
infused, but by a test of 1011 T cells infused. In the latter
case, one is comparing 1011 T cells transiently present by
infusion versus 1011 T cells stably present by engraftment.
By moderate increments in risk, the hope is that toxicities

will be revealed at less than Grade V (death) on their first
expression. See Appendix 1: Designer T cell study deaths.

3. IL7 and IL15 are transiently elevated post-condition-
ing and thought to drive the homeostatic expansion and
engraftment of T cells [12,40]. One might be concerned
that these cytokines constitutively expressed in designer
T cells could drive T cell expansion without limit. Against
this, however, is the observation that engraftment
depends upon an empty compartment that is enumerated
for TCR populations, independent of the cytokine
response [41]. Prudence would dictate, however, that this
inference of safety be tested preclinically in vitro and in
vivo prior to human exposures.
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