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Abstract

Hepatitis C virus (HCV) is one of the major risk factors for chronic hepatitis, which may progress to cirrhosis and
hepatocellular carcinoma, as well as for type II mixed cryoglobulinemia (MC), which may further evolve into an
overt B-cell non-Hodgkin’s lymphoma (NHL).
It has been previously shown that B-cell receptor (BCR) repertoire, expressed by clonal B-cells involved in type II
MC as well as in HCV-associated NHL, is constrained to a limited number of variable heavy (VH)- and light (VL)-
chain genes. Among these, the VK3-20 light chain idiotype has been selected as a possible target for passive as
well as active immunization strategy.
In the present study, we describe the results of a multiparametric analysis of the innate and early adaptive immune
response after ex vivo stimulation of human immune cells with the VK3-20 protein. This objective has been pur-
sued by implementing high-throughput technologies such as multiparameter flow cytometry and multiplex analy-
sis of cytokines and chemokines.

Introduction
Hepatitis C virus (HCV) is a Hepacivirus of the Flaviviri-
dae family, mainly involved in hepatic disorders, includ-
ing chronic hepatitis which may progress to cirrhosis in
about 10-20% of cases and further to hepatocellular car-
cinoma in 1-5% of cirrhotic patients [1].
Subsequently, the virus has been implicated as one of

the major risk factors for type II mixed cryoglobuline-
mia (MC), an autoimmune disease that may evolve into
an overt B-cell non-Hodgkin’s lymphoma (NHL) in
about 10% of MC patients [2-5]. Several studies have
contributed to establish the causative role of HCV infec-
tion in the etiopathogenesis of MC, showing the
presence of the viral RNA and/or anti-HCV antibodies
in a range of 70 to 100% of MC [6-8]. Furthermore, the
clinical evolution of MC is closely linked to the natural
history of the underlying HCV chronic infection [9,10].

The most accredited pathogenetic mechanism of MC
during HCV chronic infection is the persistent immune
stimulation sustained by viral proteins which, in turn,
may result in production of cross-reactive autoantibo-
dies, including cryoglobulins [11,12]. Chronic stimula-
tion of the B-cell by HCV epitopes may produce the
expansion of B-cell subpopulations with dominant
genetic characteristics. In particular, the interaction
between HCV E2 protein and CD81 molecule, an almost
ubiquitous tetraspannin present on B-cell surface, has
been shown and it may lead to a strong and sustained
polyclonal stimulation of B-cell compartment [13].
Furthermore, the t (14,18) translocation observed in
85% of the patients affected by HCV-related type II MC
might lead to abnormally elevated expression of Bcl-2
protein with consequent inhibition of apoptosis and
increased B-cell survival [14]. This multistep process
may ultimately lead to B-cell NHL as late complication
of the MC syndrome [9,15].
The clonality of expanded B cells can be defined by

the analysis of the antigen-binding region (so called
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idiotype, Id) of the immunoglobulin produced and
expressed by the B-cell clone. According to the variety
of Ids identified, the lymphoproliferative disorder may
be sustained by mono-, oligo- or polyclonal B cells. It
has been previously demonstrated that the B-cell recep-
tor (BCR) repertoire expressed by clonal B-cells involved
in HCV-associated type II MC as well as in NHL is not
random, with V1-69, V3-7, V4- 59 variable heavy (VH)-
and still more variable � (VK)3-20 and VK3-15 light
(VL)-chain genes being the most represented [16-18].
These data suggest a model of antigen-driven origin for
these lymphoproliferative disorders with the recognition
of a limited number of HCV antigens [18,19].
The constrained heterogeneity of Ids shared by such

patients strongly suggests the possibility of targeting one
or few idiotypes to hit and eliminate the B cell clone
sustaining the HCV-associated NHL. One strategy is to
generate idiotype-specific MAbs to be employed in a
selective passive immunization [20]. An alternative strat-
egy is to use an idiotype vaccine [21] in order to elicit
an active humoral/cellular immune response as preven-
tive and/or therapeutic approach against the expansion
of the B cell clone sustaining the HCV-associated NHL.
We have previously shown that a multivariate and

multiparametric analysis can predict the innate and
early adaptive immune response induced by a vaccine
molecule in human monocyte-derived dendritic cells
(MDDCs) as well as whole peripheral blood mononuc-
lear cells (PBMCs) using an ex-vivo experimental
setting. This systems biology approach involves high-
throughput technologies such as global gene expression
profiling, multiplex analysis of cytokines and chemo-
kines, and multiparameter flow cytometry, combined
with computational modeling [22-26].
In the present study, we performed a multiparametric

analysis of the innate and early adaptive immune
response after ex vivo stimulation with the VK3-20 light
chain protein, the idiotype most frequently identified on
B cell clones sustaining the HCV-associated type II MC
and NHL. This objective has been pursued using freshly
isolated circulating human PBMCs.

Materials and methods
Enrolled subjects
Peripheral blood was obtained by venipuncture from 5
healthy volunteers and 10 HCV positive patients. All
human specimens were obtained and processed at the
National Cancer Institute in Naples under informed
consent, as approved by the Institutional Review Board.

Cell culture medium
PBMCs culture medium consisted of RPMI 1640 med-
ium (Life Technologies, Carlsbad, CA) supplemented
with 2 mM L-glutamine (Sigma), 10% fetal calf serum

(Life Technologies) and 2% penicillin/streptomycin
(5,000 I.U./5 mg per ml, MP Biomedicals).
MDDCs culture medium consisted of RPMI 1640

medium (Life Technologies, Carlsbad, CA) supplemen-
ted with 2 mM L-glutamine (Sigma), 1% non-essential
amino acids (Life Technologies), 1% sodium pyruvate
(Life Technologies), 50 μM 2-mercaptoethanol (Sigma)
and 50 μg of gentamicin (Life Technologies) per ml.

PBMC isolation and MDDC preparations
Fresh human PBMCs were isolated by Ficoll-Hypaque
density gradient centrifugation and plated in six-well
plates at a concentration of approximately 1 × 107

cells/well in a maximum volume of 3 ml/well for
induction. Alternatively, MDDCs were generated as
described previously [24,27], with minor modifications.
Briefly, isolated PBMCs were enriched for CD14+
monocytes by negative selection with a cocktail of
monoclonal antibodies (MAbs) from StemCell Tech-
nologies (Vancouver, British Columbia, Canada),
according to the instructions of the manufacturer.
Typically, greater than 80% of the cells were CD14+
after enrichment, as verified by flow cytometry. The
isolated monocytes were allowed to adhere to plastic
by plating in six-well plates at 1 × 106 cells per ml in
RPMI 1640 medium for 2 hrs. Adherent monocytes
were washed with RPMI 1640 medium and were then
cultured for 6 days in DC culture medium supplemen-
ted with 50 ng of recombinant granulocyte-macro-
phage colony-stimulating factor (rGM-CSF; R&D
Systems, Minneapolis, Minn.) per ml and 1,000 U of
recombinant interleukin-4 (rIL-4; R&D Systems, Min-
neapolis, Minn.) per ml.

Cell treatment
PBMCs or MDDCs were pulsed with serial dilutions of
the recombinant VK3-20 protein (15, 5 and 1.5 μg/ml)
provided by Areta International (Gerenzano, Italy)
(Patent PCT/IB2008/001936). In parallel, cells were
pulsed with 4 μg/ml of lipopolysaccharide (LPS), as
positive control. PBS was used as negative control. After
16-h incubation, PBMCs and MDDCs were harvested
and washed with 1× PBS (137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, 2 mM KH2PO4, pH 7.2) without
Calcium and Magnesium.

Flow cytometry
PBMCs and MDDCs were incubated for 30 min at 4°C
with human monoclonal antibodies specific for CD40,
CD80, CD83, CD86, HLA-DR, CD123, CD11c and
CD14 (BD Pharmingen, San Diego, CA), washed and
then analysed with a FACScalibur flow cytometer (BD
Pharmingen). Data analysis was carried out with
WinMDI2.8 Software.
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Multiplex cytokine analysis
At the time the cells were harvested, the supernatants
were also collected and stored frozen until analyzed.
Cytokine production was assessed using the BD™ Cyto-
metric Bead Array (CBA) tool (Becton Dickinson and
Company), according to the instructions of the
manufacturer. Data acquisition was performed using a
FACScalibur flow cytometer (BD Pharmingen), the ana-
lysis was performed with the BD CBA Analysis Software.

Statistical analyses
Intergroup comparisons were performed with the
Mann-Whitney U test (for univariate nonparametric
group analysis). All p-values were two-tailed and consid-
ered significant if less than 0.05.

Results
Clinical parameters of subjects included in the analysis
Fifteen subjects were enrolled in the study. Ten subjects
were HCV positive patients, of whom 2 were males and
8 were females (P1 - P10). Four of them were diagnosed
with NHLs and only one of them showed a type II MC
(Table 1). Five healthy subjects were enrolled as controls
(C1 - C5), matched for age and life style.

VK3-20 protein induces comparable maturation
phenotype in MDDCs and PBMCs of control subjects
Freshly derived PBMCs and immature MDDCs were
obtained from healthy HCV-negative subjects and were
incubated with 1.5 μg/ml, 5 μg/ml or 15 μg/ml of the VK3-
20 protein. After a 16-hr stimulation, the expression of sur-
face maturation/activation markers, such as CD40, CD80,
CD83, CD86 and HLA-DR was examined. The results
showed the up-regulation of all markers in PBMCs in
CD14+ monocyte population as well as CD123+

plasmacytoid DC (pDC) or CD11c+ myeloid DC (mDC)
(Fig. 1). Furthermore, MDDCs showed patterns of activa-
tion comparable to circulating mDCs and pDCs (Fig. 2).
Quantification of cells expressing activation markers in

the subsets of circulating monocytes, pDC and mDC
cells showed a trend of partial dose-response at increas-
ing concentrations of the VK3-20 protein, indicating a
specific activation/maturation activity on the circulating
antigen presenting cells (APCs) (Fig. 3). The expression
of CD40 and CD80 markers showed similar pattern of
induction (data not shown).
The similar levels of activation/maturation observed in

MDDCs and in PBMCs, regardless the marker of cell
population used for gating, confirmed the feasibility of
such analysis using “unselected” PBMCs, as previously
reported [22,25].

The VK3-20 protein induces maturation phenotype in
PBMC
Given the comparable results observed in MDDC and in
PBMC, subsequent analyses on samples from the
enrolled subjects were performed only on circulating
monocytes, pDC and mDC and the VK3-20-induced
expression of the markers was evaluated in terms of
mean fluorescence index (MFI).
The basal expression of the markers was largely

comparable between control and HCV+ subjects in the
considered cell populations (Fig. 4A to 4C). The only
exception is represented by basal CD83 expression,
which shows a trend of higher expression in the CD11c
+ mDC population of HCV+ subjects (Fig. 4A).
The stimulation with VK3-20 protein induces a trend

of increased expression of the activation/maturation
markers in all circulating cells, from control and HCV
seropositive subjects, although the most evident and
consistent pattern is observed in the CD123+ pDC and/
or CD11c+ mDC cells (Fig. 5 and 6A to 6C).
In particular, the lowest dose of VK3-20 used in the

experimental system (1.5 μg) appears to be already suffi-
cient to induce an increased expression of the activation
markers in cells from both groups of subjects.
In control subjects, VK3-20 induced the most evident

effect on the expression of CD86 in the circulating
monocytes, pDCs and mDCs(Fig. 5B). On the contrary,
the effect was significantly evident for all evaluated mar-
kers in the circulating cell populations from HCV +
subjects (Fig. 6A to 6C). This observation suggests that
overall the HCV seropositivity status does not signifi-
cantly affect the responsiveness to an immunogenic
stimulus (i.e., VK3-20) of circulating APC populations.

Cytokine production in VK3-20-loaded PBMCs
In order to evaluate the impact of the VK3-20 protein
stimulation on the production of cytokines involved in

Table 1 Clinical parameters of enrolled subjects

SEX HCV MC NHL

C1 M Neg Neg Neg

C2 M Neg Neg Neg

C3 F Neg Neg Neg

C4 F Neg Neg Neg

C5 F Neg Neg Neg

P1 F Pos Neg Neg

P2 M Pos Neg Neg

P3 F Pos Neg Neg

P4 M Pos Neg Neg

P5 F Pos Neg Neg

P6 F Pos n.d. Follicular

P7 F Pos n.d. Marginal

P8 F Pos n.d. Diffuse large B cell

P9 F Pos Pos Diffuse large B cell

P10 F Pos n.d. Neg

n.d. = not done.
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T-helper-cell activation, the levels of IL-2, gamma inter-
feron (IFN-g), tumor necrosis factor alpha (TNF-a),
IL-6, IL-4 and IL-10 were assessed in the supernatant of
PBMCs stimulated with the VK3-20 protein.
The average basal level of all evaluated cytokines

showed no significant difference between HCV positive
patients and control subjects (Fig. 7). Cell treatment
with the VK3-20 protein did not induce any increase in
the production of Th1 cytokines (IL-2 and IFN-g). On
the contrary, the VK3-20 protein induced a significantly
higher production of the Th2 cytokines (IL-4, IL-6, IL-
10, and TNF-a) in PBMCs from HCV seropositive and
control subjects, with the highest levels observed in the
samples treated with the highest concentration of VK3-
20 (15 μg) (p < 0.05) (Fig. 8 and 9). The levels of Th2
cytokines induced in the HCV+ samples were signifi-
cantly higher than those observed in control samples (p
< 0.01).

Discussion
The multivariate and multiparametric analysis described
in the present study shows that the basal and VK3-20-

induced expression of activation markers and co-stimu-
latory molecules in the evaluated circulating antigen
presenting cells (APCs), CD14+ monocyte as well as
CD123+ plasmacytoid DC (pDC) or CD11c+ myeloid
DC (mDC) populations, is largely comparable between
HCV-seropositive and control subjects. Overall, the
markers show a trend of increased expression in all cir-
culating cells, although the most evident and consistent
pattern is observed in the CD123+ pDC and/or CD11c+
mDC cells. No significant difference was observed
between results obtained in human monocyte-derived
dendritic cells (MDDCs) and circulating APCs, confirm-
ing previous results from us and other groups
[22,25,28,29].
The overall expression pattern suggests maturation/

activation induced by VK3-20, although for some speci-
fic markers and in some patients the trend does not
reach statistical significance. This observation suggests
that the HCV seropositivity status does not significantly
impair the immune activation status and the responsive-
ness of circulating APC populations to the VK3-20
immunogenic stimulus. Results obtained in parallel with

Figure 1 PBMCs were incubated with increasing doses of VK3-20 protein for 16 hrs. The expression of CD83, CD86 and HLADR was
analysed by FACScalibur flow cytometer in CD14+ monocytes, CD123+ pDCs and CD11c+ mDCs. Data analysis was carried out with WinMDI2.8
Software. One representative experiment is shown.
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lipopolysaccharide (LPS) used as a positive activation
factor, confirm the responsiveness of circulating APCs
from both groups analyzed in the present study. None-
theless, some HCV+ individuals show a complete lack of
maturation induced by VK3-20 in circulating APCs,
strongly suggesting the need for individual evaluations
to identify possible impairments in response to this
immunogen.
The present results confirm and extend data from

others showing a normal expression of surface mole-
cules involved in antigen-specific T-cell activation on
immature and mature DCs from HIV-1-infected and
hepatitis C virus (HCV)-HIV-coinfected individuals
[30-32]. Furthermore, monocyte-derived DCs from
either HCV-infected or HCV-HIV-coinfected subjects
have been previously shown to stimulate a mixed leuko-
cyte reaction in purified, allogeneic CD4+ T cells com-
parable to that with DCs derived from healthy donors
[33-35].
The average basal level of the Th2 (TNF-a, IL-6, IL-4,

and IL-10) cytokines is significantly higher (p < 0.02) in
HCV-seropositive compared to control subjects. On the
contrary, Th1 cytokine levels are equivalent in the two

groups. These results suggest a Th2 polarization
induced by an established HCV infection, as previously
extensively reported [36-39].
VK3-20 induced a significantly higher production of

the analysed Th2 cytokines in PBMCs from HCV-sero-
positive and control subjects, with the highest levels
observed in the samples treated with the highest con-
centration of VK3-20 (15 μg/ml) (p < 0.05). Further-
more, the levels of Th2 cytokines induced in the HCV+
samples were significantly higher than those identified
in the control samples (p < 0.01), suggesting the persis-
tence of a prevalent Th2 status. No increase in the pro-
duction of Th1 cytokines (IL-2 and IFN-g) was observed
(p < 0.4) in the control as well as HCV+ group. In parti-
cular, the production of IFN-g is known to be inhibited
by IL-10 [40], with a sequential detrimental effect on
the IL-12-mediated induction of IFN-g production by
NK and T cells [41-43]. Therefore, the high levels of
IL-10 and TNF-a induced by VK3-20 could explain the
lack of increased production of IFN-g in both groups.
The observed discrepancy between the VK3-20 concen-
tration necessary for the maximal induction of activation
markers (1.5 μg/ml) and the one necessary for the

Figure 2 Comparative analysis of the expression of surface maturation/activation markers (CD83, CD86, HLADR) performed on
stimulated MDDCs, CD123+ pDCs and CD11c+ mDCs.
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Figure 3 6-color flow cytometric analysis was performed on VK3-20 protein-stimulated monocytes, mDC/pDC cell populations and
immunophenotype analysis of surface maturation/activation marker expression is shown. Values in each quadrant represent the
percentage of positive cells.
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Figure 4 Basal level expression of surface maturation/activation markers, indicated as Mean Fluorescence Index (MFI), on PBMC-
derived monocytes and DC from control and HCV positive (HCV+) subjects. CD14 = CD14+ monocytes; CD123 = CD123+ pDCs; CD11c =
CD11c+ mDCs.

Figure 5 Expression of surface maturation/activation markers, indicated as Mean Fluorescence Index (MFI), induced by the indicated
concentrations of VK3-20 and LPS in PBMC-derived monocytes and DC from control subjects. CD14 = CD14+ monocytes; CD123 =
CD123+ pDC; CD11c = CD11c+ mDC.

Buonaguro et al. Journal of Translational Medicine 2010, 8:18
http://www.translational-medicine.com/content/8/1/18

Page 7 of 11



Figure 6 Expression of surface maturation/activation markers, indicated as Mean Fluorescence Index (MFI), induced by the indicated
concentrations of VK3-20 and LPS in PBMC-derived monocytes and DC from HCV seropositive subjects. CD14 = CD14+ monocytes;
CD123 = CD123+ pDC; CD11c = CD11c+ mDC.

Figure 7 Analysis of basal level production of Th1 and Th2 cytokines in supernatants of PBMCs from control and HCV positive (HCV+)
subjects.
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Figure 8 Analysis of Th1 and Th2 cytokines in supernatants of PBMCs from control subjects induced by the indicated concentrations
of VK3-20 and LPS.

Figure 9 Analysis of Th1 and Th2 cytokines in supernatants of PBMCs from HCV seropositive subjects induced by the indicated
concentrations of VK3-20 and LPS.
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maximal induction of cytokine expression (15 μg/ml)
may suggest a different pathway of activation involved
in the two independent biological effects, which need
further investigation.
The similar response observed in HCV-seropositive

subjects, regardless of the diagnosis of type II MC or
NHL, would suggest the absence of an in vivo priming
for the VK3-20. In this regard, the expression of VK3-20
in the clonal B-cell populations of these subjects is cur-
rently under evaluation.
The impairment of basal and antigen-induced produc-

tion of Th1-polarizing cytokines for HCV-seropositive
individuals is in concordance with our previous observa-
tions on PBMCs from HIV infected subjects exposed ex
vivo to a VLP-based HIV vaccine model [25,44].
The overall results here described represent a proof-

of-concept and confirm the possibility of screening
donor susceptibility to an antigen treatment using circu-
lating APCs, CD14+ monocytes as well as CD123+ plas-
macytoid DC (pDC) or CD11c+ myeloid DC (mDC)
populations, without the need of purification and ex
vivo selection of DCs, simplifying the identification of
“responsive” vaccinees and providing mechanisms of
eventual failures in individuals enrolled in clinical trials.
When necessary, additional and more detailed studies
on fractionated cell types would allow identification and
a better characterization of the individual cells involved
in mediating the in vivo response. In conclusion, our
results indicate that circulating APCs from HCV-sero-
positive patients can be functional in active autologous
immunotherapy strategies. In particular, the results
strongly suggest the induction of the innate and early
adaptive immune response by the protein corresponding
to the VK3-20 light chain of the idiotype most fre-
quently identified on B cell clones sustaining the HCV-
associated type II MC and NHL. Therefore, its use as
preventive as well as therapeutic vaccination strategy
appears to be feasible and potentially effective. However,
specific Th1-driving adjuvant strategies might be neces-
sary to obtain the sought efficient therapeutic effect.
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